Homework 1

CSE 541: Interactive Learning
Instructor: Kevin Jamieson

Due: 11:59 PM on January 27, 2026

Problem 1 — Gradient Descent and Exponential Weights via Regularization

In this problem, we will explore how gradient descent and the exponential weights algorithm can both be
derived as instances of a general framework: minimizing a linearized loss plus a regularization term. Let IC
denote a convex decision set (e.g., the probability simplex).

Let f1, fo, ..., fr be a sequence of convex loss functions. Define g; = V fi(z;) as a subgradient of f; at the
point z;.!

(a) Let £ C R? be a convex and compact set and define Ix(y) = argmingex ||y — z||2. Show that the
standard online gradient descent (OGD) update:

Tt41 = Ik (33t - 7)9:&)

can be written equivalently as:

Tyy = argmin{ ng, = + le — 4|3
ze t 2

That is, the OGD update is the solution to minimizing the linearized loss plus an ¢y regularization
centered at ;.

Hint: Complete the square or derive the optimality condition.
(b) Now suppose the domain K is the probability simplex:
d
Ad:{xeRd:ziEO,Zzizl}
i=1

Instead of /5 regularization, consider the KL divergence regularizer:

d
Dxr(z||x:) = Z x; log
i=1

T
Tt,i

Show that the update rule
Tyl = arg min {ng:x + DKL(:cht)}
reAd

corresponds to the exponential weights update:
Teg1,i X xpiexp(—nge ;) fori=1,...,d

Hint: Use Lagrange multipliers to enforce the simplex constraint.

1If you’re not familiar with the concept of subgradient, you may simply assume f;’s are differentiable and g¢’s are their
gradients.

Problem 2 — The Doubling Trick for Anytime Exponential Weights

The exponential weights algorithm (also known as Hedge) for the expert setting typically requires knowledge
of the total time horizon T in order to set the learning rate:

_ /8logd
T=VTT

Regrety < +/T'log(d)/2

where d is the number of experts. But in practice, we often do not know T in advance. One approach
to overcome this limitation is the doubling trick, which allows us to construct an anytime version of the
algorithm.

Suppose we divide time into epochs of exponentially increasing length: epoch 1 lasts for 1 round, epoch 2
lasts for 2 rounds, epoch 3 lasts for 4 rounds, epoch 4 for 8 rounds, and so on. That is, epoch m lasts for
2m~! rounds. Let T}, = 2™~ ! be the length of epoch m, and define the learning rate in epoch m as

_ /8logd
nm B TW’L ’

(a) How many total epochs M will be run before reaching a time horizon of T? Express M in terms of T

to achieve the standard regret bound:

(b) For each epoch m, write the regret bound for that epoch using the Hedge algorithm with learning rate
Nm -

(¢) Sum the regret over all epochs to obtain a bound on the total regret up to time 7. Show that the total

regret satisfies:
Regret < C+/Tlogd

for some small constant C' (specify the value you obtain).

Problem 3 — Exponential Weights on Real Stock Data

In this problem, you will use the yfinance Python package to download real stock market data and apply
the exponential weights algorithm (Hedge) in two settings:

1. A standard setting where each asset is treated as an expert (Part (a)),
2. A richer setting where each expert is a portfolio sampled from the simplex (Part (c)).

As a first step, use the yfinance package to download daily adjusted close prices for the seven given stocks
over a one-year period. Then, the variable returns gives the multiplicative daily returns, which is defined
as

where P;; is the price of stock i on day ¢ and D, ; is the dividends of stock i on day ¢.> Please consult
the yfinance API and/or an LLM to make sure you are pulling data that reflects the total return (price
movement and dividend). Use the following stock tickers: ’AAPL’, 'MSFaZT’, 'GOOG’, "AMZN’, '"META”,
'NVDA’, 'BIL’, 'BND’, ’GLD’ over the last year.

2Tt will be better to save the downloaded data locally in case you met RateLimitError after multiple runnings of this code.

Total Return (Price + Dividends Reinvested)

—— AAPL

—— MSFT A/ \
—— GOOG JaN, A

— AmzZN AN WJ

M
— META A Y
— 8L i ﬂfﬂ/\" v n e VAR oo
BN N g 52 P
. » p Wv

«+ Portfolio

109

Normalized Total Return

T T T T T T T T T T T
2022-01 2022-05 2022-09 2023-01 2023-05 2023-09 2024-01 2024-05 2024-09 2025-01 2025-05
Date

Figure 1: An example plot of what we’re looking approximately for. Total return of individual stocks and
equally weighted daily rebalanced portfolio (log scale).

(a) Let each of the d assets be an expert. Implement the Hedge algorithm using

Ti41,i X Tt 4 - €XP (n - log Tt,i)

with different values of n € {0.1,0.5,1,2,5}.

Your cumulative wealth and the wealth of the best fixed asset in hindsight are respectively defined as
T T
Wr = tl;[l x;rrt and Wyp = rllé?j](tl;[l Tt
Then, for each 7, report the regret: log Wy — log Wr.
(b) As a reflection, How does 1 impact performance?

