Homework 2
CSE 541: Interactive Learning
Instructor: Kevin Jamieson
Due 11:59 PM on February 22, 2026

Hypothesis testing

1.1 Let X1, X5,... be a sequence of iid random variables. For j € {0,1}, under H; we have that X; ~ p;.
Let P;(-),E;(-) denote the probability and expectation under H;. Assume that the support of pg and p; are
equal and furthermore, that sup,csupport(po) g;—gg < k. Fix some ¢ € (0,1). The sequential probability ratio

test (SPRT) is known to have a near-optimal sample complexity of distinguishing between Hy and H; and
is defined as follows: define the likelihood ratio as

o p(Xa)

and keep taking samples until time 7 = min{¢ : L; > 1/6}. Show that Po(L, > 1/§) < §. Assume that

E;[r] < oo. Show that % < Eyr] < % where K L(pi|po) = [p1(x) log(g;gg)dx is the Kull-

back Leibler divergence between p; and py.

Linear regression and experimental design
2.1 Exercise 20.2 of [SzepesvariLattimore]

Pure-exploration Linear Bandits
The pure-exploration linear bandits game is as follows:

Input: Finite set X C R, § € (0,1)

Initialize: ¢t =1

while: player does not exit
Player chooses x; € X
Nature reveals y; = (0., z;) + n; where n; ~ N (0, 1)
tt+1

Output: a single arm 7 € X

Assume there exists an unique z, € X such that (x, —x,6,) > 0 for all z € X'\ .. There exists an algorithm

that outputs an € X such that P(Z = z.) > 1 — § after a number of pulls that scales like p, log(1/4) up to

constants and log factors, where

= inf max —”x _ $*||124()\)71
Px Aelx z€X (Ty —1,0,)2 7

A(N) = X cx Asxa’, and the infimum is over probability distributions over X [1]. This is known to be

optimal up to log factors.

3.1 Consider the standard multi-armed bandit game where X = {e; : i € [n]}. Assume that 6., >

0o > -+ > 0. ,. We argued in class that the sample complexity to identify the best arm (assuming it is

unique) scales like 7 2(9* 1 — 0..;)72. Show that there exists universal positive constants c1, ca such that

C1P% S 2122(*,1 9*,2) S C2 -

Non-parametric bandits

4.1 Let Fr;p be a set of functions defined over [0, 1] such that for each f € Fr;, we have f : [0,1] — [0,1] and
for every z,y € [0,1] we have |f(y)—f(z)| < Lly—=z| for some known L > 0. At each round ¢ the player chooses
an z; € [0,1] and observes a random variable y, € [0, 1] such that E[y,] = f.(z¢) where f. € Fr;p. Define

the regret of an algorithm after T steps as Ry = E {Zil falxs) — fu (a:t)} where z, = arg max,co 1] f«(2).

e Propose an algorithm, that perhaps uses knowledge of the time horizon T, that achieves Ry < O(Tz/ 3)
regret (Okay to ignore constant, log factors).

e Argue that this is minimax optimal (i.e., unimprovable in general through the use of an explicit example,
with math, but no formal proof necessary).

Experiments
5.1 Suppose we have random variables Z1, Z, ... that are iid with E[exp(\(Z; — E[Z1])] < exp(A\?/2). Then
for any fized t € N we have the standard tail bound

{G

On the other hand, as we showed in class, for any ¢ > 0 we have that

t 2
P<3t€N %ZZ Bz |>\/1+ \/QIOg 1/6) + log(to +1)> <5)
s=1

a*\)—l

iz _E[Z 21°gt(2/5)><5. (1)

t

which is a confidence bound that holds for all t € N simultaneously (i.e., not for just a fixed t) at the cost
of a slightly inflated bound. Note that because ¢ must be chosen in advance, it cannot depend on ¢, and
thus there is not a universally good choice. Let 6 = 0.05. Plot the ratio of the confidence bound of (2) to
(1) as a function of ¢ for values of 02 € {1076,107°,107%,1073,1072,107,10°}. What do you notice about
where the ratio is smallest with respect to o2 (if the smallest value is at the edge, your ¢ is not big enough-it
should be in the many millions)?

