

CSE 541: Interactive Learning

Kevin Jamieson

W

CSE 541, Winter 2026 Interactive Learning

Lecture: Wednesday, Friday 11:30–12:50 PM, [LOW 102](#)

Instructor: [Professor Kevin Jamieson](#)

Contact: cse541-staff@cs.washington.edu

TA office hours:

- Arnab Maiti: Thursday 2:00-3:00, CSE 220

Instructor office hours:

- Kevin Jamieson: Tuesday 1:00-2:00, CSE2 340

Grading and Evaluation

There will be 3 homeworks (each worth 20%) and a project to be completed in the last few weeks of the class (details forthcoming).

We will cover selected topics from [SzepesvariLattimore]:

- (Non)-stochastic Online learning
- (Non)-stochastic Multi-armed Bandits
- (Non)-stochastic Linear Bandits and experimental design
- (Non)-stochastic Contextual bandits (model-free and model-based)

Prerequisites: The course will make frequent references to introductory concepts of machine learning (e.g., CSE 446/646) and basic concepts from linear algebra, statistics, and calculus will be assumed (see HW0). Some review materials:

- [Linear Algebra Review](#) by Zico Kolter and Chuong Do.
- [Linear Algebra](#), David Cherney, Tom Denton, Rohit Thomas and Andrew Waldron. Introductory linear algebra text.
- [Probability Review](#) by Arian Maleki and Tom Do. Also see Chapter 5 of [SzepesvariLattimore] below.

The course will be analysis heavy, with a focus on methods that work well in practice. You are strongly encouraged to work through these materials on your own (not to be turned in or graded). You should be able to complete most of these in your head or with minimal help.

Class materials

The course will pull from textbooks and course notes.

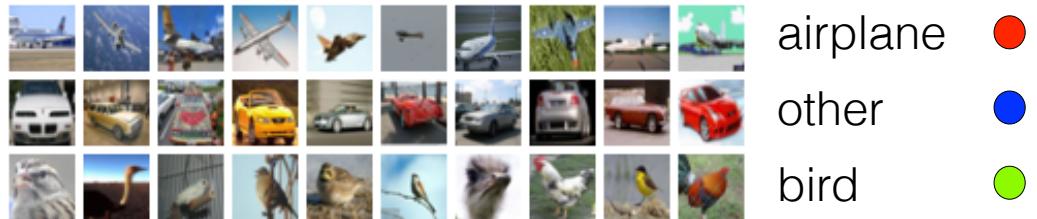
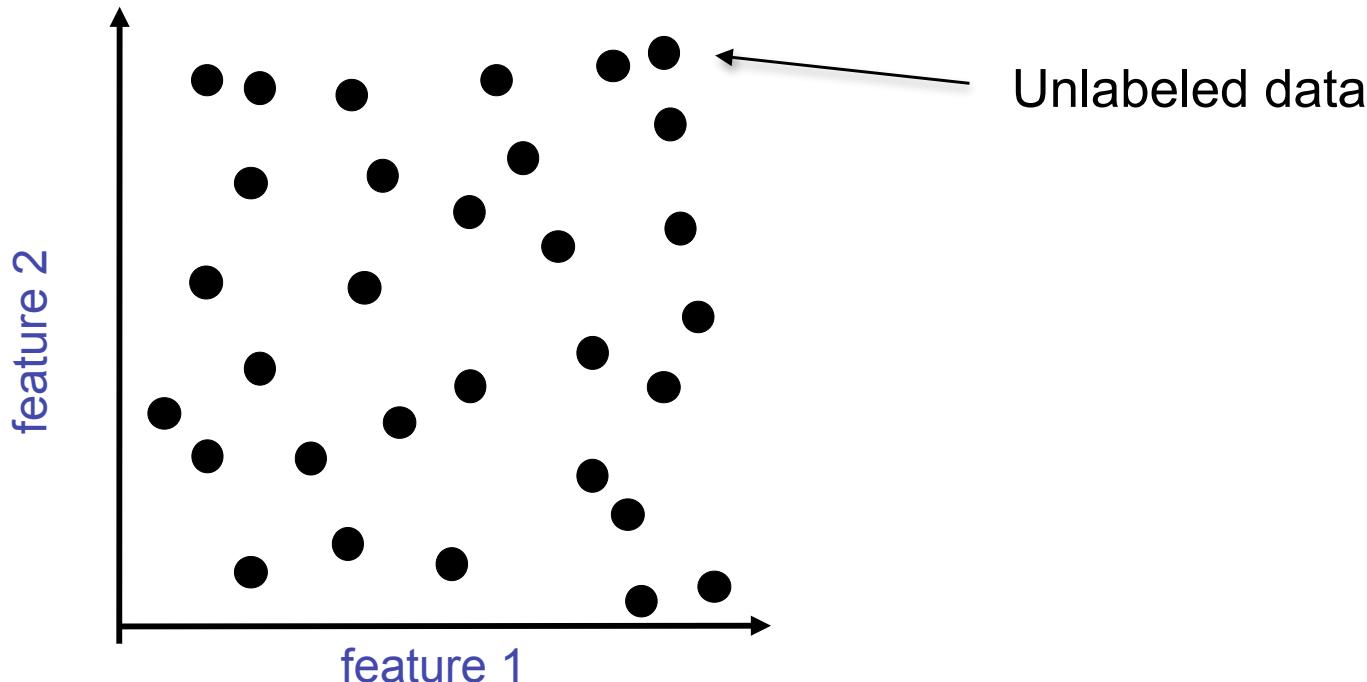
- [\[Bubeck\]](#) Introduction to Online Optimization, Sébastien Bubeck
- [\[Rakhlin Sridharan\]](#) Statistical Learning and Sequential Prediction, Alexander Rakhlin and Karthik Sridharan
- [\[SzepesvariLattimore\]](#) Bandit Algorithms course notes, Csaba Szepesvari and Tor Lattimore
- [\[Jamieson\]](#) Informal lecture notes on bandits, Kevin Jamieson

