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Past Lecture Qutline

The Anatomy of Model-Based Reinforcement Learning

1

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

1

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images



Model Based RL vO — Random Shooting + MPC

Data collected
from planner
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Better than open loop
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Maximum likelihood supervised Learning

max E(s,a,5')~D [log Po(s'|s, a)]

Planning with Shooting + MPC




Model Based RL v1 — MPPI

Idea: Iteratively upweight sampling
distribution around the things that
are higher returns

—
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Referred to as MPPI, lower variance!
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Sample N action sequences
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Sample trajectories using these
action sequences with the model Dg
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Update action sampler by
upweighting high return actions
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Model Based RL v2 — Uncertainty Aware Models

|dea: Estimate when OOD and account for it

> Measure uncertainty!

Maximum likelihood models Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!



Model Based RL v2 — Uncertainty Aware Models

Alleatoric Uncertainty Epistemic Uncertainty

(environment stochasticity) (Lack of data)

—— CrouRd THith Epistemic Uncertainty

- Bootstrap 1 .
-—— Bootstrap 2
x  Training Data @

Easier, can use
stochastic models

x
A
.
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Aleatoric uncertainty P o

Let’s largely focus on epistemic uncertainty

More challenging, need
to compute posterior




L ecture outline

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images

l

Control as Inference - Formulation

l

Variational Inference



What might be the issue?’

Rollouts under learned model = Rollouts under true model

L' Model bias/compounding error

True Rollout
Why does this happen? = lack of data

AN 1. Errorsin state go to OOD next states
S A 2. Deviations in actions go to OOD next states
Predicted Rollout Under Model l

Model is bad on OOD states!

Most trained deep models can only roll out for 5-10 steps maximum!



How might we deal with compounding error?

Idea 1: Change the training objective of the model to directly account for this!

Equation error — 1 step prediction error Simulation error — K step prediction error
Max B 0,01 [108 Do (s']5, a)] max > 10g po(st1]3:, a)
t

St Nﬁ@(-‘gt—laat—l)

Model error under learned mode ]39 rather under true model w\/—j
Can be a challenging non-convex optimization! W

W



How might we deal with compounding error?

ldea 2: Estimate when OOD and account for it

> Measure uncertainty!

Maximum likelihood models Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!



What is uncertainty?

Alleatoric Uncertainty Epistemic Uncertainty

(environment stochasticity) (Lack of data)

—— CrouRd THith Epistemic Uncertainty

- Bootstrap 1
-—— Bootstrap 2 ¥
x  Training Data @

Easier, can use
stochastic models

More challenging, need
to compute posterior

Aleatoric uncertainty

Let’s largely focus on epistemic uncertainty



How might we measure uncertainty?

p(0|D) Difficult to estimate directly!
p(D|6)p(0)
0\D) =
PO = oDl e7)a

1. Bayesian neural networks

2. Ensemble methods
3. ... y

Directly model posterior distribution

output:

Use variational inference to avoid computing partition function """

hidden layer:

min D 0D 0D
min Dicc(a(61D) || p(0]D) e NIRRT
Challenge: can be difficult to express rich distributions nput

X



How might we measure uncertainty?

p(0|D) Difficult to estimate directly!

Learn an ensemble of models

1. Bayesian neural networks
2. Ensemble methods > ;-
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Model Based RL — Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model
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mQaXE(s,a,s’)ND [lOgﬁ9(8/|S, a)] mGaX]E(s,a,s’)ND [logﬁ9(5/|87 CZ)] meaX]E(s,a,s’)ND [lOgﬁ9(8,|S, CL)]

Learn ensembles by either subsampling the data or having different initializations



Model Based RL — Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Low uncertainty Expected value over ensemble

€ =~ =—= arg  max Y > r((8]),al)
\\\@’ ~ _ ~. (CL%,CL{ ..... CL?Z—. :;'Vzl i—=1 t=0
\ — ~ — L ) ) N .
- --@:D%@’_, (81,1) ~ o, (| (8], af)
/ '\ — -
P 4

High uncertainty Can also swap which ensemble

element is propagated at every step
or just pick randomly amongst them

Avoids overly OOD settings since the expected reward is affected by uncertainty



Model Based RL — Integrating Uncertainty into MBRL (v2)

Take pessimistic value under the uncertain dynamics

Low uncertainty Penalize ensemble variance

K 1 l
arg - max Y0y r((3)af) — AVar((8]))

High uncertainty

Avoids overly OOD settings since these states are explicitly penalized



Does this work?




