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Resulting Algorithm (REINFORCE)
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0ii1=0; + aVeJ(0)|g=s,

REINFORCE algorithm:
On-policy —==> 1. sample {7?} from my(a¢|s;) (run it on the robot)

2. VoJ(0) = Y, (X, Ve log me(ailsh)) (3, r(si, al))
3. 0« 0+aVeJ(6)



Challenges in Policy Gradient

What we do
1 N T T | Single sample estimatle
b Z Z Vo log mg(ay|si) Z r(sy,ay)
i=0 t=0 t'=0 What we actually want

High variance estimator!!

Hard to tell what matters without many samples

Averaged return estimate

¢ = e e e =



What can we do to lower variance?

VoJ(6) = / po(7) Vg log po(7)dr

N T

1 0| o0 i i
~N Z Z Vg log mp(ay|st) Z r(s,ap)
i=1 t t=t

|dea: bundle this across many (s, a) with a function approximator

=
PN

Function approximator bundles return estimates across states

What we do

s it

Single sample estimate

What we actually want

Averaged return estimate

¢ = e e e = = -



Recap of Off-Policy Reinforcement Learning

Critic: learned via the Bellman update (Policy Evaluation)

min s, a,,5,41)~D (Q;Z(st, ar) — (r(st,ar) + Qg(stﬂa Clt+1)))2 aty1 ~ m(+|Se41)

@
—
Learn Q function
via Bellman

[ Collect ] } Lowers variance and is off-policy!
Data

Take Gradient
\ Steponm
Actor: updated using learned critic (Policy Improvement)

m?JX ESNDEQNW(.|S) [Qﬂ- (87 a)}




Pros/Cons of Off-Policy Methods in Robotics

Pros: Cons

1. Sample-efficient enough for real world 1. Often unstable

2. Can learn from images with suitable 2. Can achieve lower asymptotic
design choices performance

3. Off-policy, can incorporate prior data 3. Requires significant storage



L ecture outline

The Anatomy of Model-Based Reinforcement Learning

l

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

l

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

l

Model based RL v4 = latent space models with images



Landscape of Reinforcement Learning Algorithms

state

’,l Agent Jl

-

reward action T
R, A, maXIETNWQ E r(s¢, at)
§< t+1 . t:O
. S.. | Environment
\

/

Gradient Ascent

o

Dynamic Programming : Model-Based Optimization :



What it we just learned how the world worked?

Agent )

T
stafte reward action maX ETNWQ g r St7 at
\Y R, A, t—=0

t+1 (
.. | Environment ]4

R
<
b8
; L @
t
v

1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data
2. Do reward maximization against this model

Intuitive: learn how the world works first and then plan in that model



Why do model-based RL:

Transfer/Adaptive

A
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Why would we do this?

Efficiency

Handwriting: Arbitrary Trajectories

— SAC

— NPG

—— PDDM (Ours)
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Number of datapoints (M)

Naturally off-policy!
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Why do model-based RL?

Just 2 hours of real robot training



Connections to Cognitive Science

Significant evidence for mechanisms for prediction of outcomes in neuro/cognitive science

Active inference

* %" (discrete)
¥ 5
A
\f I
L Expected free energy minimisation Policy selection
A, - '
a, ~Q(a‘) InNex) = ~Glax)

) )= D01 i )£y, 1) | Reinforcement learning in the brain
Ma.'k‘o‘.'
=S o oo s Yael Niv
. N Y e e Psychology Department & Princeton Neuroscience Institute, Princeton University

A F(x,)=DIQ, (n,)l P(p,))+ E, [3(s, 1 ,)]
b\ Compienity Incoarss




Model Based RL — Problem Statement

Model Learning
Do

@4» Do — arg minE(D,ﬁg)

Planning _ _

arg Hl;lXEﬁm Zr(st,at)
é 5 é fi '\t _

Can also just be a single trajectory

How should we instantiate these?



What will we not cover today?