Assignments

- Homework 0: (Self-examination, Not due but recommend you complete within the first week) [PDF](#)

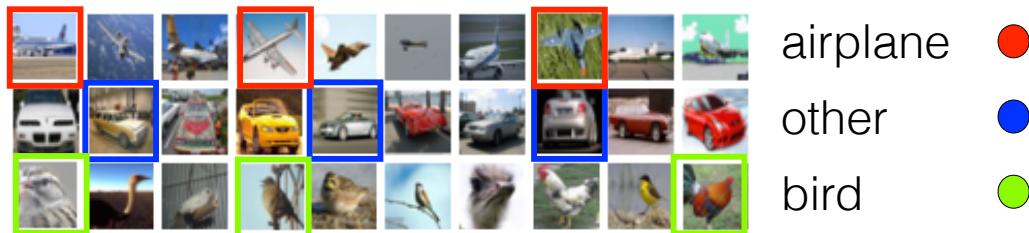
Standard Machine Learning Paradigm

- **Data:** past observations
- **Hypotheses/Models:** devised to capture the patterns in data
- **Prediction:** apply model to forecast future observations

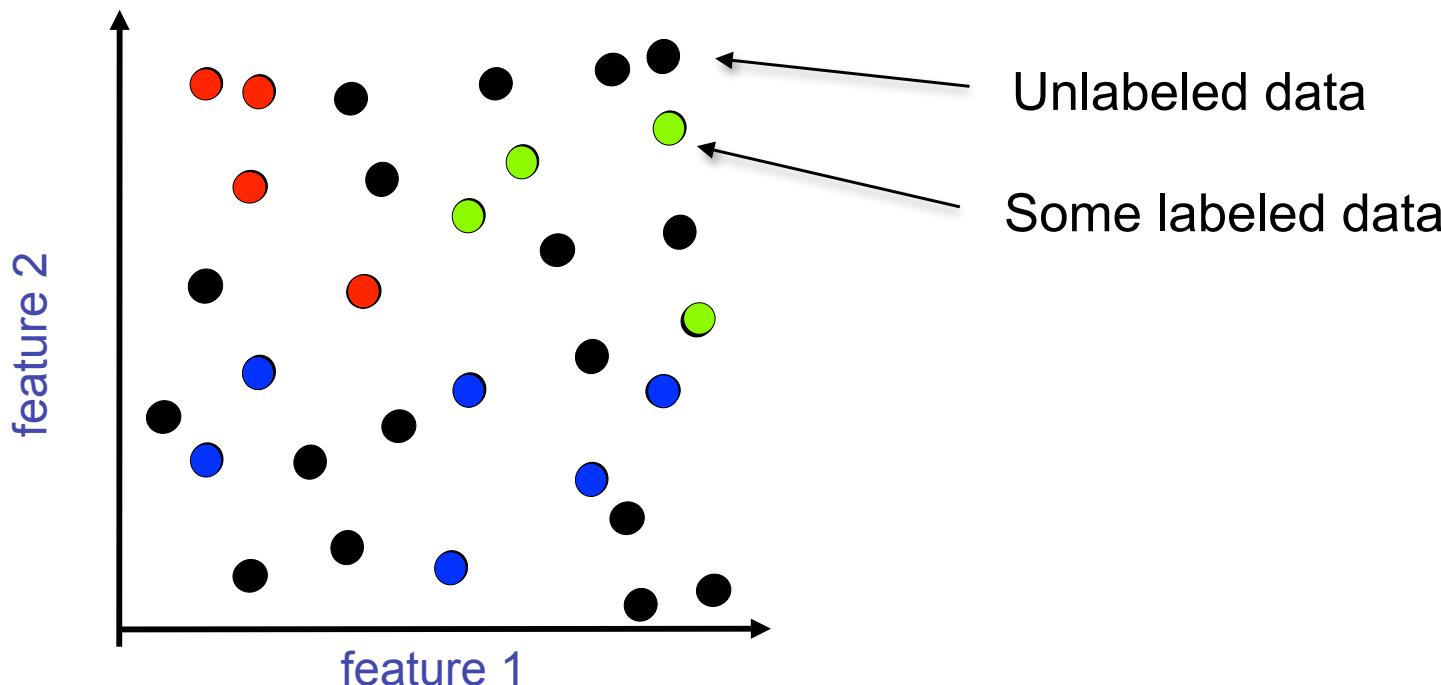


Standard Machine Learning Paradigm

- **Data:** past observations
- **Hypotheses/Models:** devised to capture the patterns in data
- **Prediction:** apply model to forecast future observations

