

Reinforcement Learning Spring 2024

Abhishek Gupta

TAs: Patrick Yin, Qiuyu Chen

Class Structure

Resulting Algorithm (REINFORCE)

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$
$$\theta_{i+1} = \theta_i + \alpha \nabla_{\theta} J(\theta)|_{\theta = \theta_i}$$

REINFORCE algorithm:

On-policy —

- On-policy \longrightarrow 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot)
 - 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$
 - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Challenges in Policy Gradient

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$

$$\approx \frac{1}{N} \sum_{i=0}^{N} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{i} | s_{t}^{i}) \sum_{t'=0}^{T} r(s_{t'}^{i}, a_{t'}^{i})$$

High variance estimator!!

Hard to tell what matters without many samples

What can we do to lower variance?

$$\nabla_{\theta} J(\theta) = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) d\tau$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t} \nabla_{\theta} \log \pi_{\theta}(a_t^i | s_t^i) \sum_{t'=t}^{T} r(s_t^i, a_t^i)$$

Idea: bundle this across many (s, a) with a function approximator

Function approximator bundles return estimates across states

Recap of Off-Policy Reinforcement Learning

Critic: learned via the Bellman update (Policy Evaluation)

$$\min_{\phi} \mathbb{E}_{(s_t, a_t, s_{t+1}) \sim \mathcal{D}} \left(Q_{\phi}^{\pi}(s_t, a_t) - (r(s_t, a_t) + Q_{\hat{\phi}}^{\pi}(s_{t+1}, a_{t+1})) \right)^2 \quad a_{t+1} \sim \pi(\cdot | s_{t+1})$$

Lowers variance and is off-policy!

Actor: updated using learned critic (Policy Improvement)

$$\max_{\pi} \mathbb{E}_{s \sim \mathcal{D}} \mathbb{E}_{a \sim \pi(.|s)} \left[Q^{\pi}(s, a) \right]$$

Pros/Cons of Off-Policy Methods in Robotics

Pros:

- 1. Sample-efficient enough for real world
- Can learn from images with suitable design choices
- 3. Off-policy, can incorporate prior data

Cons

- 1. Often unstable
- 2. Can achieve lower asymptotic performance
- 3. Requires significant storage

Lecture outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 \rightarrow uncertainty based models
    Model based RL v3 \rightarrow policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

Landscape of Reinforcement Learning Algorithms

What if we just learned how the world worked?

- 1. Learn a surrogate model of the transition dynamics from arbitrary off-policy data
- 2. Do reward maximization against this model

Intuitive: learn how the world works first and then plan in that model

Why do model-based RL?

Why would we do this?

Transfer/Adaptive

Efficiency

Simplicity

Naturally off-policy!

Why do model-based RL?

Just 2 hours of real robot training

Connections to Cognitive Science

Significant evidence for mechanisms for prediction of outcomes in neuro/cognitive science

Reinforcement learning in the brain

Yael Niv

Psychology Department & Princeton Neuroscience Institute, Princeton University

Model Based RL – Problem Statement

Model Learning

$$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$

Planning

$$\arg\max_{\pi} \mathbb{E}_{\hat{p},\pi} \left[\sum_{t} r(s_t, a_t) \right]$$

Can also just be a single trajectory

How should we instantiate these?

What will we not cover today?

iLQR/iLQG

MBRL with GPs/Non-Parametrics

Non-linear TrajOpt

$$\min_{\mathbf{u}_1,...,\mathbf{u}_T} \sum_{t=1}^T c(\mathbf{x}_t, \mathbf{u}_t) \text{ s.t. } \mathbf{x}_t = f(\mathbf{x}_{t-1}, \mathbf{u}_{t-1})$$
$$f(\mathbf{x}_t, \mathbf{u}_t) = \mathbf{F}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \mathbf{f}_t$$
$$c(\mathbf{x}_t, \mathbf{u}_t) = \frac{1}{2} \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{C}_t \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix} + \begin{bmatrix} \mathbf{x}_t \\ \mathbf{u}_t \end{bmatrix}^T \mathbf{c}_t$$

Byron's lectures do a wonderful job, do go watch them!

What will we cover today?

Use neural networks as our model!

$$\hat{p}_{\theta} \leftarrow \arg\min_{\hat{p}_{\theta}} \mathcal{L}(\mathcal{D}, \hat{p}_{\theta})$$

$$\arg\max_{\pi} \mathbb{E}_{\hat{p}, \pi} \left[\sum_{t} r(s_{t}, a_{t}) \right]$$

Model Based RL – Assumptions

We will get into this in a later lecture!