L ecture outline

Model based RL v2 = uncertainty based models

|

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images

l

Control as Inference - Formulation

l

Variational Inference



What might be the issue?’

Huge number of samples
needed to reduce variance

%
\/

Extremely slow, hard to run in real time

Amortize planning
into a policy

Output Layer

Hidden Layers
N\

¥

Input Layer




Speeding Up Model-Based Planning

max IE N |[log D s a Use model(s) to generate data for
g (5:0:5) p [logpo(s']s, a)] policy optimization

Input Layer Hidden Layers Output Layer
¥ N
’J Agent ||

>< state| |reward action
S R, A,
] K i

t+1

S.. | Environment ]<

<

Can use PG or off-policy!



Generating Data for Policy Optimization

Add Fake Sampled

Data to Buffer Policy Optimization

Learn models

Y
—

Train time

2
— D — mgnE(s,aﬁ/)ND “Qg(st, ag) — (r(se, ae) + {E?f [Q$<5t+1,at+1)])} ]

N—

Rollout in environment

7TQ <

Test time




What matters in generating data from models?

~ - oy, /7

-_— e m -y

Long horizon rollouts can deviate Short horizon rollouts deviate far less

Balance between off-policy coverage and compounding error

More in the readings!



Model Based RL — Using Models for Policy Optimization (v3)

-

- ™
@ Data Collection
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Optimization
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Model Learning
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Generate Data

Maximum likelihood supervised Learning

mHaX ]E(s,a,s’)ND [lOg ﬁQ (S/ ‘ S, CL)]

More expensive/harder at training time, faster at test time



Does this work?




L ecture outline

Model based RL v2 = uncertainty based models

|

Model based RL v3 = policy optimization with models

|

Model based RL v4 = latent space models with images

l

Control as Inference - Formulation

l

Variational Inference



What about images?

< .
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State based domains Image based domains



Why is learning from images hard?

Generative modeling is videos, challenging to model multimodal correlated predictions

Oouxr VAE ouxr GAN oux SAVP oux SAVP oux SAVP
invariant (best) (xandom) (woxrst)

Partially observable!

ouxr SAVP oux SAVP oux SAVP ouxr SAVP oux SAVP
(xandom) (xandom) (xandom) (xandom) (xandom)

Gd svZp time SV6&-FP ouxr ter- our AB ouxr ouxr VP our VP ouxr VP
txuth vayriant ministic (best) (xandom) (woxst)

Long horizon predictions in video space can be challenging!



~Model Based RL - Latent Space Models for Image Based RL (v4)

Fully observed — Markovian case Partially observed — Non-Markovian case

If we can infer latent state and learn dynamics,
then we can plan in a much smaller space

How do we infer latent state and learn dynamics in this space?



How do we train latent space models?

Learn latent encoder to infer latent state from observations 4¢ (St |01:t)
Learn action conditioned latent transition model pn(8t+1 \St, at)

log pr (g (St+1l01:6+1)[qg (st]01:t), at)

Learn latent decoder to reconstruct observations P (Ot |St)

log py (0¢|5¢)

Learn reward predictor from latent state P¢ (Tt ’St)

log p¢(re|qe(stlo1:e))

+

—— [

Can derive the whole thing from first principles using variational inference!



How do we use latent space models?

Plan - Apply any of the methods from this

3 lecture, just in latent space!

1. Avoids predicting image frames at
planning time

. Scales much better than image
prediction

. Allows for longer horizon predictions

Encode

HOE
®EE



Does this work?

Episode Return

12

Minecraft Diamond
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1/
1@ — Max
8

Mean

10K 100Kk 1M 10M 100M
Environment Steps

“"SDPreamerV3

~First.Diamond
from Scratch




Does this work?

. o

A1 Quadruped UR5 Multi-Object XArm Visual Pick Sphero Ollie Visual
Walking Visual Pick Place and Place Navigation

Training from images in < 1 hour!



Why should you care?

Model based RL may be a much more practical path to real world robotics

Transfer/Adaptive

N
Nj
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0‘6/
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Efficiency Simplicity

Handwriting: Arbitrary Trajectories

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

G505
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90.90.9%0,
%

— SAC
—— NPG
—— PDDM (Ours)

1.0

0.0 0.1 0.2 0.3 0.4
Number of datapoints (M)

Likely to be the most future proof one!



Are models really that different than Q-functions?