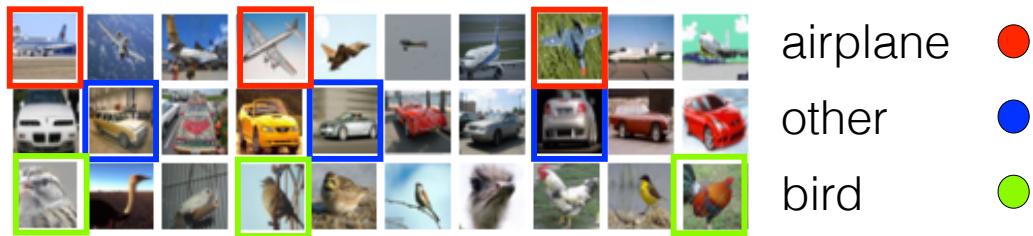
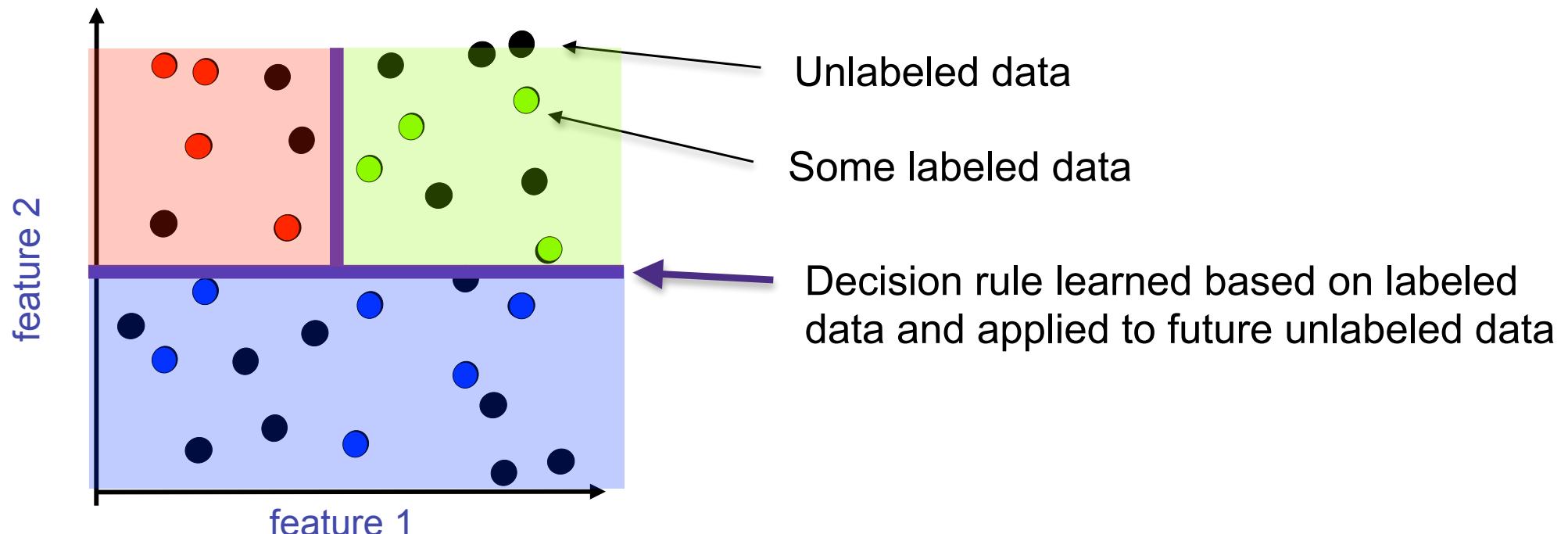


airplane
other
bird



Standard Machine Learning Paradigm

- **Data:** past observations
- **Hypotheses/Models:** devised to capture the patterns in data
- **Prediction:** apply model to forecast future observations



You may also like...

Do these applications actually fall into the standard machine learning paradigm?

Generalization Bounds

UNIVERSITY *of* WASHINGTON

W

Realizable case

Fix a finite hypothesis class $\mathcal{H} = \{h_1, h_2, \dots\}$ where $h(x) \in \{-1, 1\}$.

You are given a data set $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i = h_*(x_i)$ for some $h_* \in \mathcal{H}$

Let $\hat{h} = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ how “good” is \hat{h} ?

