
Homework 1

CSE 541: Interactive Learning
Instructor: Kevin Jamieson

Due: 11:59 PM on April 27, 2025

Problem 1 — Gradient Descent and Exponential Weights via Regularization

In this problem, we will explore how gradient descent and the exponential weights algorithm can both be
derived as instances of a general framework: minimizing a linearized loss plus a regularization term. Let K
denote a convex decision set (e.g., the probability simplex).
Let f1, f2, . . . , fT be a sequence of convex loss functions. Define gt = ∇ft(xt) as a subgradient of ft at the
point xt.

1

(a) Let K ⊆ Rd be a convex and compact set and define ΠK(y) = argminx∈K ∥y − x∥2. Show that the
standard online gradient descent (OGD) update:

xt+1 = ΠK (xt − ηgt)

can be written equivalently as:

xt+1 = argmin
x∈K

{
ηg⊤t x+

1

2
∥x− xt∥22

}
That is, the OGD update is the solution to minimizing the linearized loss plus an ℓ2 regularization
centered at xt.

Hint: Complete the square or derive the optimality condition.

(b) Now suppose the domain K is the probability simplex:

∆d =

{
x ∈ Rd : xi ≥ 0,

d∑
i=1

xi = 1

}

Instead of ℓ2 regularization, consider the KL divergence regularizer:

DKL(x∥xt) =

d∑
i=1

xi log
xi

xt,i

Derive the update:
xt+1 = arg min

x∈∆d

{
ηg⊤t x+DKL(x∥xt)

}
and show that it corresponds to the exponential weights update:

xt+1,i ∝ xt,i exp(−ηgt,i) for i = 1, . . . , d

Hint: Use Lagrange multipliers to enforce the simplex constraint.

1If you’re not familiar with the concept of subgradient, you may simply assume ft’s are differentiable and gt’s are their
gradients.

1

Problem 2 — The Doubling Trick for Anytime Exponential Weights

The exponential weights algorithm (also known as Hedge) for the expert setting typically requires knowledge
of the total time horizon T in order to set the learning rate:

η =

√
8 log d

T

to achieve the standard regret bound:

RegretT ≤
√

T log(d)/2

where d is the number of experts. But in practice, we often do not know T in advance. One approach
to overcome this limitation is the doubling trick, which allows us to construct an anytime version of the
algorithm.
Suppose we divide time into epochs of exponentially increasing length: epoch 1 lasts for 1 round, epoch 2
lasts for 2 rounds, epoch 3 lasts for 4 rounds, epoch 4 for 8 rounds, and so on. That is, epoch m lasts for
2m−1 rounds. Let Tm = 2m−1 be the length of epoch m, and define the learning rate in epoch m as

ηm =

√
8 log d

Tm
.

(a) How many total epochs M will be run before reaching a time horizon of T? Express M in terms of T .

(b) For each epoch m, write the regret bound for that epoch using the Hedge algorithm with learning rate
ηm.

(c) Sum the regret over all epochs to obtain a bound on the total regret up to time T . Show that the total
regret satisfies:

RegretT ≤ C
√

T log d

for some small constant C (specify the value you obtain).

Problem 3 — Exponential Weights on Real Stock Data

In this problem, you will use the yfinance Python package to download real stock market data and apply
the exponential weights algorithm (Hedge) in two settings:

1. A standard setting where each asset is treated as an expert (Part (a)),

2. A richer setting where each expert is a portfolio sampled from the simplex (Part (c)).

As a first step, use the yfinance package and the following Python code to download daily adjusted close
prices for the seven given stocks over a one-year period. Then, the variable returns gives the multiplicative
daily returns, which is defined as

rt,i =
Pt,i

Pt−1,i
,

where Pt,i is the price of stock i on day t.

import yfinance as yf

import numpy as np

import matplotlib.pyplot as plt

np.random.seed (42) # For reproducibility

tickers = [’AAPL’, ’MSFT’, ’GOOG’, ’AMZN’,’META’,’BIL’,’BND’]

data = yf.download(tickers , start ="2022 -01 -01", end ="2025 -04 -11", actions=True)