Models

Q-functions

Similar )

1. Off-policy

2. Models the future

Very different than PG methods = on-policy, models current given future

J

4 Different N (

1. 1-step modeling

2. Models states

3. Can evaluate arbitrary policies

4. Parametric storage of training data

1. Cumulative modeling

2. Models returns

3. Can evaluate only policy

4. Non-parametric storage of data

\

J




L ecture outline

Model based RL v2 = uncertainty based models

|

Model based RL v3 = policy optimization with models

|

Model based RL v4 = latent space models with images

1

Control as Inference - Formulation

l

Variational Inference



Ok, let’s talk about “optimality”

Optimal control problems aim to find the “max” reward policy

People are not perfectly rational, “noisily” rational

T
arg max Y r(5,al)
ad,ai,...,ak t:O

Video of someone doing something irrational
3t-|-1 ~ Py (- |St>at)

T

max E:r, Z r(st, az)
t=0

o s
bR IS

Muybridge (c. 1870) Mombaur et al. ‘09 Li & Todorov ‘06 ‘ Ziebart ‘08

No notion of smooth suboptimality 1171} “3.;,;,;2&"3



Can we think about “soft optimality”?

So how can we properly model suboptimality?

Some mistakes are more important than others

R v
1/ M

/7
VL
I /
7 |
S -30 -20 -1a 0 lo 20 30

00 01 02 03 04

Let’s use probability as a tool to represent “soft optimality”
e Going from deterministic to stochastic policies
» Better reward trajectories are “higher” likelihood

* Probabilistic measure of optimality, rather than an optimization one



Let’s use probabilistic inference as a tool

T .
arg  max Zr(éi,a{) Rather than taking max wrt returns,

ad,ai,....ad =4 sample proportional to returns

St—l—l ~ Dol |St7at) R = 60

T
max Errg [Z r(s¢, at)]
t=0

Soft RL/IRL
Sampling - > Optimization

Langevin Dynamics




Probabilistic Graphical Models

NONO

Convenient way to encode
joint probability distribution

Encodes probabilities and conditional independences
P(A,B,...,)=1lxP(X|Parents(X))

P(A,B,...,) = P(A)P(B|A)P(C|A)P(D|B,C)P(E|D)



Probabilistic Graphical Models

Establish conditional independencies via d-
separation (just read the graph)

connected separated
G Nme” 1 N O/

connected separated

L N
I G

separated connected

\ / III. \0/



Probabilistic Graphical Models

So what can you do with a
6 G @ probabilistic graphical model?

P(B|C, E)
Answer posterior
inference queries

P(A, BIC, E)

What does this have to do

with RL?
Need to “eliminate” variables and use Bayes rule

Isn’t RL about maximizing —> Easy in discrete space, challenging in continuous
expected reward?



Using Probabilistic Graphical Models for Decision Making

p(O¢|s¢,a:) = exp(r(sg, at))

Rewards must be negative
(subtract max reward WLOG)

Introduce binary “optimality” variables — optimal if O=1, suboptimal if O=0

Agents are observed to be optimal



Ok so how can we cast decision making as a PGM?

p(8t+1 ‘Sta at

50 )——{ 51)

© '@

Ot|8t7at

Otfst,at —exp( (Staat))
T

p(T‘OO:T — 1) X p(T)p(OO:T‘T) — p(SO) Hp(st—i—l‘st at (at‘st) (Ot‘st Cbt)

T t=0

— p(T) eXp( T(St, at)) “Soft” optimality — higher return trajectories are higher likelihood
t=0



Ok big whoop, what do we do this?

p(3t+1 |3t7 Clt)

S0 fS—l\

t=0
Use case 1: Use case 2: Use case 3:
Derive soft RL algorithms Derive soft inverse RL  Great algorithms for transfer

algorithms



S0 what are we doing inference over?

St11|St, at)

p(
S0 /8—1\ ~
p(at|st) @ @ p(7]O0.r = 1) -
@ p(7) exp(z r(se, at))

p(ot |3t7 at)

Use case 1: Insight: Computing optimal policy = posterior inference

Derive soft RL algorithms p(at ‘Stv Or.r = 1)

“Given that you are acting optimally, what is the
likelihood of a particular action at a state”



S0 what are we doing inference over?

