

Reinforcement Learning Spring 2024

Abhishek Gupta

TAs: Patrick Yin, Qiuyu Chen

Class Structure

Past Lecture Outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 \rightarrow uncertainty based models
    Model based RL v3 → policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

Model Based RL v0 – Random Shooting + MPC

Model Based RL v1 – MPPI

Idea: Iteratively upweight sampling distribution around the things that are higher returns

Referred to as **MPPI**, lower variance!

Sample N action sequences

$$(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N \sim p(a)$$

Sample trajectories using these action sequences with the model \hat{p}_{θ}

$$\hat{s}_{t+1} \sim \hat{p}_{\theta}(.|\hat{s}_t, a_t)$$

Update action sampler by upweighting high return actions

$$p(a) \leftarrow p(a) \frac{\exp(\sum_t r(s_t, a_t))}{Z}$$

Model Based RL v2 – Uncertainty Aware Models

Idea: Estimate when OOD and account for it

→ Measure uncertainty!

Maximum likelihood models

Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!

Model Based RL v2 – Uncertainty Aware Models

Alleatoric Uncertainty

Epistemic Uncertainty

(environment stochasticity)

(Lack of data)

Easier, can use stochastic models

More challenging, need to compute posterior

Let's largely focus on epistemic uncertainty

Lecture outline

Model based RL v2 \rightarrow uncertainty based models Model based RL v3 \rightarrow policy optimization with models Model based RL v4 \rightarrow latent space models with images Control as Inference - Formulation Variational Inference

What might be the issue?

Rollouts under learned model != Rollouts under true model

——→ Model bias/compounding error

Predicted Rollout Under Model

Why does this happen? → lack of data

- 1. Errors in state go to OOD next states
- 2. Deviations in actions go to OOD next states

Model is bad on OOD states!

Most trained deep models can only roll out for 5-10 steps maximum!

How might we deal with compounding error?

Idea 1: Change the training objective of the model to directly account for this!

Equation error – 1 step prediction error

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Simulation error – K step prediction error

$$\max_{\theta} \sum_{t} \log \hat{p}_{\theta}(s_{t+1}|\hat{s}_{t}, a_{t})$$
$$\hat{s}_{t} \sim \hat{p}_{\theta}(.|\hat{s}_{t-1}, a_{t-1})$$

Model error under learned mode $\hat{p}_{ heta}$ rather under true model

Can be a challenging non-convex optimization!

How might we deal with compounding error?

Idea 2: Estimate when OOD and account for it

Measure uncertainty!

Maximum likelihood models

Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!

What is uncertainty?

Alleatoric Uncertainty

Epistemic Uncertainty

(environment stochasticity)

(Lack of data)

Easier, can use stochastic models

More challenging, need to compute posterior

Let's largely focus on epistemic uncertainty

How might we measure uncertainty?

$$p(\theta|\mathcal{D})$$

Difficult to estimate directly!

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta')p(\theta')d\theta'}$$

- 1. Bayesian neural networks
- 2. Ensemble methods

3. ...

Directly model posterior distribution

Use variational inference to avoid computing partition function $\min_{q(\theta|\mathcal{D})} D_{KL}(q(\theta|\mathcal{D}) \mid\mid p(\theta|\mathcal{D}))$

Challenge: can be difficult to express rich distributions

How might we measure uncertainty?

$$p(\theta|\mathcal{D})$$

Difficult to estimate directly!

Learn an ensemble of models

- 1. Bayesian neural networks
- 2. Ensemble methods
- 3. ...

Low data regime → high ensemble variance

Approximate posterior

Easier and more expressive than BNNs!

Model Based RL – Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model

Learn ensembles by either subsampling the data or having different initializations

Model Based RL – Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Expected value over ensemble

$$\arg\max_{(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N} \sum_{i=1}^K \sum_{t=0}^T r((\hat{s}_t^j)^i, a_t^j) \\ (\hat{s}_{t+1}^j)^i \sim \hat{p}_{\theta_i}(.|(\hat{s}_t^j)^i, a_t^j)$$

Can also swap which ensemble element is propagated at every step or just pick randomly amongst them

Avoids overly OOD settings since the expected reward is affected by uncertainty

Model Based RL – Integrating Uncertainty into MBRL (v2)

Take **pessimistic** value under the uncertain dynamics

Penalize ensemble variance

$$\arg \max_{(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N} \sum_{i=1}^K \sum_{t=0}^T r((\hat{s}_t^j)^i, a_t^j) - \lambda \operatorname{Var}((\hat{s}_t^j)^i)$$

$$(\hat{s}_{t+1}^j)^i \sim \hat{p}_{\theta_i}(.|(\hat{s}_t^j)^i, a_t^j)$$

Avoids overly OOD settings since these states are explicitly penalized

Does this work?

