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Expert prediction
Suppose  is a vector of d experts predictions of tomorrow’s temperature.  bt ℋ [0,1]d
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Expert prediction

True temperature
th expert’s predictioni
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Expert prediction

True temperature
th expert’s predictioni

Goal: Minimize 
regret wrt best

Suppose  is a vector of d experts predictions of tomorrow’s temperature.  bt ℋ [0,1]d
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Expert prediction
Goal: Minimize 
regret wrt best

Exponential weights algorithm
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Expert prediction
Goal: Minimize 
regret wrt best

Exponential weights algorithm

Choosing  gives regret bound of  ν = 8 log(d )
T

T log(d )/2



Expert prediction
Goal: Minimize 
regret wrt best

Exponential weights algorithm, proof:
<latexit sha1_base64="0hGXbON76vwa49MSW1axi/86G68=">AAACEHicbVC7TgJBFJ3FF+Jr1dJmIhixIbsUakNCtLGwwEQeCayb2WGACbOPzNzVkA2fYOOv2FhojK2lnX/jAFsoeJJJTs65N3fO8SLBFVjWt5FZWl5ZXcuu5zY2t7Z3zN29hgpjSVmdhiKULY8oJnjA6sBBsFYkGfE9wZre8HLiN++ZVDwMbmEUMccn/YD3OCWgJdc8vmaAC00XcAV3VOy7Ca/Y47sufnChyE8KWIUYBgRcM2+VrCnwIrFTkkcpaq751emGNPZZAFQQpdq2FYGTEAmcCjbOdWLFIkKHpM/amgbEZ8pJpoHG+EgrXdwLpX4B4Kn6eyMhvlIj39OTPoGBmvcm4n9eO4beuZPwIIqBBXR2qBcLDDqlbgd3uWQUxEgTQiXXf8V0QCShoDvM6RLs+ciLpFEu2acl+6acr16kdWTRATpERWSjM1RFV6iG6oiiR/SMXtGb8WS8GO/Gx2w0Y6Q7++gPjM8fgT+bAQ==</latexit>

Let Wt =
Pd

i=1 wt(i) so that
loyAB logA logB

log log Ewfl log until d 2 12 11 log d

log Eloy E ff log wgl.fi evil 32 1

u

If log p.li exp zaill Elog Earp exp 32 11

e

Eloy e
Pt

EEezt.EEft3
2 27 Pe 7248



Expert prediction
Goal: Minimize 
regret wrt best

Exponential weights algorithm, proof:
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Let Wt =
Pd

i=1 wt(i) so that
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Path length bounds
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Convexity
- When is an optimization (or learning) easy/fast to solve?



What is a convex set?

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]
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What is a convex set?

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]
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What is a convex function?

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]−d

f (x)
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(1 ∈ η)f(x) + ηf(y)



What is a convex function?

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]
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Convex functions and convex sets?

A function f : Rd ! R is convex if f((1� �)x+ �y)  (1� �)f(x) + �f(y)
for all x, y 2 K and � 2 [0, 1]

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x)  t} is convex

−d

Graph of  id defined as  
Epigraph of  is defined as   

f {(x, t) : f (x) = t}
f {(x, t) : f (x) ∼ t}

x

f (x)

x

f (x)
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More definitions of convexity

A set K ⇢ Rd is convex if (1� �)x+ �y 2 K for all x, y 2 K and � 2 [0, 1]

A function f : Rd ! R is convex if the set {(x, t) 2 Rd+1 : f(x)  t} is convex

A function f : Rd ! R that is di↵erentiable everywhere is convex if
f(y) � f(x) +rf(x)>(y � x) for all x, y 2 dom(f)

f (y)

y

f (y)

yx
f (x) + ≠f (x)T(y ∈ x)



Why do we care about convexity?

Convex functions 
- All local minima are global minima 
- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

We only need to find a point with , 
which for convex functions implies that it is  
a local minima and a global minima

≠f (x) = 0 For non-convex functions, a stationary point  
with  could be a local minima,  
a local maxima, or a saddle point 

≠f (x) = 0



Online Convex 
Optimization



Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights 
over the |H| hypotheses, which is completely intractable in practice.  
 
And in the stochastic case we used 
which is also intractable to compute!
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We know learning theory! Choose ht 2 argminh2H

Pt�1
s=1 1{h(xs) 6= ys}

So it seems we have no practical algorithm! Solution: relax the objective.



Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights 
over the |H| hypotheses, which is completely intractable in practice.  
 
And in the stochastic case we used 
which is also intractable to compute!

<latexit sha1_base64="xB+H8rS9JexS7YOlmtvfQ70fQJ0="></latexit>

We know learning theory! Choose ht 2 argminh2H

Pt�1
s=1 1{h(xs) 6= ys}

So it seems we have no practical algorithm! Solution: relax the objective.

Instead of 

We use with convex



Convex surrogate loss functions

with convexGoal:

Online gradient descent
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Proof


