
Homework 2
CSE 541: Interactive Learning
Instructor: Kevin Jamieson

Due 11:59 PM on February 22, 2026

Hypothesis testing
1.1 Let X1, X2, . . . be a sequence of iid random variables. For j ∈ {0, 1}, under Hj we have that Xi ∼ pj .
Let Pj(·),Ej(·) denote the probability and expectation under Hj . Assume that the support of p0 and p1 are

equal and furthermore, that supx∈support(p0)
p1(x)
p0(x)

≤ κ. Fix some δ ∈ (0, 1). The sequential probability ratio

test (SPRT) is known to have a near-optimal sample complexity of distinguishing between H0 and H1 and
is defined as follows: define the likelihood ratio as

Lt =

t∏
i=1

p1(Xi)

p0(Xi)

and keep taking samples until time τ = min{t : Lt > 1/δ}. Show that P0(Lτ > 1/δ) ≤ δ. Assume that

E1[τ] < ∞. Show that log(1/δ)
KL(p1||p0)

≤ E1[τ] ≤ log(κ/δ)
KL(p1||p0)

where KL(p1|p0) =
∫
p1(x) log(

p1(x)
p0(x)

)dx is the Kull-

back Leibler divergence between p1 and p0.

Linear regression and experimental design
2.1 Exercise 20.2 of [SzepesvariLattimore]

Pure-exploration Linear Bandits
The pure-exploration linear bandits game is as follows:

Input: Finite set X ⊂ Rd, δ ∈ (0, 1)
Initialize: t = 1
while: player does not exit

Player chooses xt ∈ X
Nature reveals yt = ⟨θ∗, xt⟩+ ηt where ηt ∼ N (0, 1)
t← t+ 1

Output: a single arm x̂ ∈ X

Assume there exists an unique x∗ ∈ X such that ⟨x∗−x, θ∗⟩ > 0 for all x ∈ X \x∗. There exists an algorithm
that outputs an x̂ ∈ X such that P(x̂ = x∗) ≥ 1− δ after a number of pulls that scales like ρ⋆ log(1/δ) up to
constants and log factors, where

ρ⋆ = inf
λ∈△X

max
x∈X

∥x− x⋆∥2A(λ)−1

⟨x⋆ − x, θ∗⟩2
,

A(λ) =
∑

x∈X λxxx
⊤, and the infimum is over probability distributions over X [1]. This is known to be

optimal up to log factors.
3.1 Consider the standard multi-armed bandit game where X = {ei : i ∈ [n]}. Assume that θ∗,1 >
θ∗,2 ≥ · · · ≥ θ∗,n. We argued in class that the sample complexity to identify the best arm (assuming it is
unique) scales like

∑n
i=2(θ∗,1 − θ∗,i)

−2. Show that there exists universal positive constants c1, c2 such that
c1ρ⋆ ≤

∑n
i=2(θ∗,1 − θ∗,i)

−2 ≤ c2ρ⋆.

Non-parametric bandits
4.1 Let FLip be a set of functions defined over [0, 1] such that for each f ∈ FLip we have f : [0, 1]→ [0, 1] and
for every x, y ∈ [0, 1] we have |f(y)−f(x)| ≤ L|y−x| for some known L > 0. At each round t the player chooses
an xt ∈ [0, 1] and observes a random variable yt ∈ [0, 1] such that E[yt] = f∗(xt) where f∗ ∈ FLip. Define

the regret of an algorithm after T steps as RT = E
[∑T

t=1 f∗(x⋆)− f∗(xt)
]
where x⋆ = argmaxx∈[0,1] f∗(x).

• Propose an algorithm, that perhaps uses knowledge of the time horizon T , that achieves RT ≤ O(T 2/3)
regret (Okay to ignore constant, log factors).

1

• Argue that this is minimax optimal (i.e., unimprovable in general through the use of an explicit example,
with math, but no formal proof necessary).