Lecture outline

Model based RL v2 → uncertainty based models

Model based RL v3 \rightarrow policy optimization with models

Model based RL v4 \rightarrow latent space models with images

Control as Inference - Formulation

Variational Inference

What might be the issue?

Huge number of samples needed to reduce variance

Amortize planning into a policy

a Output Layer Hidden Layers Input Layer

Extremely slow, hard to run in real time

Speeding Up Model-Based Planning

Use model(s) to generate data for policy optimization

Can use PG or off-policy!

Generating Data for Policy Optimization

Test time

What matters in generating data from models?

Long horizon rollouts can deviate

Short horizon rollouts deviate far less

Balance between off-policy coverage and compounding error

Model Based RL – Using Models for Policy Optimization (v3)

More expensive/harder at training time, faster at test time

Does this work?

Lecture outline

```
Model based RL v2 \rightarrow uncertainty based models
Model based RL v3 → policy optimization with models
Model based RL v4 \rightarrow latent space models with images
      Control as Inference - Formulation
             Variational Inference
```

What about images?

State based domains

Image based domains

Why is learning from images hard?

Generative modeling is videos, challenging to model multimodal correlated predictions

Long horizon predictions in video space can be challenging!

Model Based RL – Latent Space Models for Image Based RL (v4)

Fully observed – Markovian case

If we can infer latent state and learn dynamics, then we can plan in a much smaller space

Partially observed – Non-Markovian case

How do we infer latent state and learn dynamics in this space?

How do we **train** latent space models?

Can derive the whole thing from first principles using variational inference!

How do we **use** latent space models?

Apply any of the methods from this lecture, just in latent space!

- Avoids predicting image frames at planning time
- Scales much better than image prediction
- 3. Allows for longer horizon predictions

Does this work?

Does this work?

A1 Quadruped Walking

UR5 Multi-Object Visual Pick Place

XArm Visual Pick and Place

Sphero Ollie Visual Navigation

Training from images in < 1 hour!

Why should you care?

Model based RL <u>may be</u> a much more practical path to real world robotics

Are models really that different than Q-functions?

Models

Q-functions

Similar

- 1. Off-policy
- 2. Models the future

Very different than PG methods \rightarrow on-policy, models current given future

Different

- 1. 1-step modeling
- 2. Models states
- 3. Can evaluate arbitrary policies
- 4. Parametric storage of training data

- 1. Cumulative modeling
- 2. Models returns
- 3. Can evaluate only policy π
- 4. Non-parametric storage of data

Lecture outline

```
Model based RL v2 \rightarrow uncertainty based models
Model based RL v3 → policy optimization with models
Model based RL v4 → latent space models with images
      Control as Inference - Formulation
            Variational Inference
```

Ok, let's talk about "optimality"

Optimal control problems aim to find the "max" reward policy

People are not perfectly rational, "noisily" rational

$$\arg \max_{a_0^j, a_1^j, \dots, a_T^j} \sum_{t=0}^T r(\hat{s}_t^j, a_t^j)$$
$$\hat{s}_{t+1}^j \sim \hat{p}_{\theta}(.|\hat{s}_t^j, a_t^j)$$

Video of someone doing something irrational

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

No notion of smooth suboptimality

Mombaur et al. '09

Li & Todorov '06

Can we think about "soft optimality"?

So how can we properly model suboptimality?

Some mistakes are more important than others

Let's use probability as a tool to represent "soft optimality"

- Going from deterministic to stochastic policies
- Better reward trajectories are "higher" likelihood
- Probabilistic measure of optimality, rather than an optimization one

Let's use probabilistic inference as a tool

$$\arg \max_{a_0^j, a_1^j, \dots, a_T^j} \sum_{t=0}^T r(\hat{s}_t^j, a_t^j)$$

$$\hat{s}_{t+1}^j \sim \hat{p}_{\theta}(.|\hat{s}_t^j, a_t^j)$$

$$\max_{\theta} \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

Soft RL/IRL
Sampling ———— Optimization

Langevin Dynamics

Rather than taking max wrt returns, sample proportional to returns

Probabilistic Graphical Models

Convenient way to encode joint probability distribution

Encodes probabilities and conditional independences

$$P(A, B, ...,) = \Pi_X P(X|Parents(X))$$

$$P(A, B, \dots,) = P(A)P(B|A)P(C|A)P(D|B, C)P(E|D)$$

Probabilistic Graphical Models

Establish conditional independencies via dseparation (just read the graph)

Probabilistic Graphical Models

So what can you do with a probabilistic graphical model?

