
1

Interactive Machine Learning
Kevin Jamieson and Lalit Jain

University of Washington
May 2, 2024

About this monograph: These notes were initially written for myself to refer to while lectur-
ing. Many have found them useful for the course as well as in their research and so we have
posted them. There is a large degree of overlap between these notes and the excellent textbook
[Lattimore and Szepesvári, 2020]. These notes are not a replacement for the book and many details
are omitted. There may contain errors, there will contain typos. I have posted them by request.

2

Contents

I Stochastic Bandits 7

1 Multi-armed Bandits 9

1.1 Introduction . 9

1.1.1 Regret Minimization . 9

1.1.2 Best-arm identification . 10

1.1.3 Warm-up: A/B testing . 10

1.1.4 Finite-sample confidence intervals . 11

1.1.5 A/B testing solution . 12

1.2 Elimination Algorithm for Pure exploration . 13

1.3 Elimination Algorithm for Regret minimization . 15

1.4 Lower bounds for Multi-armed Bandits . 17

1.4.1 Preliminaries . 17

1.4.2 Lower bounds for estimating the mean of a Gaussian 19

1.4.3 Indentification . 20

1.4.4 Regret, minimax . 21

1.4.5 Gap-dependent regret . 21

1.4.6 Revisiting MAB with Optimism . 22

2 Linear bandits 23

2.1 Problem statement . 23

2.2 Review of least squares . 23

2.3 Experimental design and Kiefer-Wolfowitz . 24

2.3.1 Frank-Wolfe for D/G-optimal design . 26

2.4 Elimination algortihm for Regret Minimization . 27

2.5 Elimination algorithm for Pure exploration . 29

2.6 Regret minimization revisited . 32

3 Sequential statistics and Martingales 33

3.1 Probability theory review . 33

3.1.1 Basic definitions . 33

3.1.2 Conditional Expectation . 35

3

4 CONTENTS

3.1.3 Filtrations . 37

3.2 Martingales, Optional stopping, Maximal inequalities 37

3.3 Anytime concentration inequalities . 39

3.3.1 Linear boundaries . 39

3.3.2 Curved boundaries with a mixing distribution 40

3.3.3 Predictable sequences, Azuma-style inequalities 41

3.3.4 Vector-valued martingales . 43

3.3.5 Application: Online linear regression . 43

3.4 Wald’s identity, Hypothesis testing, Likelihood ratios 45

4 Contextual Bandits 49

4.1 Introduction . 49

4.1.1 Finite contexts . 49

4.1.2 Policy Regret . 50

4.2 Policy evaluation . 50

4.2.1 Logging policy . 50

4.2.2 Model the bias . 51

4.2.3 Model the world . 52

4.2.4 Doubly robust estimators . 53

4.3 Stochastic Linear model . 53

4.4 Stochastic Contextual Bandits for General policy classes 54

4.4.1 τ -greedy . 55

4.4.2 Reduction to cost-sensitive classification . 55

4.4.3 Elimination algorithm . 55

4.4.4 A
√
T computationally efficient algorithm . 59

4.4.5 Frank-Wolfe . 61

5 Other topics in bandits 63

5.1 Non-parametric bandits . 63

5.1.1 Bandits in an RKHS, Gaussian Process Bandits, Bayesian Optimization . . . 63

5.1.2 Bandit Convex Optimization . 63

5.1.3 Lipschitz Bandits . 63

5.2 Infinite-armed bandits . 63

5.3 Alternative kinds of feedback . 63

5.3.1 Dueling bandits . 63

5.3.2 Slates . 63

6 Active Learning for Classification 65

6.1 Separable, pool-based setting . 65

6.1.1 Extended teaching dimension and the Halving algorithm 66

CONTENTS 5

6.1.2 Generalized binary search . 67

6.1.3 Open problems . 68

6.2 Separable, streaming setting . 68

6.2.1 Review of passive learning . 68

6.2.2 CAL, Disagreement-based learning . 69

6.2.3 Splitting index . 71

6.2.4 Lower bounds . 72

6.2.5 Open problems . 73

6.3 Agnostic, sampling-oracle setting . 73