(c¢) Instead of treating individual assets as experts, suppose each expert is a fixed portfolio over the assets
(i.e., a point in the simplex). Since there are infinitely many such portfolios, we can randomly sample
N of them uniformly from the simplex. Now, your task is to implement the following procedures:

e For various values of N € {10, 50,200, 1000}, generate N portfolios {v™), ..., v(M} € A4 by sam-
pling uniformly from the simplex.

e Treat each sampled portfolio as an ”expert.” On day ¢, observe the return vector r;, and for each
expert v\9), compute the expert’s return: v r,.

e Try multiple values of € {1, 10,50, 100,200} and run exponential weights:

Weg1,j X Wy j - €XP (77 . log(v(j)Trt))

Normalize the weights and play the aggregate portfolio:

N
o E wy; e
j=1

e For each configuration of n and N, track and store the cumulative wealth over time:

t
W, = H a?;rrs
s=1
Then, report the following in your submission:

(i) For each n and N, report the regret relative to the best sampled portfolio:

T
Regret = log | max DTy | = log W-
g g (je[N]z];[l : g Wr

(ii) On the same axes, plot the following curves over time:
e Your algorithm’s wealth (with your choice of n and N): W;.
e The wealth of each individual asset: Wt(i) = Hizl rs,; for all i € [d].3
e The wealth of the best sampled portfolio: WP*" = max ey [T, oD 7.

e Uniform allocation wealth: Wpniferm — [T° <l Zd)

s=1 \d 2ui=1Ts;i
You need to produce two plots for this part. The one is in linear scale, in which the raw wealth is
plotted, and the other is in log scale, in which the log wealth is plotted.

(d) Analyze the above results by answering the following questions:

(i) How does increasing N affect your regret and wealth?
(ii) How does your final wealth in this setting compare to the best individual asset in hindsight?

(iii) Discuss the trade-offs between computational cost (large N) and expressivity (more diverse port-
folios).

Problem 4 — The Upper Confidence Bound Algorithm

Consider the following algorithm for the multi-armed bandit problem.

Algorithm 1: Upper Confidence Bound (UCB)

Input: Time horizon T, 1-subGaussian arm distributions P, --- , P,, with unknown
means i1, , ity Such that Exp, [X] = u;

Initialize: Let 7;(¢) denote the number of times arm ¢ has been pulled up to
(inclusive) time t and let T; = T;(T'). Pull each arm once.

fort=n+1,---,T do

Pull arm [; = argmax;_; ... ,, i 1, (t—1) + \/%{"32) and observe draw from P;
Let 11,1,y be the empirical mean of the first T;(t) pulls.

In the following exercises, we will compute the regret of the UCB algorithm and show it matches the regret
bound from lecture. Without loss of generality, assume that the best arm is 1. For any i € [n], define the

sub-optimality gap A; = py — p;. Define the regret at time T as Ry = E[Zle =] = >0 AE[T).
(a) Consider the event
N 2log(2nT?
e=N N {ui,s—m|< ()}
i€[n] s<T

Show that P(£) > 1 — .

3Consider using arguments linestyle=’--’ and linewidth=0.5 for these curves to make plots look cleaner.

(b) On event &, show that T; < 1+ HE& T for j £ 1,

(c) Show that E[T;] < %@4—2. When n < T, conclude by showing that Ry < Y7, (%EQT) + 2Ai).

Problem 5 — Empirical Experiments of UCB, TS and ETC

Implement UCB, Thompson Sampling (TS), and Explore-then-Commit (ETC). The TS algorithm and ETC
algorithm are given below.

Algorithm 2: Thompson Sampling (TS)

Input: Time horizon T'
Assume the prior distribution py over R™ is known and that 6* ~ pg (so that
0* € R™). Assume each arm shares the same conditional likelihood function such
that an observation X from arm i follows X ~ f(-|6F) (e.g., X ~ N(07,1)). Let
o0, X1y 15, I, Xp, 1) Hi:l f(X71..5101.)po(0) be the posterior distribution on
0* at time t.
fort=1,---, T do Sample) ~ p;, ; (Note: #) € R™)

Pull arm I; = argmax;,, 99 to observe Xy, +

Compute exact posterior update p;

Algorithm 3: Explore-then-Commit (ETC)

Input: Time horizon T, m € N, 1-sub-Gaussian arm distributions Py, --- , P, with
unknown means fiq, -, iy
fort=1,---,T do

If t <mn, choose I; = (t mod n)+ 1

Else, I; = argmax; fi; m

Let P, = N(p;,1) for i = 1,...,n. For Thompson sampling, define the prior for the ith arm as N'(0,1) and
the likelihood function as f(-|u;) = P;.

(a) Let n =10 and p; = 0.1 and pu; = 0 for ¢ > 1. On a single plot, for an appropriately large T to see
expected effects, plot the regret for the UCB, TS, and ETC for several values of m.

(b) Let n =40 and puqy =1 and p; =1 —1/+/1 — 1 for i > 1. On a single plot, for an appropriately large T
to see expected effects, plot the regret for the UCB, TS, and ETC for several values of m.