T

t=1

C(Xt,llt) — =

ILOR/ILOG MBRL with GPs/Non-Parametrics Non-linear TrajOpt

|||||||||||||||

Byron’s lectures do a wonderful job, do go watch them!

2
min Zc(xt,ut) gt i = filoe-dyWi—i) N o
up,...,ur L \ . /
Xt | " ; .
f(xtaut) — Ft |: ut + ft = 1.0 . 3 : ,../.oq‘_‘v\',’."”
t | - B o - w’/—//»//
= -1 o T 117’ S '
t -
t



What will we cover today?

Use neural networks as our model!

Input Layer

Hidden Layers
¥ M

%
a

Output Layer

Py < argmin L(D, py)

arg max s »
v

Peo

Zr(st,at)

t

; Testing I%\p time: 9.45 s :
: \
| 1 1,




Model Based RL — Assumptions

state

Agent )

s

reward

R,
E RHI
|-
E Sr+1
-

\

Environment

T
action maXIETNM E r(s¢,at)
4 t=0

y

L

v -
t
v

Assumptions:

1. Can only sample from dynamics
2. Can reset the environment
3. Reward function is known

|

We will get into this in a later lecture!




Model Based RL — A template

4 )

-» Model Learning
/ \ y,
p

Data Collection

/
A 4

Planning

-
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L ecture outline

The Anatomy of Model-Based Reinforcement Learning

|

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

l

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

l

Model based RL v4 = latent space models with images



Model Based RL — Naive Algorithm (vO)

-

\_

e

Data Collection

N

-

-

Model Learning

~N

J

A 4

Planning

/

\

Maximum likelihood supervised Learning

0

Random Search

L=,

max ]E(s,a,s’)ND [lOg ﬁQ (S/ ‘ S, CL)]



Model Based RL — Nalve Algorithnm (Model Learning) (vO)

meax ]E(s,a,,s’)ND [lOg ]3@(8/‘8, CL)] Fit 1-step models

Input Layer Hidden Layers Output Layer

= SGD
- Momentum
-~ NAG

Adadelta
Rmsprop
—

2

r'd N ‘
° o s ] S

— \ More expressive may be

Choice of Py distribution determines the loss function: better, at the risk of

Trick: Model Residual’s (s’ —s) 1. Gaussian 2 L, overfitting
2. Energy Based Model - Contrastive Divergence

3. Diffusion Model = Score Matching

N

N




Model Based RL — Naive Algorithm (Planning)

T

max Zr(ét,at)

t=0

Planning
St41 ~ p0(5t+1|5t7 Gt)
51 ~ Po(St+1/50,a0)
! ‘ Just do random search!
T
arg max E r(5),al) Just execute
A, 5,0 ) / actions open loop!

St—l—l Do (- ’Stvat) \/‘

Can soften by taking softmax rather than argmax



Model Based RL — Naive Algorithm (MPC)

Without feedback, an open loop controller
can diverge even for minimal noise

B W

= e - ~d Model-Predictive/Receding Horizon Control

1. Plan with random shooting from s,
2. Execute the first action a, and reach s, .

Replanning can help with divergence




Model Based RL — Naive Algorithm (vO)

Data collected
from planner

-

(

Better than open loop
planning because of

feedback

\_

—

Model Learning

\

_ Y,
Data Collection
J \ 4
kf ~N
Planning
_ Y,
T

<

arg max E r(8],al)

J

aoal ..... aTt 0

3t+1 Nﬁg(.yéi,ag)

Maximum likelihood supervised Learning

max E(s,a,5')~D [log Po(s'|s, a)]

Planning with Shooting + MPC




Does it work?

2X SPEED

Just 20 minutes of training time with random data!



Does it work?

Significant gap from MFRL

Cumulati\L Reward

Cheetah
6000
5000 M
4000
3000
2000
1000
—  Mb
0 — Mf
—— Mb-Mf (ours)
—~1000 ) _
103 104 10° 106 10° 108 10°

Steps



L ecture outline

The Anatomy of Model-Based Reinforcement Learning

|

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

l

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

l

Model based RL v4 = latent space models with images



What might be the issue?’