Suppose you are observing a stream of iid Gaussian random variables Z;, Zs, ... such that Z; ~ N (u,1).
An oracle has told you that |u| = 1072, and your job is to design an estimator using (2) to determine the
sign using as few observations as possible. How should you choose o7 If you're not sure, consider about how
many samples you’d expect this test to take before outputting an answer. Given this guess of the stopping
time, how should can you choose o to potentially minimize this stopping time?

5.2 G-optimal design This problem addresses finding a G-optimal design. Fix (z1,...,z,) C R% For any
matrix A, let f(A) = max;—1,, ||z;]|4-: and g(A) = —log(|A|) (these are the G and D optimal designs,
respectively). We wish to find a discrete allocation of size N for G-optimal design. Below are strategies to
output an allocation (I1,...,Ix) € [n]. Choose one strategy and one h € {f, g} to obtain samples from a
G-optimal design

1. Greedy For i = 1,...,2d select I; uniformly at random with replacement from [n]. For t = 2d +
1,..., N select I; = argmingciy, h(zpx) + Z 1 Tr, T, 7). Return (Iy,...,Iy).

2. Frank Wolfe For ¢ = 1,...,2d select I; uniformly at random with replacement from [n] and let
A2 — 2d Zz 1er,. For k =2d+1,...,N select Iy = argminje[y E)ah—)(\j‘”A:)\(k_l) and set A(F) =
(1 — ne)AE=D 4 nper, where n = 2/(k +1). Return (I,. .., Iy). You will need to derive the partial
gradients = ah(’\) . Hint?.

Let A = % va:l es,. We are going to evaluate f(X) in a variety of settings. For a > 0 and n € N let
z; ~ N(0,diag(c?)) with 07 = j~* for j = 1,...,d with d = 10. On a single plot with n € {10 +2'};°, on
the x-axis, plot your chosen method for a € {0,0.5,1,2} as separate lines with N = 1000.

5.3 Experimental design for function estimation.

Let f :[0,1]% — R be some unknown function and fix some locations of interest X = {z;}7 ;. We wish
to output an estimate f of f uniformly well over X' in the sense that maxgcx E[(f(ac) — f(x))?] is small.
To build such an estimate, we can make N = 1000 measurements. If we measure the function at location
X € X we assume we observe Y = f(X) + n where n ~ N(0,1). While you can choose any N measurement
locations in X you’d like (with repeats) you have to choose all locations before the observations are revealed.
This problem emphasizes that even though we’re studying linear functions and linear bandits in class, this
can encode incredibly rich functions using non-linear transformations.

= AMAM) T Thus, 0= 53-1 = (53:400) - AN+ AN - (52240071 Fh log(1X]) = (AT,

1. Linear functions Assume f(z) = (z,60.) for some 6, € R?. Propose a strategy to select your N
measurements and fit f. What guarantees can you make about max,ex E[(f(z) — f(z))?]? What
about the random quantity max,cx (f(z) — f(z))??

2. Sobolev functions For simplicity, let d = 1 and assume f(x) is absolutely continuous and fol |f/(z)]2dx <
co. This class of functions is known as the First-order Sobolev space?. Remarkably, this set of
functions is equivalent to a reproducing kernel Hilbert space (RKHS) for the kernel k(z,2’) = 1+
min{z,z’'}. While a discussion of all its properties are beyond the scope of this class (see [2, Ch.12]
for an excellent treatment) it follows that there exists a sequence of orthogonal functions ¢(x) :=

(¢1(x), p2(x), p3(x),...) such that each ¢y : [0,1] — R and

o for all 4, j € N we have fol ¢i(x)¢;(x)dx = B;1{i = j} for a non-increasing sequence {5;};
o k(z,2') = (p(z), d(a")) = 232, d()wdr ('),

e and any function f in this class can be written as f(z) = > arpgr(z) with > ro | a2 /B) < oco.