Experiments
5.1 Suppose we have random variables Z1, Z2, . . . that are iid with E[exp(λ(Z1−E[Z1])] ≤ exp(λ2/2). Then
for any fixed t ∈ N we have the standard tail bound

P

(
|1
t

t∑
s=1

(Zs − E[Zs])| >
√

2 log(2/δ)

t

)
≤ δ. (1)

On the other hand, as we showed in class, for any σ > 0 we have that

P

(
∃t ∈ N : |1

t

t∑
s=1

(Zs − E[Zs])| >
√

1 +
1

tσ2

√
2 log(1/δ) + log(tσ2 + 1)

t

)
≤ δ (2)

which is a confidence bound that holds for all t ∈ N simultaneously (i.e., not for just a fixed t) at the cost
of a slightly inflated bound. Note that because σ must be chosen in advance, it cannot depend on t, and
thus there is not a universally good choice. Let δ = 0.05. Plot the ratio of the confidence bound of (2) to
(1) as a function of t for values of σ2 ∈ {10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 100}. What do you notice about
where the ratio is smallest with respect to σ2 (if the smallest value is at the edge, your t is not big enough–it
should be in the many millions)?

Suppose you are observing a stream of iid Gaussian random variables Z1, Z2, . . . such that Zt ∼ N (µ, 1).
An oracle has told you that |µ| = 10−2, and your job is to design an estimator using (2) to determine the
sign using as few observations as possible. How should you choose σ? If you’re not sure, consider about how
many samples you’d expect this test to take before outputting an answer. Given this guess of the stopping
time, how should can you choose σ to potentially minimize this stopping time?

5.2 G-optimal design This problem addresses finding a G-optimal design. Fix (x1, . . . , xn) ⊂ Rd. For any
matrix A, let f(A) = maxi=1,...,n ∥xi∥2A−1 and g(A) = − log(|A|) (these are the G and D optimal designs,
respectively). We wish to find a discrete allocation of size N for G-optimal design. Below are strategies to
output an allocation (I1, . . . , IN) ∈ [n]. Choose one strategy and one h ∈ {f, g} to obtain samples from a
G-optimal design

1. Greedy For i = 1, . . . , 2d select Ii uniformly at random with replacement from [n]. For t = 2d +

1, . . . , N select It = argmink∈[n] h(xkx
⊤
k +

∑t−1
j=1 xIjx

⊤
Ij
). Return (I1, . . . , IN).

2. Frank Wolfe For i = 1, . . . , 2d select Ii uniformly at random with replacement from [n] and let

λ(2d) = 1
2d

∑2d
i=1 eIi . For k = 2d + 1, . . . , N select Ik = argminj∈[n]

∂h(λ)
∂λj
|
λ=λ

(k−1) and set λ(k) =

(1− ηk)λ
(k−1) + ηkeIk where ηk = 2/(k + 1). Return (I1, . . . , IN). You will need to derive the partial

gradients ∂h(λ)
∂λi

. Hint1.

Let λ̂ = 1
N

∑N
i=1 eIi . We are going to evaluate f(λ̂) in a variety of settings. For a ≥ 0 and n ∈ N let

xi ∼ N (0, diag(σ2)) with σ2
j = j−a for j = 1, . . . , d with d = 10. On a single plot with n ∈ {10 + 2i}10i=1 on

the x-axis, plot your chosen method for a ∈ {0, 0.5, 1, 2} as separate lines with N = 1000.

5.3 Experimental design for function estimation.
Let f : [0, 1]d → R be some unknown function and fix some locations of interest X = {xi}ni=1. We wish

to output an estimate f̂ of f uniformly well over X in the sense that maxx∈X E[(f̂(x) − f(x))2] is small.
To build such an estimate, we can make N = 1000 measurements. If we measure the function at location
X ∈ X we assume we observe Y = f(X) + η where η ∼ N (0, 1). While you can choose any N measurement
locations in X you’d like (with repeats) you have to choose all locations before the observations are revealed.
This problem emphasizes that even though we’re studying linear functions and linear bandits in class, this
can encode incredibly rich functions using non-linear transformations.

1I = A(λ)A(λ)−1. Thus, 0 = ∂
∂λi

I =
(

∂
∂λi

A(λ)
)
·A(λ)−1 +A(λ) ·

(
∂

∂λi
A(λ)−1

)
. d

dX
log(|X|) = (A−1)T .

2

1. Linear functions Assume f(x) = ⟨x, θ∗⟩ for some θ∗ ∈ Rd. Propose a strategy to select your N

measurements and fit f̂ . What guarantees can you make about maxx∈X E[(f̂(x) − f(x))2]? What

about the random quantity maxx∈X (f̂(x)− f(x))2?

