Exponential weights

W



Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.
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Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.
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2t(1) = |be(2) — yel
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fort = 1, 2, “ e True temperature

Player picks p; € Aq and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1]¢
Player pays loss (pt, z:) = E|2:(1)]



Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.

=1 1=2 1=3 1=4 1=5

Expert 1
Expert 2
Expert 3 . .

2t(1) = |be(2) — yel
IIlletI d eXpertS ith expert’s [:ediction \
fort = 1, 2, “ e True temperature

Player picks p; € Aq and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1
Player pays loss (p:, z:) = E[z:(13)]

]d

Goal: Minimize  max > (p, z) — (e, )
regret wrt best  i€ld]



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Input: d experts

fort=1,2,...
Player picks p; € Ag and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p:, z:) = E[z:(13)]

Exponential weights algorithm

Input: d experts, n > 0

Initialize: wy €[1,...,1]" € R?

fort=1,2,...
Player plays I; ~ p; where p;(i) = wy(i)/ S5_, we(5)
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p¢, z¢) = E[z:(1¢)]
Player updates weights w;11(7) = we (i) exp(—nz¢(1))



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)

regret wrt best i€ld] 1]
Exponential weights algorithm
Input: d experts, n > 0 N
2 [f
Initialize: wy € [1,..., l]T c R¢ C-ZXP(/?> [ £

fort=1,2,...
Player plays I; ~ p; where p:(i) = w¢()/ Z _wi(J)
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p;, z¢) = E[z(1})] (1 +#)
Player updates weights w;1(3) = w;(7) exp(—nz:(2))

Theorem: If z; € [0,1]¢ Vt, and I;, p; are chosen by exponential weights then
log(d) | T'n

max;cidj E [ZZ:1<It>zt> — (e, Zt)] — MaX;c(d] 23:1<pt,zt>—<ei,zt> < n 18

| 8log(d
Choosing = Oi( ) gives regret bound of /7T log(d)/2



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Exponential weights algorithm, proof: Let W, = Zle wy (1) so that



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Exponential weights algorithm, proof: Let W, = Zle wy (1) so that

W 4%
log V[j;jl = Zlog ‘;t_l log Wv[ic-jl > log wT‘j{/ll(Z)

t=1
T T

=3 nog (Y Ll = —log(d) + log ([ exp(-n=(0)))

- t=1 ° = W t=1
T d . : T

= Y tog (Y DRl 0y — “log(d) — 3 0=l

Lemma (Hoeffding’s Lemma). Let X be a real-valued random variable such

d
: : d let E[X] = . Then, f R,
- Z log (Zpt (7) eXP(_UZt(Z))) that X € [a,b] almost surely, and let E[X] = u. Then, for any ¢ €

> 2(h N2
i=1 B [et(X—u)] £ exp (t (b—a) )
d 8

T T T
<N B[z (1)) + /8 — > nE[z(I)] — ) nz(i) <log(d) + n*T/8

t=1 t=1 t=1



Convexity

- When is an optimization (or learning) easy/fast to solve?

UNIVERSITY of WASHINGTON




What is a convex set?

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

(1—-A)x+ Ay



What is a convex set?

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]




What is a convex function?

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 =N f(z) + \f(y)
for all z,y € RYand A € [0, 1]

/o) (1 =)f(x) + 4 (y)

):C (1:—/1)x+/1y )7



What is a convex function?

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 =N f(z) + \f(y)
for all z,y € RYand A € [0, 1]

J)

N
N\ |~/




Convex functions and convex sets?

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

A function f: R% — R is convex if f((1 — XNz + Ay) < (1 =N f(z) + M f(y)
for all z,y € R%and A € [0, 1]

A function f : R — R is convex if the set {(z,t) € R4 : f(z) <t} is convex

Graph of fid defined as {(x,?) : f(x) = t}
Epigraph of fis defined as {(x, ) : f(x) <t}
JX) J(x)

S




More definitions of convexity

A set K C RY is convex if (1 — ANz + Ay € K for all z,y € K and X € [0, 1]

A function f : R? — R is convex if the set {(z,t) € R4 : f(z) <t} is convex

A function f:R? — R that is differentiable everywhere is convex if

f(y) = f(z) + Vf(2) " (y — ) for all z,y € dom(f)

AN

J)




Why do we care about convexity?