6.3.1 Passive learning . 73

6.3.2 Robust CAL . 74

6.3.3 Computationally efficient algorithms . 77

6.3.4 Minimax lower bounds . 78

6.4 Agnostic, pool-based setting . 78

6.4.1 Reduction to linear bandits . 79

6.4.2 Regularized empirical risk minimization . 79

6.4.3 A Version-space Elimination Algorithm . 82

6.4.4 A Computationally efficient Algorithm . 84

6.4.5 Instance-dependent Lower bounds . 90

6.5 Heuristics of note . 90

6.5.1 Uncertainty sampling . 90

6.5.2 Covering algorithms . 90

6.5.3 Hypothesis-class agnostic algorithms . 90

II Adversarial bandits 91

7 Stochastic online mirror descent 93

7.0.1 Preliminaries . 93

7.1 Simplex games with unnormalized negative entropy 95

7.1.1 Full information game, simplex action set . 95

7.1.2 Full information game, finite action set . 96

7.1.3 Bandit feedback, finite action set . 97

7.2 Other action sets . 98

7.2.1 Bandit feedback, unit ball action set . 100

7.2.2 Bandit feedback, finite action sets; Linear bandits 100

7.2.3 Reduction . 102

7.3 Contextual bandits, EXP4 . 102

6 CONTENTS

III Markov Decision Processes 105

7.4 Finite Horizon Markov Decision Processes . 107

7.4.1 Value iteration . 108

7.4.2 Reinforcement learning . 108

7.4.3 UCB Value Iteration Algorithm . 108

7.4.4 An improved regret bound for UCB-VI . 111

8 Learning and Games 115

8.1 The sample complexity of two-player zero-sum matrix games 115

Part I

Stochastic Bandits

7

Chapter 1

Multi-armed Bandits

1.1 Introduction

Machine learning, and in particular, supervised learning, is the study of making statistical inferences
from previously collected data. Multi-armed bandits is more about an interaction between an agent
(algorithm) and an environment where one simultaneously collects data and makes inferences in a
closed-loop.

You have n “arms” or actions, representing distributions. “Pulling” an arm represents requesting
a sample from that arm.

At each time t = 1, 2, 3, . . .

• Algorithm chooses an action It ∈ {1, . . . , n}

• Observes a reward XIt,t ∼ PIt where P1, . . . , Pn are unknown distributions

That is, playing arm i and time s results in a reward Xi,s from the ith distribution. In these
lectures, all distributions will be Gaussian (or sub-Gaussian) with variance 1 unless otherwise
specified. Example of sub-Gaussian distribution is bounded distributions on [−1, 1] or Gaussian
N (0, 1). Formally, a distribution of X is 1-sub-Gaussian if E[exp(λX)] ≤ exp(λ2/2).

We will find that the means of the distribution are the most pertinent parameters of these distri-
butions. Let θ∗i = EX∼Pi [X] be the mean of the ith distribution. Define ∆i = maxj=1,...,n θ

∗
j − θ∗i .

We measure performance of an algorithm in two ways: 1) how much total reward is accumulated,
and 2) how many total pulls are required to identify the best mean.

1.1.1 Regret Minimization

After T time steps, define the regret as

RT = max
j=1,...,n

E

[
T∑
t=1

Xj,t −
T∑
t=1

XIt,t

]

= max
j=1,...,n

θ∗jT − E

[
T∑
t=1

XIt,t

]

The goal is to have R(T) = o(T) to achieve sub-linear regret (e.g., R(T) ≤
√
T).

9

10 CHAPTER 1. MULTI-ARMED BANDITS

If at time T the ith arm has been played Ti times, then

RT = max
j=1,...,n

θ∗jT − E

[
T∑
t=1

XIt,t

]

= max
j=1,...,n

θ∗jT −
T∑
t=1

E

[
n∑
i=1

Xi,t1{It = i}

]

= max
j=1,...,n

θ∗jT −
n∑
i=1

θ∗iE

[
T∑
t=1

1{It = i}

]

= max
j=1,...,n

θ∗jT −
n∑
i=1

θ∗iE [Ti]

=
n∑
i=1

∆iE [Ti]

Thus, we want to minimize the number of times we play sub-optimal arms.

