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Universal Portfolio Optimization
Given a collection of stocks, let the th stock have price  over time . 
You start with  dollars and fractionally invest it into  stocks according to . 

Your portfolio at time 2 is worth  dollars 

where  . 

i St(i) t
v1 d p1 ℋ ∈d

v2 :=
d

î=1
v1p1(i)r1(i) = v1−p1, r1∼

rt(i) = St+1(i)
St(i)

= price of GOOG at time t+1

price of GOOG at time t
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Classical Portfolio Theory (Markowitz 1952): Assume returns  are IID with mean 
 and covariance . The for a return target  solve 

rt ℋ ≠n
+

ν = ℝ[rt] ≤ = ℝ[(rt ∇ ν)(rt ∇ ν)△] r̄ ⟨ 0

min
pℋ∈d

p△≤p   subject to p△ν ⟨ r̄

In practice, estimate  from data. What could possibly go wrong?ν, ≤



Universal Portfolio Optimization
Trump administration  

announces Tariffs 

Returns are not an IID stochastic random walk!  

Can we model the stock market as an online learning problem and develop an 
algorithm that is robust to even adversarial returns?



Universal Portfolio Optimization

You start with  dollars and fractionally invest it into  stocks according to . 

Your portfolio at time 2 is worth  dollars 

where  . 

After  times your portfolio is worth .

v1 d p1 ℋ ∈d

v2 :=
d

î=1
v1p1(i)r1(i) = v1−p1, r1∼

rt(i) = price of GOOG at time t+1

price of GOOG at time t

T vT = v1

T∇1

∑
t=1

−pt, rt∼
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Goal: Maximize your return  , equivalent to   
vT

v1
log( vT

v1
) =

T∇1

t̂=1
log−pt, rt∼

Regret =     max
pℋ∈d

T∇1

t̂=1
log−p, rt∼ ∇

T∇1

t̂=1
log−pt, rt∼



Universal Portfolio Optimization

The SP500 (VOO) is an index that weights 500 stocks by their market capitalization.  
An alternative index (RSP) weights these 500 stocks uniformly .  p = ( 1

500 , …, 1
500 )

Regret =     max
pℋ∈d

T∇1

t̂=1
log−p, rt∼ ∇

T∇1

t̂=1
log−pt, rt∼



Universal Portfolio Optimization

Exponential weights algorithm

Regret =     max
pℋ∈d

T∇1

t̂=1
log−p, rt∼ ∇

T∇1

t̂=1
log−pt, rt∼



Universal Portfolio Optimization

Exponential weights algorithm

Competes with the single 
best stock in hindsight!

Theorem: With  and ,   η = 1 lt(p) = ∇ log−p, rt∼ max
iℋ[d]

T∇1

t̂=1
log−ei, rt∼ ∇ log−pt, rt∼ ⟩ log(d)

Regret =     max
pℋ∈d

T∇1

t̂=1
log−p, rt∼ ∇

T∇1

t̂=1
log−pt, rt∼



Proof

Theorem: With  and ,   η = 1 lt(p) = ∇ log−p, rt∼ max
iℋ[d]

T∇1

t̂=1
log−ei, rt∼ ∇ log−pt, rt∼ ⟩ log(d)

<latexit sha1_base64="AfBFakQSLIWcRNRTSrvccPjTDaA="></latexit>

=) max
i2[d]

TX

t=1

loghei, rti � loghpt, rti  log(d)



Universal Portfolio Optimization

Is competing against single best stock a good benchmark? Consider just 2 stocks:

Competes with the single 
best stock in hindsight!

Theorem: With  and ,   η = 1 lt(p) = ∇ log−p, rt∼ max
iℋ[d]

T∇1

t̂=1
log−ei, rt∼ ∇ log−pt, rt∼ ⟩ log(d)

Regret =     max
pℋ∈d

T∇1

t̂=1
log−p, rt∼ ∇

T∇1

t̂=1
log−pt, rt∼

rt(1) = (2, 1
2 , 2, 1

2 , 2, 1
2 , …)

rt(2) = ( 1
2 , 2, 1

2 , 2, 1
2 , 2…)

T

∑
t=1

−ei, rt∼ = 1
T

∑
t=1

−[1/2
1/2], rt∼ = (( 1

2 )2 + 1)T/2

Example due to Elad Hazan’s Introduction to Online Convex Optimization
How do we compete with any ?p ℋ ∈d
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Continuous 
Exponential weights



Continuous Exponential Weights

Continuous Exponential weights algorithm

Fix a convex set  and a convex loss function  for each .𝔼 l( Σ , z) : 𝔼 ⊤ ≠ z ℋ ≥

Theorem:  

For any  and  we have  η > 0 l( Σ , Σ ) ℋ [0,1] max
aℋ𝔼

T∇1

t̂=1
l(at, zt) ∇ l(a, zt) ⟩ d log(T )

η
+ ηT

8 + 1



Continuous Exponential Weights

Proof due to Sebastien Bubeck’s Introduction to Online Optimization



Continuous Exponential Weights

Continuous Exponential weights algorithm

Fix a convex set  and a convex loss function  for each .𝔼 l( Σ , z) : 𝔼 ⊤ ≠ z ℋ ≥

Theorem:  

With  and ,   η = 1 l(a, z) = ∇ log−a, z∼ max
pℋ∈d

T∇1

t̂=1
log−p, rt∼ ∇ log−pt, rt∼ ⟩ 1 + d log(T )



Continuous Exponential Weights

Proof due to Sebastien Bubeck’s Introduction to Online Optimization