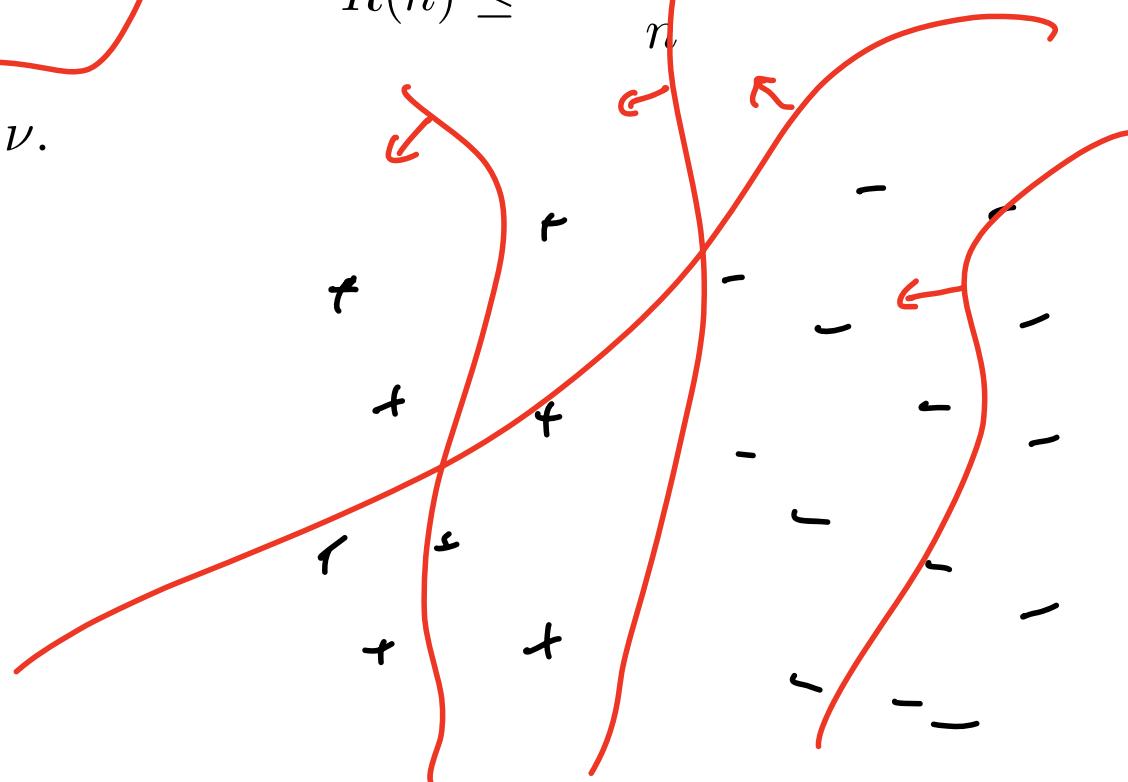
Realizable case

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. Assume there exists an $h_* \in \mathcal{H}$ such that $R(h_*) = 0$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$\hat{R}_n(\hat{h}) = 0$$

$$R(\hat{h}) \leq \frac{\log(|\mathcal{H}|/\delta)}{n}$$

where $(X, Y) \sim \nu$.



$$A \cap B$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\leq P(A) + P(B)$$

Realizable case - Proof

$$P(R(\hat{h}) > \varepsilon) = P(\{R(\hat{h}) > \varepsilon, \bigcap_{i=1}^n \{h(x_i) = y_i\}\})$$

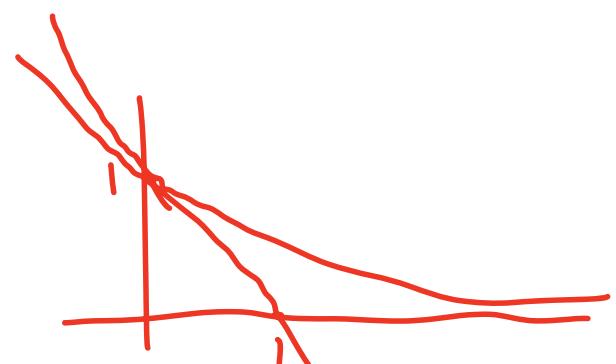
$$\leq P\left(\bigcup_{h \in \mathcal{H}} \{R(h) > \varepsilon, \bigcap_{i=1}^n \{h(x_i) = y_i\}\}\right)$$

$$\leq \sum_{h \in \mathcal{H}} P(R(h) > \varepsilon, \bigcap_{i=1}^n \{h(x_i) = y_i\})$$

$$= \sum_{h \in \mathcal{H}} \prod_{i=1}^n P(R(h) > \varepsilon, h(x_i) = y_i)$$

$$\leq \sum_{h \in \mathcal{H}} \prod_{i=1}^n (1 - \varepsilon)$$

$$= |\mathcal{H}| (1 - \varepsilon)^n \leq |\mathcal{H}| e^{-n\varepsilon} = \delta$$



$$1-x \leq e^{-x}$$

Realizable case - Proof

Union bound: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \leq \mathbb{P}(A) + \mathbb{P}(B)$

$$\begin{aligned}\mathbb{P}(R(\hat{h}) \geq \epsilon) &= \mathbb{P}(R(\hat{h}) \geq \epsilon) \\ &= \mathbb{P}(R(\hat{h}) \geq \epsilon \text{ and } \cap_{i=1}^n \{\hat{h}(x_i) = y_i\}) \\ &\leq \mathbb{P}\left(\bigcup_{h \in \mathcal{H}} \left\{R(h) \geq \epsilon \text{ and } \cap_{i=1}^n \{h(x_i) = y_i\}\right\}\right) \\ &\leq \sum_{h \in \mathcal{H}} \mathbb{P}(R(h) \geq \epsilon \text{ and } \cap_{i=1}^n \{h(x_i) = y_i\}) \\ &\leq \sum_{h \in \mathcal{H}} (1 - \epsilon)^n \quad \text{Red arrow pointing to this line} \\ &\leq |\mathcal{H}| \exp(-n\epsilon) \quad \text{exp}(-x) \geq (1 - x) \quad \forall x\end{aligned}$$

Realizable case

PAC = Probably Approximately Correct

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. Assume there exists an $h_* \in \mathcal{H}$ such that $R(h_*) = 0$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) \leq \frac{\log(|\mathcal{H}|/\delta)}{n}$$

where $(X, Y) \sim \nu$.