Convex functions
- All local minima are global minima

- Efficient to optimize (e.g., gradient descent)

Convex Function Non-convex Function

N

We only need to find a point with Vf(x) =0, For non-convex functions, a stationary point

which for convex functions implies that it is with Vf(x) = 0 could be a local minima,
a local minima and a global minima a local maxima, or a saddle point




Online Convex
Optimization




Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorith olution: relax the objective.




Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg minj,cy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute! ﬁ( 11 () 'ff )
£l )8

So it seems we have no practical algorithm! Solution: relax the objective.

T
Instead of l;znea%; {hi(zs) # ye } — L{h(xs) # ys}

T

Weuse max Y L(hs, (x4, y:)) — £(h, (xs,y:)) with FH convex

h
cH =

Example: Linear classification takes # C R% and £(h, (x4, 1)) = log(1 + exp(—y:h ' z}))



@3 ..... ° 2 “ (X) a-'jmm /‘j'z’l/z_

] ye K
Convex surrogate loss functions

T

Goal: II?Ea% O(he, (e, yt)) — £(h, (T¢,y¢))  with H  convex
t=1

Online gradient descent

Input: H C RY convex loss function ¢, step size n > 0
Initialize: Choose any hy € H
fort=1,2,...

Player plays h; € 'H

Adversary simultaneously reveals (¢, y;)

Player pays loss £;(h:) := £(hs, (¢, Yt))

Player updates WH = HH({qt — NVl (he))

Theorem Online gradient descent sati ny /. €
hal3 T
S Uk, (e, e)) — Llhs, (e, 50)) <Vla 4 25T V4 (R 13

—

if maxpey ||h«]l2 < R and ¢(-) is G-Lipschitz then regret#‘ REVT




R* "’z
Z 7?2 6°T

Theorem Online gradient descent satisfies for any h, € H
Sty Uhe (e, 91)) — P, (e, ) < L2l 4+ 25T 10504 ()13




Proof

Theorem Online gradient descent satisfies for any h, € H
Sty U, (e ye)) — Ll b,y (0, 90)) < Ll2 4 2578 19,84 (hy) |2

|hesr = Palls = Ta(Pey1) — T (ha) I3

= |y (he — nVL:(he)) — Tpg(hae) I3

< ||kt — VL (he) — hall3

— ||he — hall2 — 20V (he) T (he — ha) + 72| VL (Ry) |12
< |lhe = hall3 = 2n(Le(he) — £e(ha)) + 02|V (Re) |13

E

he — he hort — hel?
(et(ht Z ” t ”2 ” t+1 ”2 +Zg”vgt(ht)”§
t=1

2n

~
I
[y

h h
< ” 1~ ”2 Z ||V£t ht ”2



Universal Portfolio
Optimization




Universal Portfolio Optimization

Given a collection of stocks, let the ith stock have price S,(i) over time .
You start with v, dollars and fractionally invest it into d stocks according to p; € /\ ;.

d
Your portfolio at time 2 is worth v, := Z v p(D)r(i) = v{{py, ry) dollars
i=1

S+1(1)  price of GOOG at time t+1

where r,(1) = . _ :
S,(1) price of GOOG at time t



Universal Portfolio Optimization

Given a collection of stocks, let the ith stock have price S,(i) over time .
You start with v, dollars and fractionally invest it into d stocks according to p; € /\ ;.

d
Your portfolio at time 2 is worth v, := Z v p(D)r(i) = v{{py, ry) dollars
i=1
S+1(1)  price of GOOG at time t+1
S,(1) - price of GOOG at timet

where r,(1) =

Classical Portfolio Theory (Markowitz 1952): Assume returns r, € R} are IID with mean
u = E[r,] and covariance X = E[(r, — p)(r, — 1) ']. The for a return target 7 > 0 solve

min p'Yp  subjectto plu>7
peN\,

In practice, estimate u, 2 from data. What could possibly go wrong?



Universal Portfolio Optimization

Trump administration
announces Tariffs

580.00 V00 Price X
560.00

540.00

52000
500,00

480,00
460.00
440,00
42000
400.00
380,00

360.00

340.00 l

320,00 D] D D | D] D] D] D] (D] D] D] D] D
Apr 2022 Jul 2022 0ct 2022 Jan 2023 Apr 2023 Jul 2023 0ct 2023 Jan 2024 Apr 2024 Jul 2024 Oct 2024 Jan 2025

Returns are not an |lID stochastic random walk!