1.1.2 Best-arm identification

Given a δ ∈ (0, 1) identify the best arm with probability at least 1 − δ using as few total pulls as
possible.

While related, these objectives are at odds with one another. Sometimes called the (ε, δ)-PAC
setting, but for simplicity we’ll take ε = 0.

1.1.3 Warm-up: A/B testing

Suppose n = 2. How long would it take to decide one arm was better than another using sub-
gaussian bounds? Consider the trivial algorithm:

Input: 2 arms, time τ ∈ N.
Pull each arm i ∈ {1, 2} exactly τ times and compute empirical mean θ̂i.
For all t > 2τ play arm arg maxi θ̂i

Without loss of generality, assume θ∗1 > θ∗2. If θ̂i is the empirical mean of arm i after pulling it τ
times, it is a random variable that intuitively should be “close” to θ∗i . Suppose we could guarantee

that θ̂1 > θ̂2 with probability 1 − δ. If this were true then we have an algorithm for identifying
the best arm with probability at least 1 − δ using at most 2τ pulls. Moreover, with probability
at least 1 − δ the sub-optimal arm is pulled at most τ times incurring a regret of at most τ∆
where ∆ := θ∗1 − θ∗2. To make this argument rigorous, we need to be able to build a confidence

interval on each θ̂i − θ∗i with high probability. By the central limit theorem (CLT) we know that

θ̂i − θ∗i ∼ N (0, Var(Z)
τ) where Var(Z) denotes the variance of each individual observation (assumed

the same for each arm). This suggests that
θ̂i−θ∗i√
Var(Z))

∈ [−1.96, 1.96] with probability at least .95

using a standard Normal distribution look up. But this is asymptotic, can we get non-asymptotic
and mathematically convenient quantities?

1.1. INTRODUCTION 11

1.1.4 Finite-sample confidence intervals

Proposition 1 (Chernoff Bounding technique). Fix ε, δ. If Z1, Z2, . . . are independent mean-
zero random variables with ψZ(λ) := log(E[exp(λZi)]) then P(1

τ

∑τ
t=1 Zt > ε) ≤ infλ exp(−τελ +

τψZ(λ)).

Proof.

P(
1

τ

τ∑
t=1

Zt > ε) = P(exp

(
λ

τ∑
t=1

Zt

)
> exp(λτε))

≤ e−λτεE

[
exp

(
λ

τ∑
t=1

Zt

)]
(Markov’s)

= e−λτε
τ∏
t=1

E [exp (λZt)] (Independence)

= exp (−λτε+ τψZ(λ))

Corollary 1. Let Z1, Z2, . . . be independent mean-zero σ2-sub-Gaussian random variables so that
ψZ(λ) := log(E[exp(λZt)]) ≤ exp(λ2σ2/2), then for τ = d2σ2ε−2 log(1/δ)e we have P(1

τ

∑τ
t=1 Zt ≤

ε) ≥ 1− δ.

Lemma 1 (Hoeffding’s Lemma). Let X be an independent random variable with support in [a, b]
almost surely and E[X] = 0. Then log(E[exp(λX)]) ≤ (b− a)2λ2/8.

We provide two proofs of this result. Both apply a clever trick followed by tedious derivative
calculations.

Proof. This proof is adapted from [Boucheron et al., 2013]. Let PX denote the distribution of X so
that for any function g : R→ R we have EX [g(X)] =

∫
x g(x)dP (x). Define a new random variable Z

with distribution PZ defined as dPZ(x) = 1
EX [exp(λX)]e

λxdPX(x). Note that PZ is a valid distribution

as dPZ(x) ≥ 0 for all x and
∫
x dPZ(x) = 1

EX [exp(λX)]

∫
x e

λxdPX(x) = 1
EX [exp(λX)]EX [exp(λX)] = 1.

