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CSE 541: Interactive Learning

CSE 541, Spring 2025 Interactive Learning
Lecture: Wednesday, Friday 10:00-11:20, ECE 003

Instructor: Professor Kevin Jamieson

Contact: cse541-staff@cs.washington.edu

TA office hours:
e Zhihan Xiong: Thursday 4:00-5:00, remote

Instructor office hours:
e Kevin Jamieson: Tuesday 11:00-12:00, CSE2 340

Grading and Evaluation

There will be 3 homeworks (each worth 20%) and a project to be completed in the last few weeks of the class

(details forthcoming).



We will cover selected topics from [SzepesvarilLattimore]:

e (Non)-stochastic Online learning
¢ (Non)-stochastic Multi-armed Bandits

(Non)
(Non)
e (Non)-stochastic Linear Bandits and experimental design
¢ (Non)-stochastic Contextual bandits (model-free and model-based)

Prerequisites: The course will make frequent references to introductory concepts of machine learning (e.g.,
CSE 446/546) but it is not a prerequisite. However, fluency in basic concepts from linear algebra, statistics,
and calculus will be assumed (see HW0). Some review materials:

e Linear Algebra Review by Zico Kolter and Chuong Do.

e Linear Algebra, David Cherney, Tom Denton, Rohit Thomas and Andrew Waldron. Introductory linear

algebra text.

e Probability Review by Arian Maleki and Tom Do. Also see Chapter 5 of [SzepesvariLattimore] below.
The course will be analysis heavy, with a focus on methods that work well in practice. You are strongly
encouraged to complete the self-test of fundmamental prerequisites on your own (not to be turned in or
graded). You should be able to complete most of these in your head or with minimal computation.

Class materials

The course will pull from textbooks and course notes.

e [SzepesvariLattimore] Bandit Algorithms course notes Csaba Szepesvari and Tor Lattimore

Assignments

 Homework 0: (Self-examination, Not due but recommend you complete within the first week) PDF



Standard Machine Learning Paradigm

- Data: past observations
 Hypotheses/Models: devised to capture the patterns in data

* Prediction: apply model to forecast future observations
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Standard Machine Learning Paradigm

- Data: past observations
 Hypotheses/Models: devised to capture the patterns in data

* Prediction: apply model to forecast future observations
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Standard Machine Learning Paradigm

- Data: past observations
 Hypotheses/Models: devised to capture the patterns in data
* Prediction: apply model to forecast future observations
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Do these applications actually fall into the standard machine learning paradigm?



Generalization
Bounds




Realizable case

Fix a finite hypothesis class # = {hy, h,, ..., } where h(x) € {—1,1}.

You are given a data set (x;, yy), ..., (X, y,) ~ ¢ U where Y = h.«(x;) for some h. € #

’MM eMp'lf cc-/ l‘l![(

Let h E argmln—Z 1{A(x;) # y;} how “good” is h?
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Realizable case RO = ELAW]

Theorem: Fix a finite hypothesis class H so that |H| < oo and for all h € H

we have h(z) € {—1,1}. Let (z1,91),.., (Tn,Yn) " v where y; € {—1,1}. For

any h € H define R, (h) = L =y 1{h(:1:'2) # y;} and R(h) = P(h(X) #Y)
where (X,Y) ~ v. Assume there exists an h. € H such that R(h,) = 0. If

AN

h € arg minpcy R, (h) then with probability at least 1 — § we have

r(h) < 22U PR(E)> B e g

Pl RG) >¢) ¢

P(‘c)bauj Apfmfma{e/j [arre-c'{ (PAC>

where (X,Y) ~ v

=] R(EY]



. 2 Y+ P(R) =P R
Realizable case - Proof ¥ %) fP;?AH};(e) (Aas)

’P< R(a\ >f—> :IF( R(["A)>£ and z](éﬁ(z‘)t‘j;?)
¢ )P(hg{ R0 e wd () 54(X9='5;32>

57 p(RIE e A f0x0=9.2)
WeH




Realizable case - Proof

Union bound: P(AU B) = P(A) + P(B) — P(AN B) < P(A) + P(B)

