Exponential weights

W



Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.
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Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.
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Expert 3 . .
2t(2) = [be(2) — yt!
IIlletI d eXpertS ith expert’s [:ediction \
fort = 1, 2, “ e True temperature

Player picks p; € Aq and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1]¢
Player pays loss (p:, z:) = E[z:(13)]




Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.
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2t(1) = |be(2) — yel
IIlletI d eXpertS ith expert’s [:ediction \
fort = 1, 2, “ e True temperature

Player picks p; € Aq and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1
Player pays loss (p:, z:) = E[z:(13)]

]d

Goal: Minimize  max > (p, z) — (e, )
regret wrt best  i€ld]



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Input: d experts

fort=1,2,...
Player picks p; € Ag and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p:, z:) = E[z:(13)]

Exponential weights algorithm
Input: d experts, n > 0
Initialize: wy €[1,...,1]" € R?
fort=1,2,...
Player plays I; ~ p; where p;(i) = wy(i)/ S5_, we(5)
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p¢, 2¢) = E|2:(1})]
Player updates weights w;1(7) = wy(7) exp( nzt eﬁo( [ ?? ( t))




Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)

regret wrt best i€ld] 1]
Exponential weights algorithm
Input: d experts, n > 0
Initialize: wy €[1,...,1]" € R?

fort=1,2,...
Player plays I; ~ p; where p:(i) = w¢()/ Z —1 wi ()
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p¢, z:) = E[z:(1¢)]
Player updates weights w;1(3) = w;(7) exp(—nz:(2))

Theorem: If z; € [0,1]¢ Vt, and I;, p; are chosen by exponential weights then
log(d) | T'n

max;cidj E [ZZ:1<It>zt> — (e, Zt)] — MaX;c(d] 23:1<pt,zt>—<ei,zt> < n 18

| 8log(d
Choosing = Oi( ) gives regret bound of /7T log(d)/2
/—-



Expert prediction
Goal: Minimize § : e
regret wrt best ?é?j]( (Pr, 2e) = (€ir 21)

IDJ AR = logA + 16y B
d

Exponential weights algorithm, proof: Let W; = > =, w;(7) so that
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Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Exponential weights algorithm, proof: Let W, = Zle wy (1) so that

W 4%
log V[j;jl = Zlog ‘;t_l log Wv[ic-jl > log wT‘j{/ll(Z)

t=1
T T

=3 nog (Y Ll = —log(d) + log ([ exp(-n=(0)))

- t=1 ° = W t=1
T d . : T

= Y tog (Y DRl 0y — “log(d) — 3 0=l

Lemma (Hoeffding’s Lemma). Let X be a real-valued random variable such

d
: : d let E[X] = . Then, f R,
- Z log (Zpt (7) eXP(_UZt(Z))) that X € [a,b] almost surely, and let E[X] = u. Then, for any ¢ €

> 2(h N2
i=1 B [et(X—u)] £ exp (t (b—a) )
d 8

T T T
<N B[z (1)) + /8 — > nE[z(I)] — ) nz(i) <log(d) + n*T/8

t=1 t=1 t=1
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Convexity

- When is an optimization (or learning) easy/fast to solve?

UNIVERSITY of WASHINGTON




What is a convex set?

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

(1—-A)x+ Ay



What is a convex set?

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

¢ | ¢




What is a convex function?

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 =N f(z) + \f(y)
for all z,y € RYand A € [0, 1]

/o) (1 =)f(x) + 4 (y)

):C (1:—/1)x+/1y )7



What is a convex function?

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 =N f(z) + \f(y)
for all z,y € RYand A € [0, 1]
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Convex functions and convex sets?

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

A function f : R? = R is convex if f((1 — Nz + Ay) < (1 —N)f(z) + A (y)
for all z,y € R?and A € [0, 1]

A function f : R — R is convex if the set {(z,t) € R4 : f(z) <t} is convex

Graph of fid defined as {(x,?) : f(x) = t}

fw/g/h ff//d/f//d (. )//f}) G \ \\\\\




More definitions of convexity

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R4 : f(z) <t} is convex

A function f:R? — R that is differentiable everywhere is convex if

f(y) = f(z) + Vf(2) " (y — ) for all z,y € dom(f)

AN

J)




Why do we care about convexity?

Convex functions
- All local minima are global minima

- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

We only need to find a point with Vf(x) =0, For non-convex functions, a stationary point

which for convex functions implies that it is with Vf(x) = 0 could be a local minima,
a local minima and a global minima a local maxima, or a saddle point



Online Convex
Optimization




Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorithm! Solution: relax the objective.



Convex surrogate loss functi B

e rdehibicat
Previous section for the adversarial case suggested u né“l‘{uﬂ iplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorithm! Solution: relax the objective.

T
Instead of %Ilea?i(; 1{ht($t) +* yt} — 1{h(ﬂ7t) + yt}

T

We use max g(ht, (Zl?t, yt)) — E(h, (ZCt, yt)) with H convex

h
cH =

Example: Linear classification takes # C R% and £(h, (x4, 1)) = log(1 + exp(—y:h ' z}))
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Goal: max O(he, (e, yt)) — £(h, (T¢,y¢))  with H  convex

h
cH P

Convex surrogate loss functions

Online gradient descent

Input: H C RY convex loss function ¢, step size n > 0
Initialize: Choose any hy € H
fort=1,2,...
Player plays h; € 'H
Adversary simultaneously reveals (x;, y:
Player pays loss £;(h;) := £(hy, (zct,(yt)) ‘2 e {0, 1= e (Xehe) g
Player updates htﬂ = 14 (i‘ft — NV ili(hy))

Theorem Online gradient descent satisfies for any h, € H

S Uty (e, e)) — Llhs, (e, 50)) < Vel 4 25T 1040, ()13

if maxpey ||h«|l2 < R and £(-) is G-Lipschitz then regret< RB\T



Proof

>

Theorem Online gradient descent satisfies for any h, € H
ht, (CEtayt)) — f(h*, (xtayt)) < ”hé% T 323:1 ||Vh€t(ht)||%

{”H-r- "'l\, ”;

= |

> (he-292(4,) ) - Th (k) (/:
& | he = 2Vt - Wl
= b )1 = 22 (TR, e b, 7 [02the)|L

? ﬁ (Ltc')" f([u)

e by 17 - 22( L6 —Gh)) ~ TU 92 el
’”'\T-n’l'\’”; - L\“’

~N

Y T
5”2 - —2._) h2')( - - ) o "l\// .,.//7"L
t

Ry




Proof

Theorem Online gradient descent satisfies for any h, € H
Sty U, (e ye)) — Ll b,y (0, 90)) < Ll2 4 2578 19,84 (hy) |2

|hesr = Palls = Ta(Pey1) — T (ha) I3

= |y (he — nVL:(he)) — Tpg(hae) I3

< ||kt — VL (he) — hall3

— ||he — hall2 — 20V (he) T (he — ha) + 72| VL (Ry) |12
< |lhe = hall3 = 2n(Le(he) — £e(ha)) + 02|V (Re) |13
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