
Homework 3
CSE 541: Interactive Learning
Instructor: Kevin Jamieson

Due 11:59 PM on June 8, 2021 (late homework not accepted)

Martingale analysis
1. Let f : K → R be a convex function that is G-Lipschitz over a bounded, closed, convex set K ⊂ Rd

and assume ∇f(x) exists for all x ∈ K. Assume that K has diameter at most R, i.e., ∥x − y∥ ≤ R for
all x, y ∈ K. You are given access to a stochastic first-order oracle, which at each point xt ∈ K returns a
stochastic gradient g̃t satisfying:

E[g̃t | xt] = ∇f(xt), ∥g̃t∥ ≤ G almost surely.

Consider the projected stochastic gradient descent (SGD) algorithm:

• Initialize x1 ∈ K

• For t = 1, . . . , T : update
xt+1 = ΠK(xt − ηg̃t)

where ΠK denotes Euclidean projection onto K and η > 0 is a fixed step size.

Let x̄T := 1
T

∑T
t=1 xt be the average iterate. In this problem, you will derive a high-probability bound on

the suboptimality gap f(x̄T )− f(x∗), where x∗ ∈ argminx∈K f(x). In class we showed that

T∑
t=1

⟨g̃t, xt − x∗⟩ ≤ R2

2η
+

ηG2T

2
.

(a) Suboptimality Decomposition
Let gt := E[g̃t | xt] = ∇f(xt), and use the decomposition g̃t = gt + (g̃t − gt) to write:

T∑
t=1

⟨gt, xt − x∗⟩ ≤ R2

2η
+

ηG2T

2
−

T∑
t=1

⟨g̃t − gt, xt − x∗⟩.

Argue that by convexity of f ,

T∑
t=1

f(xt)− f(x∗) ≤ R2

2η
+

ηG2T

2
+

T∑
t=1

Zt,

where Zt := −⟨g̃t − gt, xt − x∗⟩.

(b) Martingale Concentration
Show that (Zt) is a martingale with respect to the filtration Ft = σ(x1, . . . , xt, g̃1, . . . , g̃t−1), and that
|Zt| ≤ 2GR. Using Hoeffding’s lemma, show that Mt(λ) = exp

(
λSt − tλ2/(4GR)

)
is a supermartingale,

where St =
∑t

s=1 Zt. Then show that with probability at least 1− δ:

T∑
t=1

Zt = St ≤
√
8G2R2T log(1/δ).

(c) Conclude the Bound
Using Jensen’s inequality, combine the above to show that with probability at least 1− δ:

f(x̄T )− f(x∗) ≤ 1

T

(
R2

2η
+

ηG2T

2
+
√

8G2R2T log(1/δ)

)
.

1



Choosing the optimal fixed step size η = D
G
√
T
, we conclude that:

f(x̄T )− f(x∗) ≤ GD√
T

(
1 + 2

√
2 log(1/δ)

)
with probability at least 1− δ.

Non-stochastic Bandits
Using problem 5 from homework 1, repeat those experiments but add EXP3 and instead of using a Gaussian
distribution with mean µi, use the distribution .75 with probability (1 + µ)/2 and −.75 with probability
(1− µ)/2. Try different values of γ and η for EXP3. No need to change the Thompson sampling algorithm
(i.e., use the Gaussian update even though we’re using Bernoulli’s now).
Contextual Bandits
3. Problem 18.8 of [SzepesvariLattimore].

4. In this exercise we will implement several contextual bandit algorithms. We will “fake” a contextual ban-
dit problem with multi-class classification dataset where each example is context, and the learner chooses an
“action” among the available class labels, and receives a reward of 1 if the guess was correct, and 0 otherwise.
However, keeping with bandit feedback, we assume the learner only knows the reward of the action played,
not all actions.

We will use the MNIST dataset1. The MNIST dataset contains 28x28 images of handwritten digits from
0-9. Download this dataset and use the python-mnist library2 to load it into Python. Rather than using
the full images, you may run PCA on the data to come up with a lower dimensional representation of each
image. You will have to experiment with what dimension, d, to use. Scale all images so that they are norm
1.