< > P(R(h) > eand Ny {h(z:) = y:})

exp(—z) > (1 —x) Vx



Realizable case

Theorem: Fix a finite hypothesis class H so that |H| < oo and for all h € H

we have h(z) € {—1,1}. Let (z1,91),.., (Tn,Yn) " v where y; € {—1,1}. For

any h € H define R, (h) = L =y 1{h(:cz) # y;} and R(h) = P(h(X) #Y)
where (X,Y) ~ v. Assume there exists an h. € H such that R(h,) = 0. If

h = arg mingcy ﬁn(h) then with probability at least 1 — § we have

R < o200

n
where (X,Y) ~ v. [P( I’((ﬂ)) lég%//—‘l-\> ¢ §
e Di?(znw Y
N - I - N £
ezl ) = §= [¥le
Corollary Under the conditions of the theorem (i.e., there exists an h, € H

such that R(h ) = 0, (wz,yz) v v, and h = arg minpeyy o Zz  Hh(zi) # vi})

we have E[R(h <f P ZEJi_zl%('%l)
\M
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Agnostic (Non-realizable) case h, - S R(k)

Theorem: Fix a finite hypothesis class H so that |H| < co and for all h € H
we have h(z) € {—1,1}. Let (z1,91),..., (Trny Yn) % 1 where y; € {—1,1}. For
any h € H define R, ( ) =230, 1{h(xz) # y;} and R(h) = P(h(X) #Y)
where (X,Y) ~ v. If h = arg minpey Ry (h) then with probability at least 1 — 4
we have E[,?" (L)Y ’E(é, Tg{l())ty.-?J 7—%?1]’“&&)"—‘1;) = R.(D
A _ ~ 2log(|H|/5) <
heH ~—— n
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Agnostic (Non-realizable) case - Proof

Lemma (Hoeffding’s inequality): Let Z1,..., Z, “ v where E[Z;] = p and

Z; € |a,b] almost surely. Then
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Agnostic (Non-realizable) case - Proof



Agnostic (Non-realizable) case

Theorem: Fix a finite hypothesis class H so that |H| < co and for all h € H
we have h(z) € {—1,1}. Let (z1,91),..., (Tn,Yn) % 1 where y; € {—1,1}. For
any h € H define R, ( ) =230, 1{h(xz) #+ y;} and R(h) = P(h(X) # Y)

where (X,Y) ~ v. If h = arg minpey Ry (h) then with probability at least 1 —9
we have

R(A) — R(hy) < \/ZIOg(IHI/Q

n

Corollary Under the conditions of the theorem (i.e., (z;,y;) %y, and h =

arg minpey - S 1{h(z;) # y;}) and |H| >n, we have E[R(h)]-R(h.) < \/SIOgTSmn



Agnostic (Non-realizable) case - Interpolation

Theorem: Fix a finite hypothesis class H so that |H| < co and for all h € H
we have h(x) € {—1,1}. Let (z1,91), .-, (Tn, Yn) v where y; € {-1,1}. For

anth%deﬁneR()—lle{(fﬂz)#yz}aﬂdR(h) P(h(X) # V)
where (X,Y) ~v. If h = arg mingcy R, (h) then with probability at least 1 — ¢
we have

R@)_R(h*)g\/2R(h*)1o§(2|7{|/5) +log(2LHI/5).

Proof: Use Bernstein’s inequality instead of Hoeffding. m



Infinite classes

Theorem: Fix a finite hypothesis class H so that |H| < co and for all h € H
we have h(x) € {—1,1}. Let (z1,91), .-, (Tn, Yn) v where y; € {-1,1}. For
anth’HdeﬁneR()—lzzl{(xz)#y%}andR(h) P(h(X) #Y)

where (X,Y) ~v. If h = argminpey Ry, (h) then with probability at least 1 — ¢
we have

21(h.) log(2[#|/0) | log(2[#]/d)

n n

R(h) — R(hy) < \/

What if |H| is infinite such as the space of all hyperplane classifers?



Infinite classes

Theorem: Fix a finite hypothesis class H so that |H| < co and for all h € H
we have h(x) € {—1,1}. Let (z1,91), .-, (Tn, Yn) v where y; € {-1,1}. For
anth”HdeﬁneR()zlzzl{(xz)#yz}andR(h)— P(h(X) #Y)

where (X,Y) ~v. If h = argminpey Ry, (h) then with probability at least 1 — ¢
we have

21(h.) log(2[#|/0) | log(2[#]/d)

n n

R(h) — R(hy) < \/

What if |H| is infinite such as the space of all hyperplane classifers?

Lots of tools to address this:

- minimum description length

- VC-dimension and Rademacher complexity
- Covering number / log-entropy bounds



Online Learning

UNIVERSITY of WASHINGTON



Realizable case

Theorem: Fix a finite hypothesis class H so that |H| < oo and for all h € H

we have h(z) € {—1,1}. Let (z1,v1),--., (Tn,Yn) % v where y; € {—1,1}. For

any h € H define R,(h) = L =y 1{h(:cz) # y;} and R(h) = P(h(X) #Y)
where (X,Y) ~ v. Assume there exists an h. € H such that R(h,) = 0. If

h = arg mingcy ﬁn(h) then with probability at least 1 — § we have

R < o200

n

where (X,Y) ~ v

All the guarantees of the previous section (and the entirety of this class so far)

has relied critically on (x,y) being drawn IID. Can we say anything if (x,y) are
chosen adversarially?



