Online Convex
Optimization




Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorithm! Solution: relax the objective.



Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorithm! Solution: relax the objective.

T
Instead of l;zrlea%; 1{he(z:) # ye } — 1{h(xs) # v}

T

Weuse max Y L(hs, (x4, y:)) — £(h, (xs,y:)) with FH convex

h
cH =

Example: Linear classification takes # C R% and £(h, (x4, 1)) = log(1 + exp(—y:h ' z}))



Convex surrogate loss functions

T

Goal: max O(he, (e, yt)) — £(h, (T¢,y¢))  with H  convex

h
cH P

Online gradient descent

Input: H C RY convex loss function ¢, step size n > 0
Initialize: Choose any hy € H
fort=1,2,...

Player plays h; € 'H

Adversary simultaneously reveals (¢, y;)

Player pays loss ¢;(h:) := £(hs, (¢, Yt))

Player updates w1 = gy (wg — nVply(hy))

Theorem Online gradient descent satisfies for any h, € H

S Uty (e, e)) — Llhs, (e, 50)) < Vel 4 25T 1040, ()13

if maxpey ||h«|l2 < R and £(-) is G-Lipschitz then regret< RB\T



Proof

Theorem Online gradient descent satisfies for any h, € H
Sty Uhe (e, 91)) — P, (e, ) < L2l 4+ 25T 10504 ()13




Proof

Theorem Online gradient descent satisfies for any h, € H
Sty U, (e ye)) — Ll b,y (0, 90)) < Ll2 4 2578 19,84 (hy) |2

|hesr = Palls = Ta(Pey1) — T (ha) I3

= |y (he — nVL:(he)) — Tpg(hae) I3

< ||kt — VL (he) — hall3

— ||he — hall2 — 20V (he) T (he — ha) + 72| VL (Ry) |12
< |lhe = hall3 = 2n(Le(he) — £e(ha)) + 02|V (Re) |13
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Universal Portfolio
Optimization




Universal Portfolio Optimization

Given a collection of stocks, let the ith stock have price S,(i) over time .
You start with v, dollars and fractionally invest it into d stocks according to p; € /\ ;.

d
Your portfolio at time 2 is worth v, := Z v p(D)r(i) = v{{py, ry) dollars
i=1

S+1(1)  price of GOOG at time t+1

where r,(1) = . _ :
S,(1) price of GOOG at time t



Universal Portfolio Optimization

Given a collection of stocks, let the ith stock have price S,(i) over time .
You start with v, dollars and fractionally invest it into d stocks according to p; € /\ ;.

d
Your portfolio at time 2 is worth v, := Z v p(D)r(i) = v{{py, ry) dollars
i=1
S+1(1)  price of GOOG at time t+1
S,(1) - price of GOOG at timet

where r,(1) =

Classical Portfolio Theory (Markowitz 1952): Assume returns r, € R} are IID with mean
u = E[r,] and covariance X = E[(r, — p)(r, — 1) ']. The for a return target 7 > 0 solve

min p'Yp  subjectto plu>7
peN\,

In practice, estimate u, 2 from data. What could possibly go wrong?



Universal Portfolio Optimization

Trump administration
announces Tariffs
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Returns are not an |lID stochastic random walk!

Can we model the stock market as an online learning problem and develop an
algorithm that is robust to even adversarial returns?



Universal Portfolio Optimization

You start with v, dollars and fractionally invest it into d stocks according to p; € /\;

d
Your portfolio at time 2 is worth v, := 2 vip(@)r(i) = v{{(py, ;) dollars
i=1

price of GOOG at time t+1

where r,(i) =
price of GOOG at time t

T—1
After 1" times your portfolio is worth v = V1H (D) 1)

=1



Universal Portfolio Optimization

You start with v, dollars and fractionally invest it into d stocks according to p; € /\;

d
Your portfolio at time 2 is worth v, := 2 vip(@)r(i) = v{{(py, ;) dollars
i=1

price of GOOG at time t+1

where r,(i) =
price of GOOG at time t

T—1
After 1" times your portfolio is worth v = V1H (D) 1)
t=1

Vr
Goal: Maximize your return —, equivalent to log 2 log{p,, ;)
Vi

Regret= max ) log(p,r,) — ) log(p,r,)
pEAdZ &P, 1, Z E\Pp T}



Universal Portfolio Optimization

Regret = max log(p, r log(p,, r
peAdZ g(p, 1) — 2 &(ppr,)

The SP500 (VOO) is an index that weights 500 stocks by their market capitalization.