Model Based RL – A template

Lecture outline

The Anatomy of Model-Based Reinforcement Learning

Model based RL v0 \rightarrow random shooting + MPC Model based RL v1 \rightarrow MPPI + MPC Model based RL v2 \rightarrow uncertainty based models Model based RL v3 \rightarrow policy optimization with models Model based RL v4 \rightarrow latent space models with images

Model Based RL – Naïve Algorithm (v0)

Model Based RL – Naïve Algorithm (Model Learning) (v0)

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Fit 1-step models

Choice of \hat{p}_{θ} distribution determines the loss function:

- 1. Gaussian \rightarrow L₂
- 2. Energy Based Model → Contrastive Divergence
- 3. Diffusion Model → Score Matching

Trick: Model Residual's (s' –s)

More expressive may be better, at the risk of overfitting

Model Based RL – Naïve Algorithm (Planning)

Planning

$$\max_{a_0, a_1, \dots, a_T} \sum_{t=0}^{T} r(\hat{s}_t, a_t)$$

$$\hat{s}_{t+1} \sim \hat{p}_{\theta}(s_{t+1} | \hat{s}_t, a_t)$$

$$\hat{s}_1 \sim \hat{p}_{\theta}(s_{t+1} | s_0, a_0)$$

Just do random search!

Just execute actions open loop!

Can soften by taking softmax rather than argmax

Model Based RL – Naïve Algorithm (MPC)

Without feedback, an open loop controller can diverge even for minimal noise

Replanning can help with divergence

Model-Predictive/Receding Horizon Control

- 1. Plan with random shooting from s_t
- 2. Execute the first action a_0 and reach s_{t+1}

Model Based RL – Naïve Algorithm (v0)

Does it work?

Just 20 minutes of training time with random data!

Does it work?

Lecture outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 \rightarrow uncertainty based models
    Model based RL v3 \rightarrow policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

What might be the issue?

Maximum likelihood supervised Learning

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Planning with Shooting + MPC

Searching for a needle in a haystack by random shooting, high variance!

Better Sampling Techniques for Shooting

Sampled from stationary uniform/gaussian distribution

$$\arg\max_{a_0^j, a_1^j, \dots, a_T^j} \sum_{t=0}^T r(\hat{s}_t^j, a_t^j) \\ \hat{s}_{t+1}^j \sim \hat{p}_{\theta}(.|\hat{s}_t^j, a_t^j)$$

Idea: Iteratively upweight sampling distribution around the things that are higher returns

Better Sampling Techniques for Shooting - MPPI

Idea: Iteratively upweight sampling distribution around the things that are higher returns

Referred to as **MPPI**, lower variance!

Sample N action sequences

$$(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N \sim p(a)$$

Sample trajectories using these action sequences with the model \hat{p}_{θ}

$$\hat{s}_{t+1} \sim \hat{p}_{\theta}(.|\hat{s}_t, a_t)$$

Update action sampler by upweighting high return actions

$$p(a) \leftarrow p(a) \frac{\exp(\sum_t r(s_t, a_t))}{Z}$$

Model Based RL – Better Sampling Methods (v1)

Maximum likelihood supervised Learning

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Planning with MPPI + MPC

Aside: Can derive this update trying to bring sampling distribution close to optimal distribution

$$\Rightarrow \arg \max_{a_0^j, a_1^j, \dots, a_T^j} \sum_{t=0}^T r(\hat{s}_t^j, a_t^j) \\ \hat{s}_{t+1}^j \sim \hat{p}_{\theta}(.|\hat{s}_t^j, a_t^j)$$

 $p(a) \leftarrow p(a) \frac{\exp(\sum_t r(s_t, a_t))}{7}$

Does it work?

Lecture outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 \rightarrow uncertainty based models
    Model based RL v3 \rightarrow policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

What might be the issue?

Rollouts under learned model != Rollouts under true model

→ Model bias/compounding error

Predicted Rollout Under Model

Why does this happen? → lack of data

- 1. Errors in state go to OOD next states
- 2. Deviations in actions go to OOD next states

Model is bad on OOD states!

Most trained deep models can only roll out for 5-10 steps maximum!

How might we deal with compounding error?

Idea 1: Change the training objective of the model to directly account for this!

Equation error – 1 step prediction error

$$\max_{\theta} \mathbb{E}_{(s,a,s') \sim \mathcal{D}} \left[\log \hat{p}_{\theta}(s'|s,a) \right]$$

Simulation error – K step prediction error

$$\max_{\theta} \sum_{t} \log \hat{p}_{\theta}(s_{t+1}|\hat{s}_{t}, a_{t})$$
$$\hat{s}_{t} \sim \hat{p}_{\theta}(.|\hat{s}_{t-1}, a_{t-1})$$

Model error under learned mode $\hat{p}_{ heta}$ rather under true model

Can be a challenging non-convex optimization!

How might we deal with compounding error?

Idea 2: Estimate when OOD and account for it

Measure uncertainty!

Maximum likelihood models

Uncertainty-aware models

Being aware of uncertainty allows us to account for the effects of model bias!

What is uncertainty?