P(B|C, E)

Answer posterior inference queries

P(A, B|C, E)

What does this have to do with RL?

Isn't RL about maximizing expected reward?

Need to "eliminate" variables and use Bayes rule

Bayes rule

Easy in discrete space, challenging in continuous

Using Probabilistic Graphical Models for Decision Making

Introduce binary "optimality" variables – optimal if O=1, suboptimal if O=0

Agents are observed to be **optimal**

Ok so how can we cast decision making as a PGM?

Ok big whoop, what do we do this?

Use case 1:

Derive soft RL algorithms

Use case 2:

C CU3C 2.

Derive soft inverse RL algorithms

Use case 3:

Great algorithms for transfer

So what are we doing inference over?

Use case 1:

Derive soft RL algorithms

Insight: Computing optimal policy \rightarrow posterior inference

$$p(a_t|s_t, \mathcal{O}_{t:T} = 1)$$

"Given that you are acting optimally, what is the likelihood of a particular action at a state"

So what are we doing inference over?

Use case 1:

Derive soft RL algorithms

Analogues for optimal Q and V

$$V(s_t) = \log p(\mathcal{O}_{t:T} = 1|s_t)$$
$$Q(s_t, a_t) = \log p(\mathcal{O}_{t:T} = 1|s_t, a_t)$$

"Likelihood of being optimal in the future at some state, action"

Why isn't this trivial?

Optimal Policy -> Posterior Inference

$$p(a_t|s_t, \mathcal{O}_{t:T} = 1) = \frac{p(a_t, \mathcal{O}_{t:T} = 1|s_t)}{p(\mathcal{O}_{t:T} = 1|s_t)} = \frac{\int \int \cdots \int p(a_{t:T}, \mathcal{O}_{t:T} = 1, s_{t:T}) ds_{t+1:T} da_{t+1:T}}{\int \int \cdots \int p(a_{t:T}, \mathcal{O}_{t:T} = 1, s_{t:T}) ds_{t+1:T} da_{t:T}}$$

"Given that you are acting optimally, what is the likelihood of a particular action at a state" Difficult/intractable to compute

→ Most RL algorithms are approximations to this

What makes this so cool?

Policy Gradient

Approximate DP

Model-Based RL

Variational Inference lower bound solved with Gradient Ascent

Variational Inference lower bound solved with dynamic programming

Posterior Inference Approximated with Monte-Carlo Samples

Can derive old algorithms + new classes of algorithms from the same framework!

Lecture outline

```
Model based RL v2 \rightarrow uncertainty based models
Model based RL v3 → policy optimization with models
Model based RL v4 → latent space models with images
      Control as Inference - Formulation
            Variational Inference
```

Why isn't this trivial?

Optimal Policy -> Posterior Inference

$$p(a_t|s_t, \mathcal{O}_{t:T} = 1) = \frac{p(a_t, \mathcal{O}_{t:T} = 1|s_t)}{p(\mathcal{O}_{t:T} = 1|s_t)} = \frac{\int \int \cdots \int p(a_{t:T}, \mathcal{O}_{t:T} = 1, s_{t:T}) ds_{t+1:T} da_{t+1:T}}{\int \int \cdots \int p(a_{t:T}, \mathcal{O}_{t:T} = 1, s_{t:T}) ds_{t+1:T} da_{t:T}}$$

"Given that you are acting optimally, what is the likelihood of a particular action at a state" Difficult/intractable to compute

→ Most RL algorithms are approximations to this

Let's take the simplest possible example

Standard latent-variable model

Let us assume p(x|z) is known, as is p(z)

Goal: Infer posterior p(z|x)

$$p(z|x) = \frac{p(x,z)}{p(x)} = \frac{p(x|z)p(z)}{p(x)}$$

$$= \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz} \longleftarrow$$

Challenging to compute efficiently with samples

Let us assume p(x|z) is known, as is p(z)

Goal: Infer posterior p(z|x)

$$p(z|x) = \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz}$$

Challenging to compute efficiently with samples

MCMC

EBMs and Score Matching

MCMC

Let us assume p(x|z) is known, as is p(z)