An alternative index (RSP) weights these 500 stocks uniformly p = (%, ens % :
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Universal Portfolio Optimization

Regret = max ) log(p,r)— ) lo ( ,r)
peAdZ g\p, 1 Z E\Wr T;

for t = 1, 2, . _ {Uj()") i
Player picks p; € A\g Coners
Adversary simultaneously reveals r; € Ri
Player pays loss 4:(p:) = — log{ps, rt)

Exponential weights algorithm
Initialize: wy = (1,...,1) € R¢

fort=1,2,... ) w | o J
Player plays p:(i) = wi(2)/ ;-1 we(J) “ el
Adversary simultaneously reveals convex loss 44(-) ¢
Player pays loss £;(p¢) ,Z

Player updates weights w;11(¢) = we(7) exp(—nbs(e;))



Ty 2 L nev TT e
Universal Portfolio Optlmlzatldri d e

Regret = max log(p, r lo T
m AdZ &(p, 1) — Z &(py 1)

Competes with the single
best stock in hindsight!

T—1
Theorem: With 7 = 1 and [(p) = — log(p, r,), max Z log(e;, r,) — log(p,, r,) <log(d)

=1

Exponential weights algorithm
Initialize: w; = (1,...,1) € R¢
fort=1,2,...
Player plays p:(i) = w(7)/ Z _Lwe(J)
Adversary simultaneously reveals convex loss £;(-)
Player pays loss £;(p;)
Player updates weights w;11(¢) = we(7) exp(—nbs(e;))



Proof

T—1
Theorem: With y = 1 and [(p) = — log(p, r,), max Z log(e;, r,) — log(p,, r,) <log(d)

=) log(p;,7e) — maleog e;, ) — log(pe, ) < log(d)
t=1 i€|d]



Universal Portfolio Optimization

Regret = max ) log(p,r log(p,, r
m AdZ &(p, 1) — Z &(py 1)

Competes with the single
best stock in hindsight!

T—1
Theorem: With 7 = 1 and L(p) = — log(p, ), max Z log(e;, r,) — log(p,, r,) <log(d)

=1

s competing against single best stock a good benchmark? Consider just 2 stocks:

r(1) = (2, = 2,22, 2

Q) =(3.2 5.2 5 2...)

L . L 1/2 . 1\2 T2
[T =1 [T¢| 5] = (@7 +1)
=1 =1

How do we compete with any p € /\ ;2

Example due to Elad Hazan'’s Introduction to Online Convex Optimization
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Continuous
Exponential weights

W



Continuous Exponential Weights

Fix a convex set &f and a convex loss function [( - ,2) : &/ —> R foreachz € Z.

Theorem: |
T—
d log(T T
Forany# > Oand (-, -) € [0,1] we have max 2 l(a,z,)—(a,z,) < ed) + 1 + 1
acg =1 n 8
Continuous Exponential weights algorithm < I —
.. . . L = J d T-109 (T)
Initialize: wi(a) =1 for all a € A
fort=1,2,...

we(a)
wea Wt(a)da

Adversary simultaneously reveals z; and convex loss £(-, z;)
Player pays loss £(a¢, 2t)
Player updates weights w;y1(a) = we(a) exp(—né(a, 2t))