Use case 1: Analogues for optimal Q and V
V(st) =logp(Or.r = 1]s¢)

Q(st, ar) = log p(Or.r = 1|s¢, at)

Derive soft RL algorithms

"Likelihood of being optimal in the future at some state, action”



Why isn't this trivial?

p(3t+1 |3t7 at)

S0 fs_l\ > p(ot‘sta at) — eXP(T(Sta at))

plag)s:) @ p(7|Oo.r = 1) .
p(7) exp(z r(se, at))

@ '@ @

Optimal Policy = Posterior Inference

p(at, Onr = 1|5¢) _ [ - [ plar, Our =1, sp.7)dS+1.7das 1.7
p(Opr = 1|s¢) [ [ | plae.r, Ovr =1, St.7)dstr1.7dar.T

“Given that you are acting optimally, what is Difficult/intractable to compute
the likelihood of a particular action at a state” - Most RL algorithms are approximations to this

p(at’Stvot:T — 1) —



What makes this so cool?

‘ 81 ‘ 32 Optimal Policy = Posterior Inference
p(a¢|se, Opr = 1)
@ ~ plag, Opr = 1sy)
 p(Opr = 1]sy)
@ @ @ _ J ) Jplaer, Our = 1, sur)dseerirdare v
[ [ | plaer, Onr = 1, sp.7)dsey1.rdas.r

Policy Gradient Approximate DP Model-Based RL
Variational Inference lower bound Variational Inference lower bound Posterior Inference Approximated with
solved with Gradient Ascent solved with dynamic programming Monte-Carlo Samples

Can derive old algorithms + new classes of algorithms from the same framework!



L ecture outline

Model based RL v2 = uncertainty based models

|

Model based RL v3 = policy optimization with models

|

Model based RL v4 = latent space models with images

1

Control as Inference - Formulation

|

Variational Inference



Why isn't this trivial?

p(3t+1 |3t7 at)

S0 fs_l\ > p(ot‘sta at) — eXP(T(Sta at))

plag)s:) @ p(7|Oo.r = 1) .
p(7) exp(z r(se, at))

@ '@ @

Optimal Policy = Posterior Inference

p(at, Onr = 1|5¢) _ [ - [ plar, Our =1, sp.7)dS+1.7das 1.7
p(Opr = 1|s¢) [ [ | plae.r, Ovr =1, St.7)dstr1.7dar.T

“Given that you are acting optimally, what is Difficult/intractable to compute
the likelihood of a particular action at a state” - Most RL algorithms are approximations to this

p(at’Stvot:T — 1) —



Let's take the simplest possible example

Let us assume p(x|z) is known, as is p(z)

@
Goal: Infer posterior p(z|x)

" e _ P(@2) _ p(al2)p()
@ P =T T

Standard latent-variable model . p(z|2)p(2)

~ [olalz)p(z)dz w
Challenging to compute efficiently with samples

Blei et al




So how can we solve this posterior inference problem?

@ Let us assume p(x|z) is known, as is p(z)
Goal: Infer posterior p(z|x)
T|2)p(z
" el =
()
Challenging to compute efficiently with samples

MCMC EBMs and Score Matching Variational Inference

Draw 6, ~ Normal(6..1,0)
Normal(0.500,0) = 0.497




So how can we solve this posterior inference problem?

@ Let us assume p(x|z) is known, as is p(z)
Goal: Infer posterior p(z|x)
! __ pz]z)p(z)
p(zlr) =
@ [ p(alz)p(2)dz
Challenging to compute efficiently with samples
MCMC
= Construct a Markov chain whose stationary distribution = desired distribution
l ‘%( | Sample by just running Markov chain forward

Draw 6, ~ Normal(6..1,0)
Normal(0.500,0) = 0.497



So how can we solve this posterior inference problem?

©
&

EBMs and Score Matching

Let us assume p(x|z) is known, as is p(z)

Goal: Infer posterior p(z|x)

__ p(|z)p(z)
J p(x|z)p(z)dz

Challenging to compute efficiently with samples

p(z|r)

Partition function hard to compute = compute score function

V. logp(z|z) = V. (log p(z|z) + log p(z) — 198/1?(15))

Known quantities

Can sample using Langevin dynamics = “noisy” gradient descent



So how can we solve this posterior inference problem?

@ Let us assume p(x|z) is known, as is p(z)
Goal: Infer posterior p(z|x)
T|2)p(z
" el =
()
Challenging to compute efficiently with samples

MCMC EBMs and Score Matching Variational Inference

Draw 6, ~ Normal(6..1,0)
Normal(0.500,0) = 0.497




What is the key idea behind variational inference?

~

p(©]X)
@ p(z ‘:C) _ p ( T | Z) p ( Z) Space of all distributions %’@} 4 Target distribution
e

Best variational solution
@ Intractable!