Data collected
from planner

Searching for a needleina
haystack by random
shooting, high variance!

-

(

\_

—

Data Collection

\_

Model Learning

\

J

N

\_

Planning

aoal ..... aTt 0

arg max E (5, al)
A /\j

3t+1 ~ Do ( lst,a‘i)

Maximum likelihood supervised Learning

max E(s,a,5')~D [log Po(s'|s, a)]

Planning with Shooting + MPC




Better Sampling Techniques for Shooting

Sampled from stationary Can we inform the sampling
uniform/gaussian distribution function with the reward function?

T
arg maX/ r(5],a)

J
a/O,all ..... a/T t:O

5t+1 ~ Dol |St7at)

N

Idea: Iteratively upweight sampling distribution
around the things that are higher returns

—
\/




Better Sampling Techniques for Shooting - MPPI

: : : : 4 )
Id.ea..lter.atlvely upweight §ampllng sample N action sequences
distribution around the things that NN o N

are higher returns (ap,ar,...,ap);=1 ~ p(a)
- 1 J
4 . . )
/ Sample trajectories using these
action sequences with the model Dg

\/ S¢+1 ~ Pal-]5¢, ar)
-

L |
p

Update action sampler by
upweighting high return actions
| p(a) ¢ p(a) FPLZt P0200)
Referred to as MPPI, lower variance! \_ Z )




Model Based RL — Better Sampling Methods (v1)

Data collected
from planner

4 p
/' Model Learning
r N - /
Data Collection
\ > v N
\ Planning

Maximum likelihood supervised Learning

m@ax ]E(s,a,s’)ND [10g ﬁQ (S/ ‘ S, CL)]

Planning with MPPI + MPC

Better than random \ )
shooting + MPC, since
lower variance!

T
arg max Y r(8,a])

J 43 J
Ay, A7 5-ees ar t—o

Aside: Can derive this update
trying to bring sampling
distribution close to optimal
distribution

§i+1 ~ 139(-’@27 a‘Z)

exp(2_; 7(se: ar))
Z

p(a) < p(a)



Does it work?

|
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L ecture outline

The Anatomy of Model-Based Reinforcement Learning

1

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

1

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images



What might be the issue?’

Rollouts under learned model = Rollouts under true model

L' Model bias/compounding error

True Rollout
Why does this happen? = lack of data

AN 1. Errorsin state go to OOD next states
S A 2. Deviations in actions go to OOD next states
Predicted Rollout Under Model l

Model is bad on OOD states!

Most trained deep models can only roll out for 5-10 steps maximum!



How might we deal with compounding error?

Idea 1: Change the training objective of the model to directly account for this!

Equation error — 1 step prediction error Simulation error — K step prediction error
Max B 0,01 [108 Do (s']5, a)] max > 10g po(st1]3:, a)
t

St Nﬁ@(-‘gt—laat—l)

Model error under learned mode ]39 rather under true model w\/—j
Can be a challenging non-convex optimization! W

W



How might we deal with compounding error?

ldea 2: Estimate when OOD and account for it

> Measure uncertainty!

Maximum likelihood models Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!



What is uncertainty?

Alleatoric Uncertainty Epistemic Uncertainty

(environment stochasticity) (Lack of data)

—— CrouRd THith Epistemic Uncertainty

- Bootstrap 1
-—— Bootstrap 2 ¥
x  Training Data @

Easier, can use
stochastic models

More challenging, need
to compute posterior

Aleatoric uncertainty

Let’s largely focus on epistemic uncertainty



How might we measure uncertainty?

p(0|D) Difficult to estimate directly!
p(D|6)p(0)
0\D) =
PO = oDl e7)a

1. Bayesian neural networks

2. Ensemble methods
3. ... y

Directly model posterior distribution

output:

Use variational inference to avoid computing partition function """

hidden layer:

min D 0D 0D
min Dicc(a(61D) || p(0]D) e NIRRT
Challenge: can be difficult to express rich distributions nput

X



How might we measure uncertainty?

p(0|D) Difficult to estimate directly!

