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Universal Portfolio Optimization

Given a collection of stocks, let the ith stock have price S,(i) over time .
You start with v, dollars and fractionally invest it into d stocks according to p; € /\ ;.

d
Your portfolio at time 2 is worth v, := Z v p(D)r(i) = v{{py, ry) dollars
i=1

S+1(1)  price of GOOG at time t+1

where r,(1) = . _ :
S,(1) price of GOOG at time t
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where r,(1) =

Classical Portfolio Theory (Markowitz 1952): Assume returns r, € R} are IID with mean
u = E[r,] and covariance X = E[(r, — p)(r, — 1) ']. The for a return target 7 > 0 solve

min p'Yp  subjectto plu>7
peN\,

In practice, estimate u, 2 from data. What could possibly go wrong?



Universal Portfolio Optimization

Trump administration
announces Tariffs
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Returns are not an |lID stochastic random walk!

Can we model the stock market as an online learning problem and develop an
algorithm that is robust to even adversarial returns?
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After 1" times your portfolio is worth v = V1H (D) 1)
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where r,(i) =
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T—1
After 1" times your portfolio is worth v = V1H (D) 1)
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Vr
Goal: Maximize your return —, equivalent to log 2 log{p,, ;)
Vi

Regret= max ) log(p,r,) — ) log(p,r,)
pEAdZ &P, 1, Z E\Pp T}



Universal Portfolio Optimization

Regret = max log(p, r log(p,, r
peAdZ g(p, 1) — 2 &(ppr,)

The SP500 (VOO) is an index that weights 500 stocks by their market capitalization.

An alternative index (RSP) weights these 500 stocks uniformly p = (%, ens % :
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Universal Portfolio Optimization

Regret = max ) log(p,r,) — ) log(p,r,)
peAdZ g\p, 1 Z E\Pp Ty

fort=1,2,...
Player picks p; € A\g
Adversary simultaneously reveals r; € ]Rﬁir
Player pays loss ¢;(p:) = — log(p¢, r¢)

Exponential weights algorithm
Initialize: wy = (1,...,1) € R¢
fort=1,2,...
Player plays p:(i) = w(7)/ Z;-lzl wy(7)
Adversary simultaneously reveals convex loss #;(-)
Player pays loss £ (p;)
Player updates weights w;11(¢) = we(7) exp(—nbs(e;))
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Regret = max ) log(p,r log(p,, r
m AdZ &(p, 1) — Z &(py 1)

Competes with the single
best stock in hindsight!

T—1
Theorem: With 7 = 1 and L(p) = — log(p, ), max Z log(e;, r,) — log(p,, r,) <log(d)

=1

Exponential weights algorithm
Initialize: wy = (1,...,1) € R¢
fort=1,2,...
Player plays p;(i) = we(4)/ 37—, we ()
Adversary simultaneously reveals convex loss 04 ()
Player pays loss £;(p;)
Player updates weights w;11(¢) = we(7) exp(—nbs(e;))

—




Proof

T—1
Theorem: With y = 1 and [(p) = — log(p, r,), max Z log(e;, r,) — log(p,, r,) <log(d)

=) log(p;,7e) — maleog e;, ) — log(pe, ) < log(d)
t=1 i€|d]
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Regret = max ) log(p,r log(p,, r
m AdZ &(p, 1) — Z &(py 1)

Competes with the single
best stock in hindsight!

T—1
Theorem: With 7 = 1 and L(p) = — log(p, ), max Z log(e;, r,) — log(p,, r,) <log(d)

=1

s competing against single best stock a good benchmark? Consider just 2 stocks:

r(1) = (2, = 2,22, 2

2 =(3,2 5.2 5 2...)

L . L 1/2 . 1\2 T2
[T =1 [I¢| 5] = (@7 +1)
=1 =1

How do we compete with any p € /\ ;?