Approximate challenging posterior with closest possible “tractable” posterior

Space of
p q '

Gradient ascent

q9(6[2°)



L et’s derive the Evidence Lower Bound

T

p(w|z)p(z) Introduce a “tractable” approximatino q(z|x)
f p(x|z)p(z)dz e.g. Gaussian

@ Intractable! Can choose whatever variational family you want

p(zlz) =

- it's an approximation!

P* < argm(bin DKL(Q¢(Z‘$)“p(Z|fE)) Unknown

Known

How can we tractably approximate this objective?



L et’s derive the Evidence Lower Bound

@ p(zlr) = p(|2)p(2) Unknown

p(z) ¢ argmqbinDKL(QqS(Zk’?H|p(z|x))

@ Intractable! Known

Drsaslelolncla) = [ a(alo) log;z'gdz ~ [ atelo)tog B2
|

|
— [ azlo1og azlr)

p(z)

d / 1(2|z) log p(z|2)d= + log p(x)

— Dic(a(z[2)[1p(2)) = Eanygen) llog ple]2)] + log pla)



| et’s derive the Evidence Lower Bound

@ p(zlr) = p(|2)p(2) Unknown

p(z) ¢ argmqbinDKL(QqS(Zk’?H|p(z|x))

@ Intractable! Known

Drr(qs(2|2)||p(2]|2)) = Drr(q(z|z)||p(2)) — E.ng(zle) [log p(z]2)] + log p(x)

View 1: Find best posterior View 2: Maximize marginal likelihood



Fvidence Lower Bound: Best Posterior

@ View 1: Find best posterior
p(z|z) = PEP() Dicr(as(]2)|p(22))

p(x)

— Dic(a(z[2)[|p(2)) = Eanqofa) llog p(a]2)] + log pla)

Y Intractable!
@ Likelihood/prior known — posterior hard to compute

Maximum likelihood Stay close to the prior

Learn a tractable posterior q(z|x) with known likelihood and sampling



“Evidence Lower Bound: Max Marginal Likelihood

@ View 2: Maximize marginal likelihood
p(zlz) = PEIPE) Dic(as(212)|[p(=]2))

p(x)
= Drr(q(z|2)||p(2)) — Esmgzla) log p(x]2)] + log p(x)

Y Intractable!
@ Likelihood unknown and posterior hard to compute

log p() — Drcr(q(z|)[lp(z]2)) = E.nq(z)z) [log p(z|2)] — Dxr(q(z])||p(2))

Dkr(pllg) >0 logp(z) > E.y(z2) logp(z|2)] — Dir(q(z]z)||p(2))

Evidence lower bound — maximize to maximize likelihood \

Learned



Aside: Connection to Variational Autoencoders

Popular technique for generative modeling - variational autoencoders

encode > decode > EnCOder q(ZlX) DeCOdeI‘ p(ZlX) PI’IOI’ p(Z)

Inference Genera tive

log p(w) > E,q(z|2) logp(x]2)] — Dxr(q(z]7)||p(2))

Reconstruction Prior Matching

Distribution

This is one specific instantiation where encoder and decoder
are both learned, goal is to sample from multimodal p(x)

Kingma et al



Lets revisit our original inference problem in control

Optimal Policy = Posterior Inference

p(at|se, Opr = 1)
_ p(a'tv Opr = 1‘315)
p(Ot:T — 1’575)

_ f f B fp(a’tiT7 Onr = L, St:T)dSH—l;TdCLH_l:T

N f f e fp(a’t:Ta Ot:T — 1, StZT)dSt+1:Tdaft:T

ApprOXimate p(a’t‘st7 OtIT — ]-) by Q(at’St, Ot:T — 1)
& K K | — D
Variational MaxX Lz~ p(x) [ z~q(z|T) logp(z|z)] KL(Q(Z|CE‘)Hp(z))}

q

Inference , T Tractable techniques for >
a,: i posterior policy computation $
(007017"’7OT) (80761/0781,0/1’...78’1—’7&’1")




Lets revisit our original inference problem in control

@
Variational

v

Inference
(@)

maxE,p(z) [Ermg(zlz) logp(z]|2)] — D r(q(z|z)|[p(2))]

q Next lecture -
T z derive ELBO and work out how to compute
$ i Policy gradient/Actor-Critic

(007017 . -»OT) (807 apg,S1,A1y--.455T), CLT)



Class Structure

14

4 Model-free Reinforcement Learning

Policy Gradient

ADP

\

J -

Imitation Learning ]\
/

Model-based
Reinforcement Learning

Unifying Perspectives on RL and IRL

—

Exploration

Frontiers

Learning from Prior Data

Learning across tasks