Player plays a; = E g~.p,|A] where p,(a) =



Continuous Exponential Weights

1 * . T
Let v = 7, a* € argminge 4 ) ;_; 4(a, 2t),
Wry1 Jocawr+1(a)da Wi
log W, log ( fae_A Tda log W, =
Jaenr, wr1(a)da -
> log -
faE.A 1da
<
| faeN7 exp < N> —14(a, zt)> da =
=lo
i faG.A ld <
(e ((n S €A - e + o) da))
-8 faeA 1da
o1 faG.A €xp <_77 25:1 £((1—~)a* + va, Zt) v4da
©8 faeA 1da

dda

faeA 1da

(faE.A exp (_77 Zle (£(a*, zt) + v€(a, 2t))
> log

=dlogy—n Y {(a*,z) —mT
t=1

Proof due to Sebastien Bubeck’s Introduction to Online Optimization

NoA(1 = y)a* +7a,a € A}

log ( ’ th(?) exp(—né(a, zt))da)

wi(a)

t

log (Eexp(—nf(A, z;)) where P(A =a) =

2

—nEL(A, z;) + % (Hoeftding’s lemma)
2

—nl(EA, z;) + % (Jensen’s inequality)

n?
—nl(ag, z¢) + R




Continuous Exponential Weights

Fix a convex set &f and a convex loss function [( - ,2) : &/ —> R foreachz € Z.

Theorem:
T—1

With n = 1 and l(a, z) = — log{a, z), max Z log{p,r,) —log(p,, r;,) < 1+dlog(T)

pe dtl

Continuous Exponential weights algorithm

Initialize: wi(a) =1 for all a € A
fort=1,2,...
Player plays a; = E g~.p,|A] where p,(a) =

we(a)
wea Wt(a)da

Adversary simultaneously reveals z; and convex loss £(-, z;)
Player pays loss £(a¢, 2t)
Player updates weights w;y1(a) = we(a) exp(—né(a, 2t))




Continuous Exponentlal Welghts
Let v = 7, a* € argminge 4 S L, z), Nof(1—7)a* +va,a € A}

Wri1 Jaea wr+1(a)da -
1 —1
= w - ( Joea 1da log W‘;H — Z log WI;‘l
1
log (faeA exp(—n S, £(o, zt»da) =t
B 1d
fae.A a — Z]og (/ w‘t)[(/a) eXp(—TIE(CL,Zt))da)
_1 fae.A HZ=1<CL, zt>da t=1 A t
- faEA lda T
= » log (Ea~p,[exp(—nf(A, 2
1o [ JoeaTTizs (o 20)de D108 (B, [op(—nt(4, 20)
fae.A lda T
> ] fme/\/7 Ht:1<a7 zt>da, = ; log(at, Zt>
- faeA 1da -
> log (fam [Tim (1= )a” +a, zt>da)
N faeA 1da
= log fae.A 7d Hf:1<(1 —v)a* 4+ ya, z;)da
faEA 1da
faG.A ’yd ((1 o 7) Hf:1<a*, zt> + Hle<a, Zt>> da
= log [ -4 1da
acA

> —dlog(1/v) + log(1 — v —I—Za 2t)

Proof due to Sebastien Bubeck’s Introduction to Online Optimization



Minimax Analysis
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Minimax Analysis

Consider a two-player zero-sum game, like matching pennies:

— [ !

o1 0O I\\—L
4 - -
"\‘l | 6 | l
/)/ ®




Minimax Analysis

The first player wants to minimize, the second player wants to maximize.

They achieve = min max L(a, 7)
acd z€F

But this fails to capture the simultaneous play. Rewrite as

min max E,_ [L(a,7)]
qu&l €ZL



Minimax Analysis

The first player wants to minimize, the second player wants to maximize.

min max E E [L(ay,zy,a5,2)]
a~ ar~q(z 1, <1, A9, 2
QDHEN g 21:20EE : Cl‘(u) g qz( 14q) -_—

We can think of online learning as a two-player game

2 2
L(ay, 21, Gy, 2y) = Z £(a,z,) — ailgy Z £(a*, z,)
=1

=1

t |




Minimax Analysis

The first player wants to minimize, the second player wants to maximize.

Qyoe o7 2o+ I7EZE
‘,._I

%obli\/(&y, 2") ‘= min max [E ai~qi,. . dp~dr [Z f(dta Z;) lnfz Lﬂ(a* Zt) .Z 2 (e/,(,ZB
=1

T
R, Z)= sup E, [sup Z f(a,zt)et] e, € {—1,1} with equal probability

Z],...,ZTEZ ClEﬂ [:1

TL A4 2)= La, 2>
Riu2 <\ ¢ 2R(4, 2)