The key observation is to notice that

ψX(λ) := log(EX [exp(λX)])

ψ′X(λ) =
1

EX [exp(λX)]
EX [X exp(λX)]

ψ′′X(λ) =
1

EX [exp(λX)]
EX [X2 exp(λX)]−

(
1

EX [exp(λX)]
EX [X exp(λX)]

)2

=EZ [Z2]− EZ [Z]2

=Var(Z)

≤(b− a)2/4

where the last line follows from the fact that the support of PZ is contained in [a, b] so that

Var(Z) = EZ [(Z − EZ [Z]2)2] ≤ EZ [(Z − a+b
2)2] ≤ (b− a)2/4.

12 CHAPTER 1. MULTI-ARMED BANDITS

By Taylor’s remainder theorem, for some θ ∈ [0, λ] we have

ψX(λ) = ψX(0) + ψ′X(0)λ+ ψ′′X(θ)λ2/2

= ψ′′X(θ)λ2/2

≤ (b− a)2λ2/8

which completes the proof.

Proof. Since X ∈ [a, b], note that if we define Z = X−a
b−a then Z ∈ [0, 1] and X = (1 − Z)a + Zb.

We can then write

E[exp(λX)] = E[exp
(
λ((1− Z)a+ Zb)

)
]

≤ E[(1− Z)eλa + Zeλb]

=
b

b− a
eλa +

−a
b− a

eλb

= (1− t)e−λ(b−a)t + teλ(b−a)(1−t)

= e−λ(b−a)t
[
1− t+ teλ(b−a)

]
where t = −a

b−a . Thus, if φ(λ) := −λ(b − a)t + log(1 − t + teλ(b−a)) then log
(
E[exp(λX)]

)
≤ φ(λ).

Note that

φ(λ) = −λ(b− a)t+ log(1− t+ teλ(b−a))

φ′(λ) = −(b− a)t+
t(b− a)eλ(b−a)

1− t+ teλ(b−a)

φ′′(λ) =
t(b− a)2eλ(b−a)(1− t+ teλ(b−a))− t2(b− a)2e2λ(b−a)

(1− t+ teλ(b−a))2

=
t(1− t)eλ(b−a)

(1− t+ teλ(b−a))2
(b− a)2

≤ (b− a)2/4

where the last inequality follows from the arithmetic-geometric mean inequality: α+β
2 ≥

√
αβ for

positive α, β. We apply Taylor’s theorem to complete the proof:

φ(λ) ≤ φ(0) + φ′(0)λ+ sup
τ
φ′′(τ)λ2/2 ≤ λ2(b− a)2/8.

1.1.5 A/B testing solution

Set τ = d8∆−2 log(4/δ)e and let θ̂i = 1
τ

∑τ
s=1Xi,s for i = 1, 2. Define the event

Ei :=

{
|θ̂i − θ∗i | ≤

√
2 log(4/δ)

τ

}
.

1.2. ELIMINATION ALGORITHM FOR PURE EXPLORATION 13

Then P(Ec1 ∪ Ec2) ≤ P(Ec1) + P(Ec1) ≤ δ. Thus, if we pull each arm τ times then on E1 ∩ E2 we have

θ̂1 > θ∗1 −
√

2 log(4/δ)

τ

> θ∗1 −∆/2

≥ θ∗2 + ∆/2

≥ θ̂2 −
√

2 log(4/δ)

τ
+ ∆/2

> θ̂2

so that we have determined the best-arm. And we can play it forever.

After any T total plays such that arm i has been played Ti times and T = T1 + T2, the expected
regret is at most

θ∗1T − E

[
T∑
s=1

XIs,s

]
= θ∗1T − E [(T1θ

∗
1 + T2θ

∗
2)]

= E [T2∆]

= E [T2∆1{E1 ∩ E2}+ T2∆1{Ec1 ∪ Ec2}]
≤ E [τ∆1{E1 ∩ E2}+ T∆1{Ec1 ∪ Ec2}]
≤ 8∆−1 log(4/δ) + ∆TP(Ec1 ∪ Ec2)

≤ 8∆−1 log(4/δ) + ∆Tδ.