Learn an ensemble of models

1. Bayesian neural networks
2. Ensemble methods > ;-

9]
>
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m/'
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3 3
©
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>
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c

Low data regime = high ensemble variance

Easier and more expressive than BNNs!

DA
3B
neay

e

E

g
>
:
5
c
v
o
=
9]
>
’U

Approximate posterior



Model Based RL — Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model

] 5 .
> > Q>J\
3 3 B
5 5 5
= = =
> > >
Q Q o
g £ g
> > >
s} s} s}
o o n
Pl Pl Pl
> > >
< < <
5 5 5
c c p=
7 @ 7
TN S (XX ) 2\
9] 5 .

> L g

o o< <
5 5 5

= cee = eee = cee
> > 3

Q Q Q
£ £ £

mQaXE(s,a,s’)ND [lOgﬁ9(8/|S, a)] mGaX]E(s,a,s’)ND [logﬁ9(5/|87 CZ)] meaX]E(s,a,s’)ND [lOgﬁ9(8,|S, CL)]

Learn ensembles by either subsampling the data or having different initializations



Model Based RL — Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Low uncertainty Expected value over ensemble

€ =~ =—= arg  max Y > r((8]),al)
\\\@’ ~ _ ~. (CL%,CL{ ..... CL?Z—. :;'Vzl i—=1 t=0
\ — ~ — L ) ) N .
- --@:D%@’_, (81,1) ~ o, (| (8], af)
/ '\ — -
P 4

High uncertainty Can also swap which ensemble

element is propagated at every step
or just pick randomly amongst them

Avoids overly OOD settings since the expected reward is affected by uncertainty



Model Based RL — Integrating Uncertainty into MBRL (v2)

Take pessimistic value under the uncertain dynamics

Low uncertainty Penalize ensemble variance

K 1 l
arg - max Y0y r((3)af) — AVar((8]))

High uncertainty

Avoids overly OOD settings since these states are explicitly penalized



Does this work?




L ecture outline

The Anatomy of Model-Based Reinforcement Learning

1

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

1

Model based RL v2 = uncertainty based models

|

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images



What might be the issue?’

Huge number of samples
needed to reduce variance

%
\/

Extremely slow, hard to run in real time

Amortize planning
into a policy

Output Layer

Hidden Layers
N\

¥

Input Layer




Speeding Up Model-Based Planning

max IE N |[log D s a Use model(s) to generate data for
g (5:0:5) p [logpo(s']s, a)] policy optimization

Input Layer Hidden Layers Output Layer
¥ N
’J Agent ||

>< state| |reward action
S R, A,
] K i

t+1

S.. | Environment ]<

<

Can use PG or off-policy!



Generating Data for Policy Optimization

Add Fake Sampled

Data to Buffer Policy Optimization

Learn models

Y
—

Train time

2
— D — mgnE(s,aﬁ/)ND “Qg(st, ag) — (r(se, ae) + {E?f [Q$<5t+1,at+1)])} ]

N—

Rollout in environment

7TQ <

Test time




What matters in generating data from models?

~ - oy, /7

-_— e m -y

Long horizon rollouts can deviate Short horizon rollouts deviate far less

Balance between off-policy coverage and compounding error

More in the readings!



Model Based RL — Using Models for Policy Optimization (v3)

-

- ™
@ Data Collection
L y,
A
- N
Policy
Optimization

9 Y,

MNE 0 HQmst,aa (s, )+ s [Q s, 0010)])| ]

-

Model Learning

~N

(

\_

Generate Data

Maximum likelihood supervised Learning

mHaX ]E(s,a,s’)ND [lOg ﬁQ (S/ ‘ S, CL)]

More expensive/harder at training time, faster at test time



Does this work?




L ecture outline

The Anatomy of Model-Based Reinforcement Learning

l

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

1

Model based RL v2 = uncertainty based models

1

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images



What about images?