2

Figure 1: Total return of individual stocks and equally weighted daily rebalanced portfolio (log scale).

close = data[’Close’]

dividends = data[’Dividends ’]

individual_total_return = pd.DataFrame(index=close.index , columns=close.columns)

individual_total_return.iloc [0] = 1 # Normalize all series to 1

p = np.ones(data[’Close’]. shape [1])/len(data[’Close’]. columns) # Equal weights for each

stock

portfolio_total_return = pd.DataFrame(index=close.index , columns =[’Portfolio ’])

portfolio_total_return.iloc [0] = 1.

for t in range(1, len(close)):

r_t = (close.iloc[t] + dividends.iloc[t]) / close.iloc[t - 1]

individual_total_return.iloc[t] = individual_total_return.iloc[t - 1] * r_t

portfolio_total_return.iloc[t] = portfolio_total_return.iloc[t-1] * np.dot(p, r_t)

plt.figure(figsize =(12, 6))

for ticker in tickers:

plt.plot(individual_total_return.index , individual_total_return[ticker], label=ticker ,

linewidth =1)

plt.plot(portfolio_total_return.index , portfolio_total_return[’Portfolio ’], label=’Portfolio

’, linewidth =2, color=’black ’,linestyle=’:’)

plt.title("Total Return (Price + Dividends Reinvested)")

plt.xlabel("Date")

plt.ylabel("Normalized Total Return")

plt.grid(True)

plt.legend ()

plt.tight_layout ()

plt.yscale(’log’)

plt.show()

(a) Let each of the d assets be an expert. Implement the Hedge algorithm using

xt+1,i ∝ xt,i · exp (η · log rt,i)

with different values of η ∈ {0.1, 0.5, 1, 2, 5}.

3

Your cumulative wealth and the wealth of the best fixed asset in hindsight are respectively defined as

WT =

T∏
t=1

x⊤
t rt and W ∗

T = max
i∈[d]

T∏
t=1

rt,i.

Then, for each η, report the regret: logW ∗
T − logWT .

(b) As a reflection, How does η impact performance?

(c) Instead of treating individual assets as experts, suppose each expert is a fixed portfolio over the assets
(i.e., a point in the simplex). Since there are infinitely many such portfolios, we can randomly sample
N of them uniformly from the simplex. Now, your task is to implement the following procedures:

• For various values of N ∈ {10, 50, 200, 1000}, generate N portfolios {v(1), . . . , v(N)} ∈ ∆d by sam-
pling uniformly from the simplex.

• Treat each sampled portfolio as an ”expert.” On day t, observe the return vector rt, and for each
expert v(j), compute the expert’s return: v(j)⊤rt.

• Try multiple values of η ∈ {1, 10, 50, 100, 200} and run exponential weights:

wt+1,j ∝ wt,j · exp
(
η · log(v(j)⊤rt)

)
Normalize the weights and play the aggregate portfolio:

xt =

N∑
j=1

wt,j · v(j)

• For each configuration of η and N , track and store the cumulative wealth over time:

Wt =

t∏
s=1

x⊤
s rs

Then, report the following in your submission:

(i) For each η and N , report the regret relative to the best sampled portfolio:

Regret = log

(
max
j∈[N]

T∏
t=1

v(j)⊤rt

)
− logWT

(ii) On the same axes, plot the following curves over time:

• Your algorithm’s wealth (with your choice of η and N): Wt.

• The wealth of each individual asset: W
(i)
t =

∏t
s=1 rs,i for all i ∈ [d].2

• The wealth of the best sampled portfolio: W best
t = maxj∈[N]

∏t
s=1 v

(j)⊤rs.

• Uniform allocation wealth: W uniform
t =

∏t
s=1

(
1
d

∑d
i=1 rs,i

)
.

You need to produce two plots for this part. The one is in linear scale, in which the raw wealth is
plotted, and the other is in log scale, in which the log wealth is plotted.

(d) Analyze the above results by answering the following questions:

(i) How does increasing N affect your regret and wealth?