If we take δ = 1/T then the expected regret is less than ∆ + 8∆−1 log(4T). On the other hand, the
regret can’t possibly be greater than ∆T , thus the total regret is bounded by

θ∗1T − E

[
T∑
s=1

XIs,s

]
= min{T∆,∆ + 8∆−1 log(4T)}

≤ 1 + 2
√

8T log(4T)

where the last step takes the worst case ∆ =
√

8 log(4T)/T .

Takeaway: For very small ∆ we lose almost nothing, for very large ∆ its easy to distinguish, its
maximized at around 1/

√
T . We’ll see this again.

1.2 Elimination Algorithm for Pure exploration

Input: n arms X = {1, . . . , n}, confidence level δ ∈ (0, 1).
Let X1 ← X , `← 1
while |X`| > 1 do
ε` = 2−`

Pull each arm in X` exactly τ` = d2ε−2
` log(4`2|X |

δ)e times

Compute the empirical mean of these rewards θ̂i,` for all i ∈ X`
X`+1 ← X` \

{
i ∈ X` : maxj∈X` θ̂j,` − θ̂i,` > 2ε`

}
`← `+ 1

Output: X`+1 (or play the last arm forever in the regret setting)

14 CHAPTER 1. MULTI-ARMED BANDITS

Lemma 2. Assume that maxi∈X ∆i ≤ 4. With probability at least 1 − δ, we have 1 ∈ X` and
maxi∈X` ∆i ≤ 8ε` for all ` ∈ N.

Proof. For any ` ∈ N and i ∈ [n] define

Ei,` =
{
|θ̂i,` − θ∗i | ≤ ε`

}

and E =
⋂n
i=1

⋂∞
`=1 Ei,`. Noting that ε` =

√
2 log(4n`2/δ)

τ`
we have

P(Ec) = P

(
n⋃
i=1

∞⋃
`=1

Eci,`

)
≤

n∑
i=1

∞∑
`=1

δ

2n`2
≤ δ.

In what follows assume E holds.

Fix any ` for which 1 ∈ X` (note 1 ∈ X̂1). Then for any j ∈ X` we have

θ̂j,` − θ̂1,` = (θ̂j,` − θ∗j)− (θ̂1,` − θ∗1)−∆`

E
≤ 2ε`

which implies 1 ∈ X`+1. Thus, 1 ∈ X` for all `. On the other hand, any i for which ∆i = θ∗1−θ∗i > 4ε`
we have

max
j∈X`

θ̂j,` − θ̂i,` ≥ θ̂1,` − θ̂i,`

= (θ̂1,` − θ1)− (θ̂i,` − θi) + ∆i

> −2ε` + 4ε` = 2ε`

which implies this maxj∈X`+1
θ∗j ≥ θ∗1 − 4ε` = θ∗1 − 8ε`+1.

Theorem 1. Assume that maxi∈X ∆i ≤ 4. Then with probability at least 1− δ, 1 is returned from
the algorithm at a time τ that satisfies

τ ≤ c
n∑
i=2

∆−2
i log(n log(∆−2

i)/δ)

Proof. Assume E holds, as it does with probability at least 1− δ. If ∆ = mini 6=1 ∆i then X` = {1}

1.3. ELIMINATION ALGORITHM FOR REGRET MINIMIZATION 15

for t ≥ dlog2(8∆−1)e since all other arms would have been removed. Note that

Ti =

dlog2(8∆−1)e∑
`=1

τ`1{i ∈ X`}

≤
dlog2(8∆−1)e∑

`=1

τ`1{∆i ≤ 8ε`}

=

dlog2(8∆−1
i)e∑

`=1

τ`

=

dlog2(8∆−1
i)e∑

`=1

d2ε−2
` log(4`2|X |

δ)e

≤ d2 log(
4 log2

2(16∆−2
i)|X |

δ)e
dlog2(8∆−1

i)e∑
`=1

4`

≤ c∆−2
i log(

4 log2
2(16∆−2

i)|X |
δ).