Corollary Under the conditions of the theorem (i.e., there exists an $h_* \in \mathcal{H}$ such that $R(h_*) = 0$, $(x_i, y_i) \stackrel{iid}{\sim} \nu$, and $\hat{h} = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$) we have $\mathbb{E}[R(\hat{h})] \leq \int_{\epsilon=0}^d \mathbb{P}(R(\hat{h}) \geq \epsilon) \leq \frac{2 \log(|\mathcal{H}|)}{n}$

Agnostic (Non-realizable) case $h_* = \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} R(h)$

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) - R(h_*) \leq \sqrt{\frac{2 \log(|\mathcal{H}|/\delta)}{n}}.$$

$$\begin{aligned} R(\hat{h}) - R(h_*) &= R(\hat{h}) - \hat{R}(\hat{h}) + \hat{R}(\hat{h}) - \hat{R}(h_*) + \hat{R}(h_*) - R(h_*) \\ &\stackrel{\text{red}}{\leq} 0 \\ &\leq \left(\max_{h \in \mathcal{H}} R(h) - \hat{R}(h_*) \right) + \left(\max_{h \in \mathcal{H}} \hat{R}(h) - R(h) \right) \end{aligned}$$

$$P(R(h) - \hat{R}(h) > \varepsilon) = P\left(\frac{1}{n} \sum_{i=1}^n (P(h(x_i) + \gamma) - \mathbb{I}\{h(x_i) + \gamma > 0\}) > \varepsilon\right)$$

$$\leq \exp(-2n\varepsilon^2)$$

$$P(\hat{R}(h) - R(h) > \varepsilon) \leq \exp(-2n\varepsilon^2)$$

$$P\left(\max_{h \in \mathcal{H}} |R(h) - \hat{R}(h)| > \varepsilon\right)$$

$$= P\left(\bigcup_{h \in \mathcal{H}} \{|R(h) - \hat{R}(h)| > \varepsilon\}\right)$$

$$\leq \sum_{h \in \mathcal{H}} P(|R(h) - \hat{R}(h)| > \varepsilon)$$

$$\leq |\mathcal{H}| \exp(-2n\varepsilon^2) = f$$

Agnostic (Non-realizable) case - Proof

Lemma (Hoeffding's inequality): Let $Z_1, \dots, Z_n \stackrel{iid}{\sim} \nu$ where $\mathbb{E}[Z_i] = \mu$ and $Z_i \in [a, b]$ almost surely. Then

$$\mathbb{P} \left(\frac{1}{n} \sum_{i=1}^n Z_i \geq \mu + \epsilon \right) \leq \exp \left(\frac{-2n\epsilon^2}{|b-a|^2} \right).$$

Lemma (Hoeffding's Lemma). Let X be a real-valued random variable such that $X \in [a, b]$ almost surely, and let $\mathbb{E}[X] = \mu$. Then, for any $t \in \mathbb{R}$,

$$\mathbb{E} \left[e^{t(X-\mu)} \right] \leq \exp \left(\frac{t^2(b-a)^2}{8} \right)$$

Agnostic (Non-realizable) case - Proof

Agnostic (Non-realizable) case

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) - R(h_*) \leq \sqrt{\frac{2 \log(|\mathcal{H}|/\delta)}{n}}.$$

Corollary Under the conditions of the theorem (i.e., $(x_i, y_i) \stackrel{iid}{\sim} \nu$, and $\hat{h} = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$) and $|\mathcal{H}| \geq n$, we have $\mathbb{E}[R(\hat{h})] - R(h_*) \leq \sqrt{\frac{8 \log(|\mathcal{H}|)}{n}}$

Agnostic (Non-realizable) case - Interpolation

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) - R(h_*) \leq \sqrt{\frac{2R(h_*) \log(2|\mathcal{H}|/\delta)}{n}} + \frac{\log(2|\mathcal{H}|/\delta)}{n}.$$

Proof: Use Bernstein's inequality instead of Hoeffding. ■

Infinite classes

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) - R(h_*) \leq \sqrt{\frac{2R(h_*) \log(2|\mathcal{H}|/\delta)}{n}} + \frac{\log(2|\mathcal{H}|/\delta)}{n}.$$

What if $|\mathcal{H}|$ is *infinite* such as the space of all hyperplane classifiers?

Infinite classes

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) - R(h_*) \leq \sqrt{\frac{2R(h_*) \log(2|\mathcal{H}|/\delta)}{n}} + \frac{\log(2|\mathcal{H}|/\delta)}{n}.$$

What if $|\mathcal{H}|$ is *infinite* such as the space of all hyperplane classifiers?

Lots of tools to address this:

- minimum description length
- VC-dimension and Rademacher complexity
- Covering number / log-entropy bounds

Online Learning

UNIVERSITY *of* WASHINGTON

W

Realizable case

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n) \stackrel{iid}{\sim} \nu$ where $y_i \in \{-1, 1\}$. For any $h \in \mathcal{H}$ define $\hat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$ and $R(h) = \mathbb{P}(h(X) \neq Y)$ where $(X, Y) \sim \nu$. Assume there exists an $h_* \in \mathcal{H}$ such that $R(h_*) = 0$. If $\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{R}_n(h)$ then with probability at least $1 - \delta$ we have

$$R(\hat{h}) \leq \frac{\log(|\mathcal{H}|/\delta)}{n}$$

where $(X, Y) \sim \nu$.

All the guarantees of the previous section (and the entirety of this class so far) has relied critically on (x, y) being drawn **IID**. Can we say anything if (x, y) are chosen **adversarially**?