Let the d dimensional representation of the tth image in the dataset, ct, be our “context.” Our action
set A = {0, 1, . . . , 9} has 10 actions associated with each label. For each i ∈ A = {0, 1, . . . , 9} define the
feature map ϕ(c, i) = vec(ce⊤i ) ∈ R10d. If v(c, a) is the expected reward of playing action a ∈ A in response
to context c, then let us “model the world” with the simple linear model so that v(c, a) ≈ ⟨θ∗, ϕ(c, a)⟩ for
some unknown θ∗ ∈ R10d. Of course, when actually playing the game we will observe image features ct as
the context, choose an “action” at ∈ {0, . . . , 9}, and receive reward rt = 1{at = yt} where yt is the true
label of the image ct and at is the action played.

Implement the Explore-Then-Commit algorithms, Follow-The-Leader, LinUCB, and Thompson Sampling
algorithms for this problem. You can use just the training set of T = 50000 examples. The training set is
class balanced meaning that there are 5000 examples of each digit. Important: randomly shuffle the dataset
so the probability of any particular class showing up at any given time is 1/10. The algorithms work as
follows:

• Explore-Then-Commit (“Model the world”): Fix τ ∈ [T ]. For the first τ steps, select each action

a ∈ A uniformly at random. Compute θ̂ = argminθ
∑τ

t=1(rt − ⟨ϕ(ct, at), θ⟩)2. For t > τ play at =

argmaxa∈A⟨ϕ(ct, a), θ̂⟩. Choose a value of τ and justify it.

• Explore-Then-Commit (“Model the bias”): Fix τ ∈ [T ]. For the first τ steps, select each action a ∈
A uniformly at random. Our goal is to identify a policy π̂ : C → A using the dataset {(ct, at, pt, rt)}t≤τ

such that

π̂ = argmax
π∈Π

τ∑
t=1

rt1{π(ct) = at}
pt

= argmin
π∈Π

τ∑
t=1

rt1{π(ct) ̸= at}
pt

= argmin
π∈Π

∑
t∈[τ ]:rt=1

1{π(ct) ̸= at}

1http://yann.lecun.com/exdb/mnist/
2https://pypi.org/project/python-mnist/
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where the last line uses the fact that pt = 1/10 due to uniform exploration and the definition of rt.
Note that this is just a multi-class classification problem on dataset {(ct, at)}t∈[τ ]:rt=1 where one is
trying to identify a classifier π̂ : C → A that predicts label at from features ct. Train a 10-class linear
logistic classifier3 π̂ on the data up to time [τ ] and then for t > τ play at = argmaxa∈{0,...,9} π̂(ct).
Choose the same value of τ as “Model the world”.

• Follow-The-Leader: Fix τ ∈ [T ]. For the first τ steps, select each action a ∈ A uniformly at random.

For t > τ play at = argmaxa∈A⟨ϕ(ct, a), θ̂t−1⟩ where θ̂t = argminθ
∑t

s=1(rs − ⟨ϕ(cs, as), θ⟩)2. Choose
a value of τ and justify it.

• LinUCB Using Ridge regression with an appropriate γ > 0 (γ = 1 may be okay) construct the confi-
dence set Ct derived in class (and in the book). At each time t ∈ [T ] play at = argmaxa∈A maxθ∈Ct⟨θ, ϕ(ct, a)⟩.

• Thompson Sampling Fix γ > 0 (γ = 1 may be okay). At time t ∈ [T ] draw θ̃t ∼ N (θ̂t−1, V
−1
t−1)

and play at = argmaxa∈A⟨θ̃t, ϕ(ct, a)⟩ where θ̂t = argminθ
∑t

s=1(rs − ⟨θ, ϕ(cs, as)⟩)2 and Vt = γI +∑t
s=1 ϕ(cs, as)ϕ(cs, as)

⊤.

Implement each of these algorithms and show a plot of the regret (all algorithms on one plot) when run
on MNIST for good choices of τ, γ. Hint, for computing V −1

t efficiently see https://en.wikipedia.org/

wiki/Sherman%E2%80%93Morrison_formula.

3Please feel free to use an off-the-shelf method to train logistic regression such as https://scikit-learn.org/stable/auto_
examples/linear_model/plot_iris_logistic.html#sphx-glr-auto-examples-linear-model-plot-iris-logistic-py
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