Example due to Elad Hazan'’s Introduction to Online Convex Optimization
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Continuous
Exponential weights

W



Continuous Exponential Weights

Fix a convex set &f and a convex loss function [( - ,2) : &/ —> R foreachz € Z.

Theorem:

T—1
d 1() T HT

Foranyn > 0and/(-,-) € [0,1] we have max 2 l(a,z,)—(a,z,) < + 1

acd n 8

=1

Continuous Exponential weights algorithm

Initialize: wi(a) =1 for all a € A
fort=1,2,...
Player plays a; = E g~.p,|A] where p,(a) =

we(a)
wea Wt(a)da

Adversary simultaneously reveals z; and convex loss £(-, z;)
Player pays loss £(a¢, 2t)
Player updates weights w;y1(a) = we(a) exp(—né(a, 2t))




Continuous Exponential Weights

1 * . T
Let v = 7, a* € argminge 4 ) ;_; 4(a, 2t),
Wry1 Jocawr+1(a)da Wi
log W, log ( fae_A Tda log W, =
Jaenr, wr1(a)da -
> log -
faE.A 1da
<
| faeN7 exp < N> —14(a, zt)> da =
=lo
i faG.A ld <
(e ((n S €A - e + o) da))
-8 faeA 1da
o1 faG.A €xp <_77 25:1 £((1—~)a* + va, Zt) v4da
©8 faeA 1da

dda

faeA 1da

(faE.A exp (_77 Zle (£(a*, zt) + v€(a, 2t))
> log

=dlogy—n Y {(a*,z) —mT
t=1

Proof due to Sebastien Bubeck’s Introduction to Online Optimization

NoA(1 = y)a* +7a,a € A}

log ( ’ th(?) exp(—né(a, zt))da)

wi(a)

t

log (Eexp(—nf(A, z;)) where P(A =a) =

2

—nEL(A, z;) + % (Hoeftding’s lemma)
2

—nl(EA, z;) + % (Jensen’s inequality)

n?
—nl(ag, z¢) + R




Continuous Exponential Weights

Fix a convex set &f and a convex loss function [( - ,2) : &/ —> R foreachz € Z.

Theorem:
T—1

With n = 1 and l(a, z) = — log{a, z), max Z log{p,r,) —log(p,, r;,) < 1+dlog(T)

pe dtl

Continuous Exponential weights algorithm

Initialize: wi(a) =1 for all a € A
fort=1,2,...
Player plays a; = E g~.p,|A] where p,(a) =

we(a)
wea Wt(a)da

Adversary simultaneously reveals z; and convex loss £(-, z;)
Player pays loss £(a¢, 2t)
Player updates weights w;y1(a) = we(a) exp(—né(a, 2t))




Continuous Exponentlal Welghts
Let v = 7, a* € argminge 4 S L, z), Nof(1—7)a* +va,a € A}

Wri1 Jaea wr+1(a)da -
1 —1
= w - ( Joea 1da log W‘;H — Z log WI;‘l
1
log (faeA exp(—n S, £(o, zt»da) =t
B 1d
fae.A a — Z]og (/ w‘t)[(/a) eXp(—TIE(CL,Zt))da)
_1 fae.A HZ=1<CL, zt>da t=1 A t
- faEA lda T
= » log (Ea~p,[exp(—nf(A, 2
1o [ JoeaTTizs (o 20)de D108 (B, [op(—nt(4, 20)
fae.A lda T
> ] fme/\/7 Ht:1<a7 zt>da, = ; log(at, Zt>
- faeA 1da -
> log (fam [Tim (1= )a” +a, zt>da)
N faeA 1da
= log fae.A 7d Hf:1<(1 —v)a* 4+ ya, z;)da
faEA 1da
faG.A ’yd ((1 o 7) Hf:1<a*, zt> + Hle<a, Zt>> da
= log [ -4 1da
acA

> —dlog(1/v) + log(1 — v —I—Za 2t)

Proof due to Sebastien Bubeck’s Introduction to Online Optimization