2. Sobolev functions For simplicity, let d = 1 and assume f(x) is absolutely continuous and
∫ 1

0
|f ′(x)|2dx <

∞. This class of functions is known as the First-order Sobolev space2. Remarkably, this set of
functions is equivalent to a reproducing kernel Hilbert space (RKHS) for the kernel k(x, x′) = 1 +
min{x, x′}. While a discussion of all its properties are beyond the scope of this class (see [2, Ch.12]
for an excellent treatment) it follows that there exists a sequence of orthogonal functions ϕ(x) :=
(ϕ1(x), ϕ2(x), ϕ3(x), . . .) such that each ϕk : [0, 1]→ R and

• for all i, j ∈ N we have
∫ 1

0
ϕi(x)ϕj(x)dx = βi1{i = j} for a non-increasing sequence {βi}i

• k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ :=
∑∞

k=1 ϕ(x)kϕk(x
′),

• and any function f in this class can be written as f(x) =
∑∞

k=1 αkϕk(x) with
∑∞

k=1 α
2
k/βk <∞.

Because ϕ(x) could be infinite dimensional, its not immediately clear why this is convenient. For finite
datasets though (i.e., n <∞) there always exists a finite dimensional ϕ : X → R|X | where k(xi, xj) =
⟨ϕ(xi), ϕ(xj)⟩. Precisely, if one computes the matrix [K]i,j = k(xi, xj) and K =

∑n
k=1 vkv

⊤
k ek is the

resulting eigenvalue decomposition where {ek}k is a non-increasing sequence, then for all i ∈ [n] we
have [ϕi]j := [ϕ(xi)]j := vi,j

√
ej and there exists a θ ∈ Rn such that

f(xi) = ⟨θ, ϕi⟩ =
n∑

j=1

θjvi,j
√
ej .

Because the ej are rapidly going to zero, we usually do not include all n, but cut the sum off at some

d ≪ n so that ϕi ∈ Rd and f(xi) ≈
∑d

j=1 θjvi,j
√
ej . To summarize, for each i ∈ [n] we have defined

a map xi → ϕi with ϕi ∈ Rd and f(x) ≈ ⟨ϕi, θ∗⟩ for some unknown θ∗. Here is a piece of code that
generates our set X = {xi}ni=1 ⊂ [0, 1] and these features Φ = {ϕi}ni=1 ⊂ Rd:

1 import numpy as np

2 n=300

3 X = np.concatenate((np.linspace (0,1,50), 0.25+ 0.01* np.random.randn (250)), 0)

4 X = np.sort(X)

5

6 K = np.zeros((n,n))

7 for i in range(n):

8 for j in range(n):

9 K[i,j] = 1+min(X[i],X[j])

10 e, v = np.linalg.eigh(K) # eigenvalues are increasing in order

11 d = 30

12 Phi = np.real(v @ np.diag(np.sqrt(np.abs(e))))[:,(n-d)::]

Let’s define some arbitrary function and see how well this works!

1 def f(x):

2 return -x**2 + x*np.cos (8*x) + np.sin (15*x)

3

4 f_star = f(X)

5

6 theta = np.linalg.lstsq(Phi , f_star , rcond=None)[0]

7 f_hat = Phi @ theta

2This class is quite rich including functions as diverse as all polynomials a+bx+cx8, trigonometric functions sin(ax)+cos(bx),
exponential functions eax + bx, and even non-smooth functions like max{1− x, 3x}. However, it does not include functions like
1/x or

√
x because their derivatives blow up at x = 0

3

Observe that there is nearly no error in the reconstruction even though we’re using a linear model in
R30. This is because we defined a very good basis Φ ⊂ Rd. We could have achieved the same result
by learning in kernel space and adding regularization (this is known as Bayesian experimental design).
Instead of choosing d we would have to choose the amount of regularization, so there is still always a
hyperparameter to choose.

Let’s get back to estimating f from noisy samples. Now that we have made this a linear estimation
problem, we are exactly in the setting of the first part of this problem. Consider the below listing:

1 def observe(idx):

2 return f(X[idx]) + np.random.randn(len(idx))

3

4 def sample_and_estimate(X, lbda , tau):

5 n, d = X.shape

6 reg = 1e-6 # we can add a bit of regularization to avoid divide by 0

7 idx = np.random.choice(np.arange(n),size=tau ,p=lbda)

8 y = observe(idx)

9

10 XtX = X[idx].T @ X[idx]

11 XtY = X[idx].T @ y

12

13 theta = np.linalg.lstsq(XtX + reg*np.eye(d), XtY , rcond=None)[0]