Because ¢(z) could be infinite dimensional, its not immediately clear why this is convenient. For finite
datasets though (i.e., n < co) there always exists a finite dimensional ¢ : X — RI*l where k(z;, z;j) =
(¢(xi),d(x;)). Precisely, if one computes the matrix [K]; ; = k(z;,z;) and K = Y _ vpv] e is the
resulting eigenvalue decomposition where {ey}; is a non-increasing sequence, then for all i € [n] we
have [¢;]; := [¢(;)]; := v; j,/€; and there exists a § € R™ such that

flai) = (0,0) = 0;vi /6.
j=1

Because the e; are rapidly going to zero, we usually do not include all n, but cut the sum off at some
d < n so that ¢; € R? and f(x;) ~ Z‘j:l 0;v; j /€. To summarize, for each i € [n] we have defined

a map x; — ¢; with ¢; € R? and f(z) =~ (¢;,0,) for some unknown 6,. Here is a piece of code that
generates our set X = {x;}7_, C [0, 1] and these features ® = {¢;}7, C R%:

import numpy as np

n=300

; X = np.concatenate((np.linspace(0,1,50), 0.25+ 0.01*np.random.randn(250)), 0)
4+ X = np.sort(X)

[

¢ K = np.zeros((n,n))

7 for i in range(n):

8 for j in range(mn):

9 K[i,j] = 1+min(X[i],X[j])

10 e, v = np.linalg.eigh(K) # eigenvalues are increasing in order
11 d = 30

12 Phi = np.real(v @ np.diag(np.sqrt(np.abs(e))))[:,(n-d)::]

Let’s define some arbitrary function and see how well this works!

1 def f(x):
2 return -x**2 + x*np.cos(8*x) + np.sin(15*x)

. f_star = f(X)

¢ theta
7 f_hat

np.linalg.lstsq(Phi, f_star, rcond=None) [0]
Phi @ theta

2This class is quite rich including functions as diverse as all polynomials a4 bz +ca8, trigonometric functions sin(ax)+cos(bz),
exponential functions e 4+ b*, and even non-smooth functions like max{1 — z, 3z}. However, it does not include functions like
1/z or /= because their derivatives blow up at z =0

Distribution of {x;}; Eigenvalue decay of K Best linear fit with basis @

10 M —— Truef'(x)
120 10% [\ . »
[Linear fix), d=30
100 os4 | | § A
100 / \ N A
- | \ I A [
\ {
£ 102 LR R Y A A
= | \ | {
g8 60 \ | Vo l'|
| | \
10~ 03 [\
40 i \
\ | LV}
] D Ii |
20 100 : \
0 ; . . ; : : : . : : ; :
000 025 050 075 100 0 100 200 300 000 025 050 075 100

x locations

Observe that there is nearly no error in the reconstruction even though we’re using a linear model in
R30. This is because we defined a very good basis ® C RY. We could have achieved the same result
by learning in kernel space and adding regularization (this is known as Bayesian experimental design).

Instead of choosing d we would have to choose the amount of regularization, so there is still always a
hyperparameter to choose.