Online learning

Spammer

Real mail



Online learning

Input: ‘H with |H| < oo Goal:
fort=1,2.... Mir;limize mistakes
T arrives thl 1{ht («’13t) 7’5 Z/t}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Settings of interest:

D (T, Yyt) ~ v

Adversarial  (x¢,y;) arbitrary



Online learning - Realizable IID

Input: H with |H| < oo Goa}h . .
fort=1.2. Minimize mistakes
Y Y T
T arrives Zt:l 1{ht (iUt) 7’5 yt}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

D @oy) e~y g = ha(z)
We know learning theory! Choose h; € arg miny,cy 22;11 H{h(xs) # ys}



Online learning - lID

Input: ‘H with |H| < oo Goal:
fort=1,2.... Mir;limize mistakes
T arrives Zt:l 1{ht (iUt) 7& yt}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

D (o) ~ v = ha(z2)
Corollary Under the conditions of the theorem (i.e., there exists an h, € H
such that R(h.) = 0, (x5, y;) " v, and h = arg ming,c4 % S H{h(z;) # yi})
we have E[R(h)] < [2 P(R(Rh) > €) < 2os(])



Online learning - lID

Input: ‘H with |H| < oo Goal:
fort=1,2.... Mir;limize mistakes
T arrives thl 1{ht («’13t) 7’5 Z/t}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

o (ze0) ~ v Y = ha(@r)

Corollary Under the conditions of the theorem (i.e., there exists an h, € H
such that R(h.) = 0, (x5, y;) . v, and h = arg ming,c4 % S H{h(z;) # yi})
we have E[R(h)] < [2 P(R(Rh) > €) < 2os(])

T

> Hhu(we) # i)

t=1

T # of mistakes grows
<1+ ) E[P(hy(z:) # ys)) only logarithmically!

t=2

E

<1+ Y ERMA) <1+ 3 2B <9 4 9108341 108(1)

t=2 t=2 -



Online learning - Adversarial

Input: H with |H| < oo Goa}h . .
fort=1.2. Minimize mistakes
Y Y T
T arrives thl 1{ht (let) 7’5 Z/t}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Adversarial (xt,yt) arbitrary Yt — h* (ZIZ‘t)



Online learning - Adversarial

Input: H with |H| < oo GO?‘I: . .
fort=1.2. Minimize mistakes
Y Y T
T arrives thl 1{ht («’13t) 7’5 Z/t}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Adversarial (xt,yt) arbitrary Yt — h* (le't)

We know learning theory! Choose h; € arg mingcy 22;11 1{h(zs) # ys}?



Online learning - Adversarial

Input: ‘H with |H| < oo Goal:
fort=1,2.... Mi;limize mistakes
T arrives thl 1{ht (ﬂft) 7’5 yt}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Adversarial (xt,yt) arbitrary Yt — h* (ZIZ‘t)

We know learning theory! Choose h; € arg mingcy 22;11 1{h(zs) # ys}?

Claim There exists a sequence {(z;,y:)}._, and ht € arg minpey Zz;ll 1{h(xs) # ys }
such that the strategy makes min{|#|,T } mistakes.

Hint: many classifiers achieve minimum, assume adversary knows your tie-breaking strategy



Online learning - Adversarial

Input: ‘H with |H| < oo Goal:
fort—=1.2.... Minimize mistakes
] T
T arrives Zt:l 1{ht (iUt) 7& yt}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Adversarial (.Clj‘t, yt) arbitrary Yt — h* (xt)

Halving Algorithm

Input: H with |H| < 0o
Initialize: V7 = H
fort=1,2,...
i arrives
Player picks a hy € Vi 1 ) ey, H{h(x) =he(x4) } > D pey, (@) = —hy () }
y; is revealed
Player receives loss £(hy, (x4, y:)) = 1{hs(zs) # ys }
Update Viy1 = {h € V; : h(z:) = y:}



Online learning - Adversarial

Input: ‘H with |H| < oo Goal:
fort—=1.2.... Minimize mistakes
] T
T arrives Zt:l 1{ht (iUt) 7’5 yt}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Adversarial (.Clj‘t, yt) arbitrary Yt — h* (xt)