Online learning

Spammer

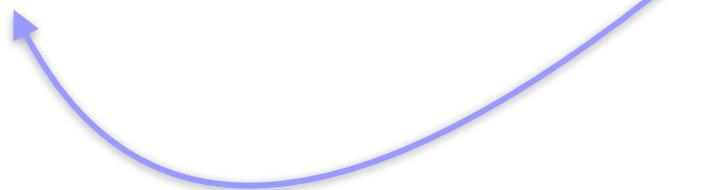
Real mail

Spam filter
(Classifier)

x_t

\hat{y}_t

$\mathbf{1}\{\hat{y}_t \neq y_t\}$



Online learning

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Settings of interest:

IID $(x_t, y_t) \sim \nu$

Adversarial (x_t, y_t) arbitrary

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Online learning - Realizable IID

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

IID

$$(x_t, y_t) \sim \nu \quad y_t = h_*(x_t)$$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

We know learning theory! Choose $h_t \in \arg \min_{h \in \mathcal{H}} \sum_{s=1}^{t-1} \mathbf{1}\{h(x_s) \neq y_s\}$

Online learning - IID

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

IID
$$(x_t, y_t) \sim \nu \quad y_t = h_*(x_t)$$

Corollary Under the conditions of the theorem (i.e., there exists an $h_* \in \mathcal{H}$ such that $R(h_*) = 0$, $(x_i, y_i) \stackrel{iid}{\sim} \nu$, and $\hat{h} = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$) we have $\mathbb{E}[R(\hat{h})] \leq \int_{\epsilon=0}^d \mathbb{P}(R(\hat{h}) \geq \epsilon) \leq \frac{2 \log(|\mathcal{H}|)}{n}$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Online learning - IID

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

IID
$$(x_t, y_t) \sim \nu \quad y_t = h_*(x_t)$$

Corollary Under the conditions of the theorem (i.e., there exists an $h_* \in \mathcal{H}$ such that $R(h_*) = 0$, $(x_i, y_i) \stackrel{iid}{\sim} \nu$, and $\hat{h} = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$) we have $\mathbb{E}[R(\hat{h})] \leq \int_{\epsilon=0}^d \mathbb{P}(R(\hat{h}) \geq \epsilon) \leq \frac{2 \log(|\mathcal{H}|)}{n}$

$$\mathbb{E} \left[\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} \right] \leq 1 + \sum_{t=2}^T \mathbb{E}[\mathbb{P}(h_t(x_t) \neq y_t)]$$

of mistakes grows only logarithmically!

$$\leq 1 + \sum_{t=2}^T \mathbb{E}[R(h_t)] \leq 1 + \sum_{t=2}^T \frac{2 \log(|\mathcal{H}|)}{t-1} \leq 2 + 2 \log(|\mathcal{H}|) \log(T)$$

Online learning - Adversarial

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Adversarial (x_t, y_t) arbitrary $y_t = h_*(x_t)$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Online learning - Adversarial

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Adversarial (x_t, y_t) arbitrary $y_t = h_*(x_t)$

We know learning theory! Choose $h_t \in \arg \min_{h \in \mathcal{H}} \sum_{s=1}^{t-1} \mathbf{1}\{h(x_s) \neq y_s\}$?

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Online learning - Adversarial

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Adversarial (x_t, y_t) arbitrary $y_t = h_*(x_t)$

We know learning theory! Choose $h_t \in \arg \min_{h \in \mathcal{H}} \sum_{s=1}^{t-1} \mathbf{1}\{h(x_s) \neq y_s\}$?

Claim There exists a sequence $\{(x_t, y_t)\}_{t=1}^T$ and $\hat{h}_t \in \arg \min_{h \in \mathcal{H}} \sum_{s=1}^{t-1} \mathbf{1}\{h(x_s) \neq y_s\}$ such that the strategy makes $\min\{|\mathcal{H}|, T\}$ mistakes.

Hint: many classifiers achieve minimum, assume adversary knows your tie-breaking strategy

Online learning - Adversarial

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Adversarial (x_t, y_t) arbitrary $y_t = h_*(x_t)$

Halving Algorithm

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

Initialize: $V_1 = \mathcal{H}$

for $t = 1, 2, \dots$

x_t arrives

Player picks a $h_t \in V_t : \sum_{h \in V_t} \mathbf{1}\{h(x_t) = h_t(x_t)\} > \sum_{h \in V_t} \mathbf{1}\{h(x_t) = -h_t(x_t)\}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

Online learning - Adversarial

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Adversarial (x_t, y_t) arbitrary $y_t = h_*(x_t)$

Halving Algorithm

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

Initialize: $V_1 = \mathcal{H}$

for $t = 1, 2, \dots$

x_t arrives

Player picks a $h_t \in V_t : \sum_{h \in V_t} \mathbf{1}\{h(x_t) = h_t(x_t)\} > \sum_{h \in V_t} \mathbf{1}\{h(x_t) = -h_t(x_t)\}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Update $V_{t+1} = \{h \in V_t : h(x_t) = y_t\}$

Either the algorithm doesn't make mistake, or *at least half* of hypotheses are discarded

Online learning - Adversarial

Input: \mathcal{H} with $|\mathcal{H}| < \infty$

for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Adversarial (x_t, y_t) arbitrary $y_t = h_*(x_t)$

Goal:

Minimize mistakes

$$\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\}$$

Theorem: Fix a finite hypothesis class \mathcal{H} so that $|\mathcal{H}| < \infty$ and for all $h \in \mathcal{H}$ we have $h(x) \in \{-1, 1\}$. Let $(x_1, y_1), \dots, (x_n, y_n)$ where x_t is arbitrary and $y_t = h_*(x_t)$ for some $h_* \in \mathcal{H}$. Then if h_t is recommended by the Halving algorithm, we have that $\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} \leq \log_2(|\mathcal{H}|)$

Online learning

Assuming that your data is IID is a **very** strong assumption that is almost never true in practice. Online learning is a different paradigm that makes no assumptions but still yields meaningful guarantees.