Let’s get back to estimating f from noisy samples. Now that we have made this a linear estimation
problem, we are exactly in the setting of the first part of this problem. Consider the below listing:

1 def observe (idx):

2 return f(X[idx]) + np.random.randn(len(idx))

. def sample_and_estimate(X, 1lbda, tau):

5 n, d = X.shape

6 reg = le-6 # we can add a bit of regularization to avoid divide by O
7 idx = np.random.choice(np.arange(n),size=tau,p=1bda)

8 y = observe (idx)

9

10 XtX = X[idx].T @ X[idx]

11 XtY

12

X[idx].T @ y

13 theta = np.linalg.lstsq(XtX + reg*np.eye(d), XtY, rcond=None) [0]
14 return Phi @ theta, XtX

15

16 T = 1000

17

18 1bda = G_optimal (Phi)

19 £_G_Phi, A = sample_and_estimate (Phi, lbda, T)

20 conf_G = np.sqrt(np.sum(Phi @ np.linalg.inv(A) * Phi,axis=1))

21

22 1lbda = np.ones(n)/n

f_unif _Phi, A = sample_and_estimate(Phi, 1lbda, T)
@

onf_unif = np.sqrt(np.sum(Phi @ np.linalg.inv(A) * Phi,axis=1))

Use your implementation of G_optimal from the previous problem and use the sample_and_estimate

function given above. Your tasks (create a legend for all curves, label all axes, and provide a title for
all plots):

(a) Plot 1: x-axis should be the x locations in [0, 1]. First line is the CDF of the uniform distribution
over X. The second line is the G-optimal allocation over X. Comment on the relative shapes,
and how this relates to the distribution over the x’s shown in the left-most plot above.

(b) Plot 2: x-axis should be the x locations in [0,1]. Plot f_star, £ G_Phi, f unif Phi.

(¢) Plot 3: x-axis should be the x locations in [0, 1]. First line is the absolute value of £_G_Phi minus
f_star, second line is f unif Phi minus f_star, third line is \/d/n, fourth line is conf_G, fifth
line is conf unif. Comment on what these lines have to do with each other.

5.4 Linear bandits Implement the elimination algorithm (use your implementation of G-optimal design),
UCB, and Thompson sampling (see listings below). Use the precise setup as the previous problem and set

X {¢:}1,. For T = 40,000, on a single plot with ¢ € [T'] on the x-axis, plot R; = maxzex >y f(2) — ys
with a line for each algorithm. Comment on the results—what algorithm would you recommend to minimize
regret?

Elimination algorithm

Input: T e N
Initialize 7 = 100, 6 = 1/T, v =1, U = 1 (supposed to be an upper bound on ||0.]2), Vo = vI, So = 0,
Xy =X
for: k=1,...,|T/7|
-1
AF) = arg min max " Z Apr'z! T x
)‘EAz?k TE Xy, =
x’ X
Draw T(x—1)rq1y-- s Thr ~ A(F)

For t = (k—1)7 +1,..., k7, pull arm z; and observe y; = f(x;) + n; where n; ~ N(0,1)
Vi=Via + Zfl(kq)rﬂ v/, Sk = Sp-1 + Zfl(kq)rﬂ zeyr, O = Vi S
Bk = VAU + +/210g(1/8) + log([Vi|/[Vol)

Ty = argmax,, 3 (@', 0r)
Xopr = X —{w € X s (Tp — 2, 0k) = BilTn — 21}

UCB algorithm

Input: T €N
Initialize 6 = 1/T, v =1, U = 1 (supposed to be an upper bound on ||04]|2), Vo =~I, So =0
for: t=0,1,2,...,T -1

B = VAU + /210g(1/6) + log(|V4]/[Vol)

0, =V, 1S,

xy = arg maxgex (@, 04) + ||x||\/;16t

Pull arm z; and observe y; = f(z;) + 1; where 1, ~ N(0,1)

Vigr = Vi + iz, i1 = S+ zeye

Thompson sampling algorithm

Input: TeN
Initialize v =1, Vy =~I, Sy =0
for: t=0,1,2,..., T —1
0, =V, 1S,
O ~ N (0, V1)
Ty = argmaxmeX@,gt)
Pull arm z; and observe y; = f(z;) + 1 where n, ~ N (0,1)
Vi1 =Vi+), Sepr = Se+ 2y

References
[1] Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design for transductive
linear bandits. Advances in neural information processing systems, 32, 2019.

[2] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge University
Press, 2019.