Halving Algorithm

Input: H with |H| < 0o
Initialize: V7 = H
fort=1,2,...
i arrives
Player picks a hy € Vi 1 ) ey, (@) =he(x4) } > D pey, (@) = —hi(z4) }
y; is revealed
Player receives loss £(hg, (z¢,v:)) = 1{hs(xs) # yi }
Update Viy1 = {h € V; : h(z:) = y:}



Online learning - Adversarial

Input: ‘H with |H| < oo Goal:
fort=1,2.... Mir;limize mistakes
T arrives thl 1{ht (Cﬂt) 7’5 Z/t}

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Adversarial (CCt,yt) arbitrary Yt — h* (ZIZ‘t)

Theorem: Fix a finite hypothesis class H so that |H| < co and for all h € H
we have h(x) € {—1,1}. Let (z1,41),.-.,(Zn,yn) where z; is arbitrary and
Yy = hi(x;) for some h, € H. Then if h; is recommended by the Halving

algorithm, we have that Zle 1{hi(xzs) # ye } < log,(|H|)




Online learning

Assuming that your data is |ID is a very strong assumption that is almost never

true in practice. Online learning is a different paradigm that makes no assumptions
but still yields meaningful guarantees.

Assuming there exists a perfect classifier /.

- When X, is drawn [ID, empirical risk minimization results in only a number of
mistakes that grows like log(7")log(H)

- When Xx; is chosen adversarially empirical risk minimization can do arbitrarily

badly. But there exist smarter approaches (like Halving algorithm) that make
only log(H') mistakes

Questions?



Online learning in
non-separable case

W



Online learning

Goal: Minimize regret wrt best
T

Input: H with |H| < oo max »  1{he(ze) # ye} — L{h(ze) # e}
fort=1,2,... =1

T arrives

Player picks h; € 'H

Y 18 revealed

Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Settings of interest:

ID (¢, yt) ~ v

Adversarial  (x¢,y;) arbitrary



Online learning

Goal: Minimize regret wrt best

T
Input: H with |H| < oo I,{leagfz H{he(ze) # ye} — H{h(@e) # Yo}
fort=1,2,... =1

T arrives

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Settings of interest:

D (T, Yyt) ~ v .
Choose h; € arg mingcy 28:1 1{h(zs) # ys}

Corollary Under the conditions of the theorem (i.e., (z;,y;) % v, and h =

arg mingcy % S 1{h(z;) # vi}) and |H| >n, we have ]E[R(Tz)]—R(h*) < \/810g7§|7-tl)

T

— maxE | Y 1{h(z:) # ye} — 1{h(z:) # ye} | < /8T log(|H])

heH
© t=1



Online learning

Goal: Minimize regret wrt best

T
Input: H with |H| < oo I,flea;gz H{he(ze) # ye} — H{h(@e) # Yo}
fort=1,2,... =1

T arrives

Player picks h; € 'H
Y 1s revealed
Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Settings of interest:
D (T4, 9) ~ v

Adversarial  (x¢,y;) arbitrary

Theorem: If z; € [0,1]¢ V¢, and I, p; are chosen by exponential weights then

max;e[q) K [ZZ:1<It,Zt> — (e;, Zt>] = MaX;¢[d] ZZ:1<Pt,Zt>—<ei,Zt> < /T log(d)/2

T

Z 1{hs(:) # ye} — 1{h(z:) # ye} | < /Tlog(|H])/2

t=1




Online learning

Goal: Minimize regret wrt best
T

Input: H with |H| < oo max »  1{he(ze) # ye} — L{h(ze) # e}
fort=1,2,... =1

T arrives

Player picks h; € 'H

Y 18 revealed

Player receives loss (h¢, (¢, y:)) = 1{hs(x:) # ys }

Settings of interest:

D (T, yp) ~ v

T

Z 1{hi(zt) # ye} — 1{h(zt) # yt}] < \/8T log(|H])

—> maxE

h
eH P

Adversarial  (x¢,y;) arbitrary

E

—> max [k
heH

{he(ze) # yey — H{h(xs) # yt}] < /T'log(IH|)/2

t=1



Online learning

Assuming that your data is |ID is a very strong assumption that is almost never
true in practice. Online learning is a different paradigm that makes no assumptions
but still yields meaningful guarantees.

Questions?



Exponential weights
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Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.
=1 1=2 1=3 1=4 1=5

Expert 1
Expert 2
Expert 3



Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.

=1 1=2 1=3 1=4 1=5

Expert 1
Expert 2
Expert 3 . .