Assuming there exists a perfect classifier h_* :

- When x_t is drawn IID, empirical risk minimization results in only a number of mistakes that grows like $\log(T)\log(H)$
- When x_t is chosen adversarially empirical risk minimization can do arbitrarily badly. But there exist smarter approaches (like Halving algorithm) that make only $\log(H)$ mistakes

Questions?

Online learning in non-separable case

Online learning

Input: \mathcal{H} with $|\mathcal{H}| < \infty$
for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal: Minimize regret wrt best

$$\max_{h \in \mathcal{H}} \sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\}$$

Settings of interest:

IID $(x_t, y_t) \sim \nu$

Adversarial (x_t, y_t) arbitrary

Online learning

Input: \mathcal{H} with $|\mathcal{H}| < \infty$
for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal: Minimize regret wrt best

$$\max_{h \in \mathcal{H}} \sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\}$$

Settings of interest:

IID

$$(x_t, y_t) \sim \nu$$

Choose $h_t \in \arg \min_{h \in \mathcal{H}} \sum_{s=1}^{t-1} \mathbf{1}\{h(x_s) \neq y_s\}$

Corollary Under the conditions of the theorem (i.e., $(x_i, y_i) \stackrel{iid}{\sim} \nu$, and $\hat{h} = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbf{1}\{h(x_i) \neq y_i\}$) and $|\mathcal{H}| \geq n$, we have $\mathbb{E}[R(\hat{h})] - R(h_*) \leq \sqrt{\frac{8 \log(|\mathcal{H}|)}{n}}$

$$\implies \max_{h \in \mathcal{H}} \mathbb{E} \left[\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\} \right] \leq \sqrt{8T \log(|\mathcal{H}|)}$$

Online learning

Input: \mathcal{H} with $|\mathcal{H}| < \infty$
 for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal: Minimize regret wrt best

$$\max_{h \in \mathcal{H}} \sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\}$$

Settings of interest:

$$h \leftarrow i, \quad d = |\mathcal{H}|$$

IID $(x_t, y_t) \sim \nu$ $z_t(i) = \mathbf{1}\{h(x_t) \neq y_t\}$

Adversarial (x_t, y_t) arbitrary

Theorem: If $z_t \in [0, 1]^d \ \forall t$, and I_t, p_t are chosen by exponential weights then
 $\max_{i \in [d]} \mathbb{E} \left[\sum_{t=1}^T \langle I_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle \right] = \max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle \leq \sqrt{T \log(d)/2}$

$$\Rightarrow \max_{h \in \mathcal{H}} \mathbb{E} \left[\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\} \right] \leq \sqrt{T \log(|\mathcal{H}|)/2}$$

Online learning

Input: \mathcal{H} with $|\mathcal{H}| < \infty$
for $t = 1, 2, \dots$

x_t arrives

Player picks $h_t \in \mathcal{H}$

y_t is revealed

Player receives loss $\ell(h_t, (x_t, y_t)) = \mathbf{1}\{h_t(x_t) \neq y_t\}$

Goal: Minimize regret wrt best

$$\max_{h \in \mathcal{H}} \sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\}$$

Settings of interest:

IID $(x_t, y_t) \sim \nu$

$$\implies \max_{h \in \mathcal{H}} \mathbb{E} \left[\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\} \right] \leq \sqrt{8T \log(|\mathcal{H}|)}$$

Adversarial (x_t, y_t) arbitrary

$$\implies \max_{h \in \mathcal{H}} \mathbb{E} \left[\sum_{t=1}^T \mathbf{1}\{h_t(x_t) \neq y_t\} - \mathbf{1}\{h(x_t) \neq y_t\} \right] \leq \sqrt{T \log(|\mathcal{H}|)/2}$$

Online learning

Assuming that your data is IID is a **very** strong assumption that is almost never true in practice. Online learning is a different paradigm that makes no assumptions but still yields meaningful guarantees.

Questions?

Exponential weights

Expert prediction

Suppose $b_t \in [0,1]^d$ is a vector of \mathbf{d} experts predictions of tomorrow's temperature.

$t=1$ $t=2$ $t=3$ $t=4$ $t=5$...

Expert 1

Expert 2

Expert 3

Expert prediction

Suppose $b_t \in [0,1]^d$ is a vector of d experts predictions of tomorrow's temperature.

$t=1$ $t=2$ $t=3$ $t=4$ $t=5$...

Expert 1

Expert 2

Expert 3

Input: d experts

for $t = 1, 2, \dots$

$$z_t(i) = |b_t(i) - y_t|$$

*i*th expert's prediction

True temperature

Player picks $p_t \in \Delta_d$ and plays $I_t \sim p_t$

Adversary simultaneously reveals expert losses $z_t \in [0, 1]^d$

Player pays loss $\langle p_t, z_t \rangle = \mathbb{E}[z_t(I_t)]$

Expert prediction

Suppose $b_t \in [0,1]^d$ is a vector of d experts predictions of tomorrow's temperature.

$t=1$ $t=2$ $t=3$ $t=4$ $t=5$...