Goal: Infer posterior p(z|x)

$$p(z|x) = \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz}$$

Challenging to compute efficiently with samples

Construct a Markov chain whose stationary distribution = desired distribution

Sample by just running Markov chain forward

EBMs and Score Matching

Let us assume p(x|z) is known, as is p(z)

Goal: Infer posterior p(z|x)

$$p(z|x) = \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz}$$

Challenging to compute efficiently with samples

Partition function hard to compute → compute score function

$$\nabla_z \log p(z|x) = \nabla_z (\log p(x|z) + \log p(z) - \log p(x))$$
 Known quantities

Can sample using Langevin dynamics → "noisy" gradient descent

Let us assume p(x|z) is known, as is p(z)

Goal: Infer posterior p(z|x)

$$p(z|x) = \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz}$$

Challenging to compute efficiently with samples

MCMC

EBMs and Score Matching

What is the key idea behind variational inference?

$$p(z|x) = \frac{p(x|z)p(z)}{\int p(x|z)p(z)dz}$$

Intractable!

Approximate challenging posterior with closest possible "tractable" posterior

Let's derive the Evidence Lower Bound

Introduce a "tractable" approximatino q(z|x) e.g. Gaussian

Intractable!

Can choose **whatever** variational family you want → it's an approximation! 🍑

$$\phi^* \leftarrow \arg\min_{\phi} D_{KL}(q_{\phi}(z|x)||p(z|x))$$
 Unknown

Known

How can we tractably approximate this objective?

Let's derive the Evidence Lower Bound

$$D_{KL}(q_{\phi}(z|x)||p(z|x)) = \int q(z|x) \log \frac{q(z|x)}{p(z|x)} dz = \int q(z|x) \log \frac{q(z|x)p(x)}{p(x|z)p(z)} dz$$

$$= \int q(z|x) \log \frac{q(z|x)}{p(z)} dz - \int q(z|x) \log p(x|z) dz + \log p(x)$$

$$= D_{KL}(q(z|x)||p(z)) - \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] + \log p(x)$$

Let's derive the Evidence Lower Bound

$$D_{KL}(q_{\phi}(z|x)||p(z|x)) = D_{KL}(q(z|x)||p(z)) - \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z)\right] + \log p(x)$$

View 1: Find best posterior

View 2: Maximize marginal likelihood

Evidence Lower Bound: Best Posterior

Intractable!

View 1: Find best posterior

$$D_{KL}(q_{\phi}(z|x)||p(z|x))$$

$$= D_{KL}(q(z|x)||p(z)) - \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] + \log p(x)$$

Likelihood/prior known – posterior hard to compute

Maximum likelihood

Stay close to the prior

$$\max_{q} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$$

Learn a tractable posterior q(z|x) with known likelihood and sampling

Evidence Lower Bound: Max Marginal Likelihood

View 2: Maximize marginal likelihood

$$D_{KL}(q_{\phi}(z|x)||p(z|x))$$

$$= D_{KL}(q(z|x)||p(z)) - \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] + \log p(x)$$

Likelihood unknown and posterior hard to compute

$$\log p(x) - D_{KL}(q(z|x)||p(z|x)) = \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z)\right] - D_{KL}(q(z|x)||p(z))$$

$$D_{KL}(p||q) \ge 0$$

Intractable!

$$\log p(x) \ge \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z))$$

Evidence **lower** bound – maximize to maximize likelihood

Learned

Aside: Connection to Variational Autoencoders

Popular technique for generative modeling – variational autoencoders

Encoder
$$q(z|x)$$
 Decoder $p(z|x)$ Prior $p(z)$

$$\log p(x) \ge \mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z))$$

Reconstruction Prior Matching

This is one specific instantiation where encoder and decoder are both learned, goal is to sample from multimodal p(x)

Lets revisit our original inference problem in control

Approximate $p(a_t|s_t, \mathcal{O}_{t:T} = 1)$ by $q(a_t|s_t, \mathcal{O}_{t:T} = 1)$ $\max_{a} \mathbb{E}_{x \sim p(x)} \left[\mathbb{E}_{z \sim q(z|x)} \left[\log p(x|z) \right] - D_{KL}(q(z|x)||p(z)) \right]$

 $(\mathcal{O}_0,\mathcal{O}_1,\ldots,\mathcal{O}_T)$

Tractable techniques for posterior policy computation

 $z \\ \uparrow$

 $(s_0, a_0, s_1, a_1, \dots, s_T, a_T)$

Lets revisit our original inference problem in control

Next lecture – derive ELBO and work out how to compute Policy gradient/Actor-Critic

Class Structure

