At each time t =1,2,3,...
e Algorithm chooses an action I; € {1,..., n}

e Observes a reward Xy, ; ~ P, where Py, ..., P,, are unknown distributions
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Corollary 1. Let Z1,Zs, ... be independent mean-zero o2-sub-Gaussian random variables so that
Yz(N) = Bu(Elexp(A\Z,)]) < exp(A\202/2), then for T = [20%e 21log(1/6)] we have P(: 3] | Zy <
€) >1-9.

Lemma 1 (Hoeffding’s Lemma). Let X be an independent random variable with support in [a, b]
almost surely and E[X] = 0. Then log(E[exp(AX)]) < (b — a)?)2/8.
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Input: n arms X = {1,...,n}, confidence level § € (0,1).
Let X} «+ X, 0«1

while || > 1 do
e =27t
2
Pull each arm in Ay exactly 7, = [2¢, 10g(4€ 5'”‘:')] times
Compute the empirical mean of these rewards 0; o for all © € X}

X€+1 — Xy \ {Z € Xy max;ex, ej,g — 01"( > 26[}
{1041

Output: Xy, (or play the last arm forever in the regret setting)

Lemma 2. Assume that max;cy A; < 4. With probability at least 1 — §, we have 1 € X, and
max;ex, A; < 8¢ for all £ € N -

/’y

Proof. For any ¢ € N and ¢ € [n] define

Eip = {|§i,£ - 07| < Ge}
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