Expert 1

Expert 2

Expert 3

Input: d experts

for $t = 1, 2, \dots$

$$z_t(i) = |b_t(i) - y_t|$$

ith expert's prediction True temperature

Player picks $p_t \in \Delta_d$ and plays $I_t \sim p_t$

Adversary simultaneously reveals expert losses $z_t \in [0, 1]^d$

Player pays loss $\langle p_t, z_t \rangle = \mathbb{E}[z_t(I_t)]$

Goal: Minimize
regret wrt best

$$\max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle$$

Expert prediction

Goal: Minimize
regret wrt best

$$\max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle$$

Input: d experts

for $t = 1, 2, \dots$

Player picks $p_t \in \Delta_d$ and plays $I_t \sim p_t$

Adversary simultaneously reveals expert losses $z_t \in [0, 1]^d$

Player pays loss $\langle p_t, z_t \rangle = \mathbb{E}[z_t(I_t)]$

Exponential weights algorithm

Input: d experts, $\eta > 0$

Initialize: $w_1 \in [1, \dots, 1]^\top \in \mathbb{R}^d$

for $t = 1, 2, \dots$

Player plays $I_t \sim p_t$ where $p_t(i) = w_t(i) / \sum_{j=1}^d w_t(j)$

Adversary simultaneously reveals expert losses $z_t \in [0, 1]^d$

Player pays loss $\langle p_t, z_t \rangle = \mathbb{E}[z_t(I_t)]$

Player updates weights $w_{t+1}(i) = w_t(i) \exp(-\eta z_t(i))$

Expert prediction

Goal: Minimize
regret wrt best

$$\max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle$$

Exponential weights algorithm

Input: d experts, $\eta > 0$

Initialize: $w_1 \in [1, \dots, 1]^\top \in \mathbb{R}^d$

for $t = 1, 2, \dots$

Player plays $I_t \sim p_t$ where $p_t(i) = w_t(i) / \sum_{j=1}^d w_t(j)$

Adversary simultaneously reveals expert losses $z_t \in [0, 1]^d$

Player pays loss $\langle p_t, z_t \rangle = \mathbb{E}[z_t(I_t)]$

Player updates weights $w_{t+1}(i) = w_t(i) \exp(-\eta z_t(i))$

Theorem: If $z_t \in [0, 1]^d \ \forall t$, and I_t, p_t are chosen by exponential weights then
 $\max_{i \in [d]} \mathbb{E} \left[\sum_{t=1}^T \langle I_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle \right] = \max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle \leq \frac{\log(d)}{\eta} + \frac{T\eta}{8}$

Choosing $\eta = \sqrt{\frac{8 \log(d)}{T}}$ gives regret bound of $\sqrt{T \log(d)/2}$

Expert prediction

Goal: Minimize
regret wrt best

$$\max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle$$

Exponential weights algorithm, proof: Let $W_t = \sum_{i=1}^d w_t(i)$ so that

Expert prediction

Goal: Minimize
regret wrt best

$$\max_{i \in [d]} \sum_{t=1}^T \langle p_t, z_t \rangle - \langle \mathbf{e}_i, z_t \rangle$$

Exponential weights algorithm, proof: Let $W_t = \sum_{i=1}^d w_t(i)$ so that

$$\begin{aligned} \log \frac{W_{T+1}}{W_1} &= \sum_{t=1}^T \log \frac{W_{t+1}}{W_t} \\ &= \sum_{t=1}^T \log \left(\sum_{i=1}^d \frac{w_{t+1}(i)}{W_t} \right) \\ &= \sum_{t=1}^T \log \left(\sum_{i=1}^d \frac{w_t(i) \exp(-\eta z_t(i))}{W_t} \right) \\ &= \sum_{t=1}^T \log \left(\sum_{i=1}^d p_t(i) \exp(-\eta z_t(i)) \right) \\ &= \sum_{t=1}^T \log \left(\exp(-\eta \mathbb{E}[z_t(I_t)]) \sum_{i=1}^d p_t(i) \exp(-\eta(z_t(i) - \mathbb{E}[z_t(I_t)])) \right) \\ &= \sum_{t=1}^T -\eta \mathbb{E}[z_t(I_t)] + \log \left(\mathbb{E}[\exp(-\eta(z_t(I_t) - \mathbb{E}[z_t(I_t)]))] \right) \\ &\leq \sum_{t=1}^T -\eta \mathbb{E}[z_t(I_t)] + \eta^2/8 \end{aligned}$$

$$\begin{aligned} \log \frac{W_{T+1}}{W_1} &\geq \log \frac{w_{T+1}(i)}{W_1} \\ &= -\log(d) + \log \left(\prod_{t=1}^T \exp(-\eta z_t(i)) \right) \\ &= -\log(d) - \sum_{t=1}^T \eta z_t(i) \end{aligned}$$

Lemma (Hoeffding's Lemma). Let X be a real-valued random variable such that $X \in [a, b]$ almost surely, and let $\mathbb{E}[X] = \mu$. Then, for any $t \in \mathbb{R}$,

$$\mathbb{E} \left[e^{t(X-\mu)} \right] \leq \exp \left(\frac{t^2(b-a)^2}{8} \right)$$

$$\implies \sum_{t=1}^T \eta \mathbb{E}[z_t(I_t)] - \sum_{t=1}^T \eta z_t(i) \leq \log(d) + \eta^2 T/8$$