14 return Phi @ theta , XtX

15

16 T = 1000

17

18 lbda = G_optimal(Phi)

19 f_G_Phi , A = sample_and_estimate(Phi , lbda , T)

20 conf_G = np.sqrt(np.sum(Phi @ np.linalg.inv(A) * Phi ,axis =1))

21

22 lbda = np.ones(n)/n

23 f_unif_Phi , A = sample_and_estimate(Phi , lbda , T)

24 conf_unif = np.sqrt(np.sum(Phi @ np.linalg.inv(A) * Phi ,axis =1))

Use your implementation of G optimal from the previous problem and use the sample and estimate

function given above. Your tasks (create a legend for all curves, label all axes, and provide a title for
all plots):

(a) Plot 1: x-axis should be the x locations in [0, 1]. First line is the CDF of the uniform distribution
over X . The second line is the G-optimal allocation over X . Comment on the relative shapes,
and how this relates to the distribution over the x’s shown in the left-most plot above.

(b) Plot 2: x-axis should be the x locations in [0, 1]. Plot f star, f G Phi, f unif Phi.

(c) Plot 3: x-axis should be the x locations in [0, 1]. First line is the absolute value of f G Phi minus
f star, second line is f unif Phi minus f star, third line is

√
d/n, fourth line is conf G, fifth

line is conf unif. Comment on what these lines have to do with each other.

5.4 Linear bandits Implement the elimination algorithm (use your implementation of G-optimal design),
UCB, and Thompson sampling (see listings below). Use the precise setup as the previous problem and set

4

X ← {ϕi}ni=1. For T = 40, 000, on a single plot with t ∈ [T] on the x-axis, plot Rt = maxx∈X
∑t

s=1 f(x)− yt
with a line for each algorithm. Comment on the results–what algorithm would you recommend to minimize
regret?

Elimination algorithm
Input: T ∈ N
Initialize τ = 100, δ = 1/T , γ = 1, U = 1 (supposed to be an upper bound on ∥θ∗∥2), V0 = γI, S0 = 0,

X̂0 = X
for: k = 1, . . . , ⌊T/τ⌋

λ(k) = arg min
λ∈△X̂k

max
x∈X̂k

x⊤

 ∑
x′∈X̂k

λx′x′x′⊤

−1

x

Draw x(k−1)τ+1, . . . , xkτ ∼ λ(k)

For t = (k − 1)τ + 1, . . . , kτ , pull arm xt and observe yt = f(xt) + ηt where ηt ∼ N (0, 1)

Vk = Vk−1 +
∑kτ

t=(k−1)τ+1 xtx
⊤
t , Sk = Sk−1 +

∑kτ
t=(k−1)τ+1 xtyt, θk = V −1

k Sk

βk =
√
γU +

√
2 log(1/δ) + log(|Vk|/|V0|)

x̂k = argmaxx′∈X̂k
⟨x′, θk⟩

X̂k+1 = X̂k − {x ∈ X̂k : ⟨x̂k − x, θk⟩ ≥ βk∥x̂k − x∥V −1
k
}

UCB algorithm
Input: T ∈ N
Initialize δ = 1/T , γ = 1, U = 1 (supposed to be an upper bound on ∥θ∗∥2), V0 = γI, S0 = 0
for: t = 0, 1, 2, . . . , T − 1

βt =
√
γU +

√
2 log(1/δ) + log(|Vt|/|V0|)

θt = V −1
t St

xt = argmaxx∈X ⟨x, θt⟩+ ∥x∥V −1
t

βt

Pull arm xt and observe yt = f(xt) + ηt where ηt ∼ N (0, 1)
Vt+1 = Vt + xtx

⊤
t , St+1 = St + xtyt

Thompson sampling algorithm
Input: T ∈ N
Initialize γ = 1, V0 = γI, S0 = 0
for: t = 0, 1, 2, . . . , T − 1

θt = V −1
t St

θ̃t ∼ N (θt, V
−1
t)

xt = argmaxx∈X ⟨x, θ̃t⟩
Pull arm xt and observe yt = f(xt) + ηt where ηt ∼ N (0, 1)
Vt+1 = Vt + xtx

⊤
t , St+1 = St + xtyt

References

[1] Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design for transductive
linear bandits. Advances in neural information processing systems, 32, 2019.

[2] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

5