(ii) How does your final wealth in this setting compare to the best individual asset in hindsight?

(iii) Discuss the trade-offs between computational cost (large N) and expressivity (more diverse port-
folios).

2Consider using arguments linestyle=’--’ and linewidth=0.5 for these curves to make plots look cleaner.

4

Problem 4 — The Upper Confidence Bound Algorithm

Consider the following algorithm for the multi-armed bandit problem.

Algorithm 1: Upper Confidence Bound (UCB)

Input: Time horizon T , 1-subGaussian arm distributions P1, · · · , Pn with unknown
means µ1, · · · , µn such that EX∼Pi

[X] = µi

Initialize: Let Ti(t) denote the number of times arm i has been pulled up to
(inclusive) time t and let Ti = Ti(T). Pull each arm once.
for t = n+ 1, · · · , T do

Pull arm It = argmaxi=1,··· ,n µ̂i,Ti(t−1)
+
√

2 log(2nT 2)
Ti(t−1) and observe draw from Pi

Let µ̂i,Ti(t) be the empirical mean of the first Ti(t) pulls.

In the following exercises, we will compute the regret of the UCB algorithm and show it matches the regret
bound from lecture. Without loss of generality, assume that the best arm is µ1. For any i ∈ [n], define the

sub-optimality gap ∆i = µ1 − µi. Define the regret at time T as RT = E[
∑T

t=1 µ
∗ − µIt] =

∑n
i=1 ∆iE[Ti].

(a) Consider the event

E =
⋂
i∈[n]

⋂
s≤T

{
|µ̂i,s − µi| ≤

√
2 log(2nT 2)

s

}
.

Show that P(E) ≥ 1− 1
T .

(b) On event E , show that Ti ≤ 1 + 8 log(2nT 2)
∆2

i
for i ̸= 1.

(c) Show that E[Ti] ≤ 8 log(2nT 2)
∆2

i
+2. When n ≤ T , conclude by showing that RT ≤

∑n
i=2

(
24 log(2T)

∆i
+ 2∆i

)
.

Problem 5 — Empirical Experiments of UCB, TS and ETC

Implement UCB, Thompson Sampling (TS), and Explore-then-Commit (ETC). The TS algorithm and ETC
algorithm are given below.

Algorithm 2: Thompson Sampling (TS)

Input: Time horizon T
Assume the prior distribution p0 over Rn is known and that θ∗ ∼ p0 (so that
θ∗ ∈ Rn). Assume each arm shares the same conditional likelihood function such
that an observation X from arm i follows X ∼ f(·|θ∗i) (e.g., X ∼ N (θ∗i , 1)). Let
pt(θ|I1, XI1,1, · · · , It, XIt,t) ∝

∏t
s=1 f(XIs,s|θIs)p0(θ) be the posterior distribution on

θ∗ at time t.
for t = 1, · · · , T do Sample θ(t) ∼ pt−1 (Note: θ(t) ∈ Rn)

Pull arm It = argmaxi≤n θ
(t)
i to observe XIt,t

Compute exact posterior update pt

5

Algorithm 3: Explore-then-Commit (ETC)

Input: Time horizon T , m ∈ N, 1-sub-Gaussian arm distributions P1, · · · , Pn with
unknown means µ1, · · · , µn

for t = 1, · · · , T do
If t ≤ mn, choose It = (t mod n) + 1
Else, It = argmaxi µ̂i,m

Let Pi = N (µi, 1) for i = 1, . . . , n. For Thompson sampling, define the prior for the ith arm as N (0, 1) and
the likelihood function as f(·|µi) = Pi.

(a) Let n = 10 and µ1 = 0.1 and µi = 0 for i > 1. On a single plot, for an appropriately large T to see
expected effects, plot the regret for the UCB, TS, and ETC for several values of m.

(b) Let n = 40 and µ1 = 1 and µi = 1− 1/
√
i− 1 for i > 1. On a single plot, for an appropriately large T

to see expected effects, plot the regret for the UCB, TS, and ETC for several values of m.

6