2t(1) = |be(2) — yel
IIlp'lltI d eXpertS ith expert’s ;:ediction \
fort = 1, 2, “ e True temperature

Player picks p; € Aq and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1]¢
Player pays loss (pt, z:) = E|2:(1)]



Expert prediction

Suppose b, € [O,l]d is a vector of d experts predictions of tomorrow’s temperature.

=1 1=2 1=3 1=4 1=5

Expert 1
Expert 2
Expert 3 . .

2t(1) = |be(2) — yel
IIlletI d eXpertS ith expert’s [:ediction \
fort = 1, 2, “ e True temperature

Player picks p; € Aq and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1
Player pays loss (p:, z:) = E[z:(13)]

]d

Goal: Minimize  max > (p, z) — (e, )
regret wrt best  i€ld]



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Input: d experts

fort=1,2,...
Player picks p; € Ag and plays I; ~ p;
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p:, z:) = E[z:(13)]

Exponential weights algorithm

Input: d experts, n > 0

Initialize: wy €[1,...,1]" € R?

fort=1,2,...
Player plays I; ~ p; where p;(i) = wy(i)/ S5_, we(5)
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p¢, z¢) = E[z:(1¢)]
Player updates weights w;11(7) = we (i) exp(—nz¢(1))



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)

regret wrt best i€ld] 1]
Exponential weights algorithm
Input: d experts, n > 0
Initialize: wy €[1,...,1]" € R?

fort=1,2,...
Player plays I; ~ p; where p:(i) = w¢()/ Z _, we(J)
Adversary simultaneously reveals expert losses z; € [0, 1]
Player pays loss (p¢, z:) = E[z:(1¢)]
Player updates weights w;1(3) = w;(7) exp(—nz:(2))

Theorem: If z; € [0,1]¢ Vt, and I;, p; are chosen by exponential weights then
log(d) , T

max;cidj E [Zz;lutazt) — (e, Zt>] — MaX;c(d] ZZ:1<ptazt>_<eiazt> < n 18

| 8log(d
Choosing = Oi( ) gives regret bound of /7T log(d)/2



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Exponential weights algorithm, proof: Let W, = Zle wy (1) so that



Expert prediction T

Goal: Minimize  max Y (py, z:) — (€, 2¢)
regret wrt best  i€[d] i

Exponential weights algorithm, proof: Let W, = Zle wy (1) so that

log WWT/T = z_; log W‘;; : log WMT/.F > log wT‘;l(z)

t:_r d T

_ ;log (; wt;;t(l)) = —log(d) + log (;‘_‘i exp(—nzt(i)))
T d T

- 1og (3 ) = ~log(d) = Y na(9
T d

= > log (D pili) exp(~nz(0)))
T d

= > tog ((exp(=nBlz (1)) D puli) exp(—(z1() — Elze(1)]))

T T T
<N B[z (1)) + /8 — > nE[z(I)] — ) nz(i) <log(d) + n*T/8

t=1 t=1 t=1



Online Convex
Optimization




Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorithm! Solution: relax the objective.



Convex surrogate loss functions

Previous section for the adversarial case suggested using multiplicative weights
over the |H| hypotheses, which is completely intractable in practice.

And in the stochastic case we used h; € arg mingcy Z’;;ll 1{h(xs) # ys}
which is also intractable to compute!

So it seems we have no practical algorithm! Solution: relax the objective.

T
Instead of l;zrlea%; 1{he(z:) # ye } — 1{h(xs) # v}

T

Weuse max Y L(hs, (x4, y:)) — £(h, (xs,y:)) with FH convex

h
cH =

Example: Linear classification takes # C R% and £(h, (x4, 1)) = log(1 + exp(—y:h ' z}))



Convex surrogate loss functions

T

Goal: max O(he, (e, yt)) — £(h, (T¢,y¢))  with H  convex

h
cH P

Online gradient descent

Input: H C RY convex loss function ¢, step size n > 0
Initialize: Choose any hy € H
fort=1,2,...

Player plays h; € 'H

Adversary simultaneously reveals (¢, y;)

Player pays loss ¢;(h:) := £(hs, (¢, Yt))

Player updates w1 = gy (wg — nVply(hy))

Theorem Online gradient descent satisfies for any h, € H

S Uty (e, e)) — Llhs, (e, 50)) < Vel 4 25T 1040, ()13

if maxpey ||h«|l2 < R and £(-) is G-Lipschitz then regret< RB\T



Proof

Theorem Online gradient descent satisfies for any h, € H
Sty Uhe (e, 91)) — P, (e, ) < L2l 4+ 25T 10504 ()13




Questions?