< .
B (o 318
S s
G A 1%
% | s, Dl !
LB w1259 Al
H . E | |
{ §

) k]
R botP npccﬁv

State based domains Image based domains



Why is learning from images hard?

Generative modeling is videos, challenging to model multimodal correlated predictions

Oouxr VAE ouxr GAN oux SAVP oux SAVP oux SAVP
invariant (best) (xandom) (woxrst)

Partially observable!

ouxr SAVP oux SAVP oux SAVP ouxr SAVP oux SAVP
(xandom) (xandom) (xandom) (xandom) (xandom)

Gd svZp time SV6&-FP ouxr ter- our AB ouxr ouxr VP our VP ouxr VP
txuth vayriant ministic (best) (xandom) (woxst)

Long horizon predictions in video space can be challenging!



~Model Based RL - Latent Space Models for Image Based RL (v4)

Fully observed — Markovian case Partially observed — Non-Markovian case

If we can infer latent state and learn dynamics,
then we can plan in a much smaller space

How do we infer latent state and learn dynamics in this space?



How do we train latent space models?

Learn latent encoder to infer latent state from observations 4¢ (St |01:t)
Learn action conditioned latent transition model pn(8t+1 \St, at)

log pr (g (St+1l01:6+1)[qg (st]01:t), at)

Learn latent decoder to reconstruct observations P (Ot |St)

log py (0¢|5¢)

Learn reward predictor from latent state P¢ (Tt ’St)

log p¢(re|qe(stlo1:e))

+

—— [

Can derive the whole thing from first principles using variational inference!



How do we use latent space models?

Plan - Apply any of the methods from this

3 lecture, just in latent space!

1. Avoids predicting image frames at
planning time

. Scales much better than image
prediction

. Allows for longer horizon predictions

Encode

HOE
®EE



Does this work?

Episode Return

12

Minecraft Diamond

L]
1/
1@ — Max
8

Mean

10K 100Kk 1M 10M 100M
Environment Steps

“"SDPreamerV3

~First.Diamond
from Scratch




Does this work?

. o

A1 Quadruped UR5 Multi-Object XArm Visual Pick Sphero Ollie Visual
Walking Visual Pick Place and Place Navigation

Training from images in < 1 hour!



L ecture outline

The Anatomy of Model-Based Reinforcement Learning

l

Model based RL vO = random shooting + MPC

1

Model based RL v1 = MPPI + MPC

1

Model based RL v2 = uncertainty based models

l

Model based RL v3 = policy optimization with models

1

Model based RL v4 = latent space models with images



Why should you care?

Model based RL may be a much more practical path to real world robotics

Transfer/Adaptive

N
Nj

A

0‘6/

-7.5

—10.0

—-12.5

—15.0

-17.5

-20.0

—22.5

—25.0

—-27.5

Efficiency Simplicity

Handwriting: Arbitrary Trajectories

SGD
Momentum
NAG
Adagrad
Adadelta
Rmsprop

G505
= AT
2 = qb&@l@;‘,’:}%
L LATIKEINNK )
90.90.9%0,
%

— SAC
—— NPG
—— PDDM (Ours)

1.0

0.0 0.1 0.2 0.3 0.4
Number of datapoints (M)

Likely to be the most future proof one!



Are models really that different than Q-functions?

Models

Q-functions

Similar )

1. Off-policy

2. Models the future

Very different than PG methods = on-policy, models current given future

J

4 Different N (

1. 1-step modeling

2. Models states

3. Can evaluate arbitrary policies

4. Parametric storage of training data

1. Cumulative modeling

2. Models returns

3. Can evaluate only policy

4. Non-parametric storage of data

\

J




Class Structure
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4 Model-free Reinforcement Learning

Policy Gradient

ADP

\
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Imitation Learning ]\
/

Model-based
Reinforcement Learning

Unifying Perspectives on RL and IRL

—

Exploration

Frontiers

Learning from Prior Data

Learning across tasks