Can we model the stock market as an online learning problem and develop an
algorithm that is robust to even adversarial returns?



Universal Portfolio Optimization

You start with v, dollars and fractionally invest it into d stocks according to p; € /\;

d
Your portfolio at time 2 is worth v, := 2 vip(@)r(i) = v{{(py, ;) dollars
i=1

price of GOOG at time t+1

where r,(i) =
price of GOOG at time t

T—1
After 1" times your portfolio is worth v = V1H (D) 1)

=1



Universal Portfolio Optimization

You start with v, dollars and fractionally invest it into d stocks according to p; € /\;

d
Your portfolio at time 2 is worth v, := 2 vip(@)r(i) = v{{(py, ;) dollars
i=1

price of GOOG at time t+1

where r,(i) =
price of GOOG at time t

T—1
After 1" times your portfolio is worth v = V1H (D) 1)
t=1

Vr
Goal: Maximize your return —, equivalent to log 2 log{p,, ;)
Vi

Regret= max ) log(p,r,) — ) log(p,r,)
pEAdZ &P, 1, Z E\Pp T}



Universal Portfolio Optimization

Regret = max log(p, r log(p,, r
peAdZ g(p, 1) — 2 &(ppr,)

The SP500 (VOO) is an index that weights 500 stocks by their market capitalization.

An alternative index (RSP) weights these 500 stocks uniformly p = (%, ens % :

2400 9
econbrowser.com
S&P 500, Log level
2,000 1| monthly avg. [right scale] -8
1,600 - e
1,200 ~ - 6
7
800 ('” L 5
\ % MM'"
” /“"*fw\f/\ v"d\"
400 -_,V/’ wf Level s
[left scale]
0 I | | I | L) I | I | | | 3




Universal Portfolio Optimization

Regret = max ) log(p,r,) — ) log(p,r,)
peAdZ g\p, 1 Z E\Pp Ty

fort=1,2,...
Player picks p; € A\g
Adversary simultaneously reveals r; € ]Rﬁir
Player pays loss ¢;(p:) = — log(p¢, r¢)

Exponential weights algorithm
Initialize: wy = (1,...,1) € R¢
fort=1,2,...
Player plays p:(i) = w(7)/ Z;-lzl wy(7)
Adversary simultaneously reveals convex loss £;(-)
Player pays loss £ (p;)
Player updates weights w;11(¢) = we(7) exp(—nbs(e;))



Universal Portfolio Optimization

Regret = max ) log(p,r log(p,, r
m AdZ &(p, 1) — Z &(py 1)

Competes with the single
best stock in hindsight!

T—1
Theorem: With 7 = 1 and [(p) = — log(p, r,), max Z log(e;, r,) — log(p,, r,) <log(d)

=1

Exponential weights algorithm
Initialize: w; = (1,...,1) € R¢
fort=1,2,...
Player plays p:(i) = w(7)/ Z _Lwe(J)
Adversary simultaneously reveals convex loss £;(-)
Player pays loss £;(p;)
Player updates weights w;11(¢) = we(7) exp(—nbs(e;))



Proof

T—1
Theorem: With y = 1 and [(p) = — log(p, r,), max Z log(e;, r,) — log(p,, r,) <log(d)

=) log(p;,7e) — maleog e;, ) — log(pe, ) < log(d)
t=1 i€|d]



Universal Portfolio Optimization

Regret = max ) log(p,r log(p,, r
m AdZ &(p, 1) — Z &(py 1)

Competes with the single
best stock in hindsight!

T—1
Theorem: With 7 = 1 and L(p) = — log(p, ), max Z log(e;, r,) — log(p,, r,) <log(d)

=1

s competing against single best stock a good benchmark? Consider just 2 stocks:

r(1) = (2, = 2,22, 2

Q) =(3.2 5.2 5 2...)

L . L 1/2 . 1\2 T2
[T =1 [T¢| 5] = (@7 +1)
=1 =1

How do we compete with any p € /\ ;2

Example due to Elad Hazan'’s Introduction to Online Convex Optimization



