
 

Toss two coins come up Hor T

Sample space R TT TH HT HH

Outcome WER WYTT

8 algebra called T is a collection of subsets of
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Probability measure For a d algebra F on 1 satisfies
1 IP T 0,13
2 P 0 0
3 P 2 1
4 For a seq FEF w FAF 0 IP YFn Z P Fn

A probability space is defined as tuple L J IP

Fix R L P A function g c IR is Je measurable

it for all Borel sets B we have w glw EB EI

Random variableX on R F P is a function X b R
that is F measurable

Let Xe be a set of RVs indexed by tet on space



2,5 P we define 6 9 3 t as the natural
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Assume X Y are discrete

IP AI B MA

Plant x 1

IE XIA ExP X x A
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In continuous R.V I pathological space

set g s.t.ge Ylw IE X1Y3iu

Conditional Expectation Let X be a Riv or
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Filtrations

Let Xi Xz Xz be a sequence of R.V

defined on 02.9.19 F 6 Xs s e

We say 48th is a filtration on

it 41,03 5 CI CFC

We say 4 321 is IF adapted if Xt is Femeasurab

We call R T F IP a filtered probability
space

MInthshtadapted
sequence of RV West is

an IF adapted martingale if IE Yea Fy Xt
and ELIXICO t

Ex ZFNCO.IT Is Zs then Xt martingale
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We say Xe is a supermartingale if ELXG.IE X

We say Xe is a submartingale it E Yet F X

Xe exp Éits Xt 2 Z No
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A random variable JEIN is a Listine
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valid stopping time

T maxst

Doob's Optional Stopping Theorem Let IF be

a filtration of Xest martial sequence
and

let T be an F adapted stopping time If

7 NEIN P JCN or

IE 3720 and Ella Yet LC t

then X is well defined and ELXs3 E Xo

Furthermore if Xe is superma his he the X EC

submartingale the E XD Elx

Ex Wald's identity Let Ze ftp.P and

Efts 3 minht XZE assume EEN
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Nafallequality Let Xe be an IF adapted

Seq of R.V w Xe 20 Then for any
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If Xe is a submartingale IPE Ke e Ef



Let 2,2 lit be Bernoulli Define Stiffs
Fix any XER and detine
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Method of Mixtures

Fix any prob density h X w support IR

Define M Melt h xd
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Convenient choice is D

IP 7 15 12 FEET S

Inteludeoptimization
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8llwt lwa

EcGRFeTetZiZe
be an F adopted sequence

and let Of be a predictable sequence

in the sense that bet is Fy measurable

If IECE 2 3 0 and for any
we have IELexpltze.nl
F3EetEltheMXl exp XS VeXk is

a supermartingale where SFEE.VE 8s
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