Alleatoric Uncertainty

Epistemic Uncertainty

(environment stochasticity)

(Lack of data)

Easier, can use stochastic models

More challenging, need to compute posterior

Let's largely focus on epistemic uncertainty

How might we measure uncertainty?

$$p(\theta|\mathcal{D})$$

Difficult to estimate directly!

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta')p(\theta')d\theta'}$$

- 1. Bayesian neural networks
- 2. Ensemble methods

3. ...

Directly model posterior distribution

Use variational inference to avoid computing partition function $\min_{q(\theta|\mathcal{D})} D_{KL}(q(\theta|\mathcal{D}) \mid\mid p(\theta|\mathcal{D}))$

Challenge: can be difficult to express rich distributions

How might we measure uncertainty?

$$p(\theta|\mathcal{D})$$

Difficult to estimate directly!

Learn an ensemble of models

- 1. Bayesian neural networks
- 2. Ensemble methods
- 3. ...

Low data regime → high ensemble variance

Approximate posterior

Easier and more expressive than BNNs!

Model Based RL – Learning Ensembles of Dynamics Models

Learn ensembles of dynamics models with MLE rather than a single model

Learn ensembles by either subsampling the data or having different initializations

Model Based RL – Integrating Uncertainty into MBRL (v2)

Take expected value under the uncertain dynamics

Expected value over ensemble

$$\arg\max_{(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N} \sum_{i=1}^K \sum_{t=0}^T r((\hat{s}_t^j)^i, a_t^j) \\ (\hat{s}_{t+1}^j)^i \sim \hat{p}_{\theta_i}(.|(\hat{s}_t^j)^i, a_t^j)$$

Can also swap which ensemble element is propagated at every step or just pick randomly amongst them

Avoids overly OOD settings since the expected reward is affected by uncertainty

Model Based RL – Integrating Uncertainty into MBRL (v2)

Take **pessimistic** value under the uncertain dynamics

Penalize ensemble variance

$$\arg \max_{(a_0^j, a_1^j, \dots, a_T^j)_{j=1}^N} \sum_{i=1}^K \sum_{t=0}^T r((\hat{s}_t^j)^i, a_t^j) - \lambda \operatorname{Var}((\hat{s}_t^j)^i)$$

$$(\hat{s}_{t+1}^j)^i \sim \hat{p}_{\theta_i}(.|(\hat{s}_t^j)^i, a_t^j)$$

Avoids overly OOD settings since these states are explicitly penalized

Does this work?

Lecture outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 → uncertainty based models
    Model based RL v3 \rightarrow policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

What might be the issue?

Huge number of samples needed to reduce variance

Amortize planning into a policy

a Output Layer Hidden Layers Input Layer

Extremely slow, hard to run in real time

Speeding Up Model-Based Planning

Use model(s) to generate data for policy optimization

Can use PG or off-policy!

Generating Data for Policy Optimization

Test time

What matters in generating data from models?

Long horizon rollouts can deviate

Short horizon rollouts deviate far less

Balance between off-policy coverage and compounding error

Model Based RL – Using Models for Policy Optimization (v3)

More expensive/harder at training time, faster at test time

Does this work?

Lecture outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 → uncertainty based models
    Model based RL v3 → policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

What about images?

State based domains

Image based domains

Why is learning from images hard?

Generative modeling is videos, challenging to model multimodal correlated predictions

Long horizon predictions in video space can be challenging!

Model Based RL – Latent Space Models for Image Based RL (v4)

Fully observed – Markovian case

If we can infer latent state and learn dynamics, then we can plan in a much smaller space

Partially observed – Non-Markovian case

How do we infer latent state and learn dynamics in this space?

How do we **train** latent space models?

Can derive the whole thing from first principles using variational inference!

How do we **use** latent space models?

Apply any of the methods from this lecture, just in latent space!

- Avoids predicting image frames at planning time
- Scales much better than image prediction
- 3. Allows for longer horizon predictions

Does this work?

Does this work?

A1 Quadruped Walking

UR5 Multi-Object Visual Pick Place

XArm Visual Pick and Place

Sphero Ollie Visual Navigation

Training from images in < 1 hour!

Lecture outline

```
The Anatomy of Model-Based Reinforcement Learning
    Model based RL v0 \rightarrow random shooting + MPC
    Model based RL v1 \rightarrow MPPI + MPC
    Model based RL v2 → uncertainty based models
    Model based RL v3 → policy optimization with models
    Model based RL v4 \rightarrow latent space models with images
```

Why should you care?

Model based RL <u>may be</u> a much more practical path to real world robotics

Are models really that different than Q-functions?

Models

Q-functions

Similar

- 1. Off-policy
- 2. Models the future

Very different than PG methods \rightarrow on-policy, models current given future

Different

- 1. 1-step modeling
- 2. Models states
- 3. Can evaluate arbitrary policies
- 4. Parametric storage of training data

- 1. Cumulative modeling
- 2. Models returns
- 3. Can evaluate only policy π
- 4. Non-parametric storage of data

Class Structure