Thus, the total number of samples taken before X` = {1} is equal to

n∑
i=1

Ti ≤ T1 +
n∑
i=1

c∆−2
i log(

4 log2
2(16∆−2

i)|X |
δ)

≤ 2
n∑
i=1

c∆−2
i log(

4 log2
2(16∆−2

i)|X |
δ)

which implies that one can identify the best arm after no more than
∑n

i=2 ∆−2
i log(n log(∆−2

i)/δ).

1.3 Elimination Algorithm for Regret minimization

We will use the same algorithm and Lemma as above, but now analyze the regret of the algorithm.

Theorem 2. Assume that maxi∈X ∆i ≤ 4. For any T ∈ N, with probability at least 1− δ

∑
i:∆i>0

Ti∆i ≤ inf
ν≥0

νT +

n∑
i=1

c(∆i ∨ ν)−1 log(log((∆i∨ν)−1)|X |
δ).

Moreover, if the algorithm is run with δ = 1/T then RT ≤ c
∑n

i=2 ∆−1
i log(T) and RT ≤ c

√
nT log(T).

16 CHAPTER 1. MULTI-ARMED BANDITS

Suppose you run for T timesteps. For any ν ≥ 0 the regret is bounded by:

n∑
i=2

∆iTi =
∑
i:∆i≤ν

∆iTi +
∑
i:∆i>ν

∆iTi

≤ νT +
∑
i:∆i>ν

∆iTi

= νT +
∑
i:∆i>ν

∞∑
`=1

∆iτ`1{i ∈ X`}

≤ νT +
∑
i:∆i>ν

∞∑
`=1

∆iτ`1{∆i ≤ 8ε`}

≤ νT +

n∑
i=2

∞∑
`=1

∆iτ`1{∆i ∨ ν ≤ 8ε`}

≤ νT +
n∑
i=2

dlog2(8(∆i∨ν)−1)e∑
`=1

8ε`τ`

= νT +

n∑
i=2

dlog2(8(∆i∨ν)−1)e∑
`=1

8ε`d2ε−2
` log(4`2|X |

δ)e

≤ νT +
n∑
i=2

c log(
4 log2

2(8(∆i∨ν)−2)|X |
δ)

dlog2(8(∆i∨ν)−1)e∑
`=1

2`

≤ νT +
n∑
i=2

c(∆i ∨ ν)−1 log(log((∆i∨ν)−1)|X |
δ)

where the second inequality follows from Lemma 2. Setting ν = 0 yields a regret of
∑n

i=2 ∆−1
i log(n log(∆−1

i)/δ).
On the other hand, using ∆i∨ν ≥ ν and minimizing over ν yields a regret of

√
nT log(n log(T)/δ).

The expected regret, of course, is then bounded by

n∑
i=2

∆iE[Ti] = E

[
n∑
i=2

∆iTi

]

≤
n∑
i=2

∆−1
i log(n log(∆−1

i)/δ) + TP(Ec)

Setting δ = 1/T implies the regret is less than
∑n

i=2 c∆
−1
i log(T).

Some remarks:

• This analysis doesn’t reuse samples from previous rounds, it is easy to make this change.

• Regret bound requires knowledge of T a priori. One can avoid knowing this by using a double
trick: guess a value of T , then when you this value double T and restart using this value of
T .

1.4. LOWER BOUNDS FOR MULTI-ARMED BANDITS 17

1.4 Lower bounds for Multi-armed Bandits

Let us briefly pause to consider how far off from optimal we are, and then think about an algorithm
that could get us to optimality. How do we know we’re doing okay?

1.4.1 Preliminaries

Let (X ,A) be a measurable space and P,Q be two measures over (X ,A). Let ν be a dominating
measure so that p(x) = dP (x)/dν(x) and q(x) = dQ(x)/dν(x) are well-defined.

Definition 1. The total variation between measures P,Q is defined as

TV (P,Q) = sup
A∈A
|P (A)−Q(A)| = sup

A∈A

∣∣∣ ∫
x∈A

p(x)− q(x)dν(x)
∣∣∣.

Lemma 3. [Scheffe’s Theorem] TV (P,Q) = 1
2

∫
x |p(x)− q(x)|dν(x) = 1−

∫
x min{p(x), q(x)}dν(x).

Lemma 4. [LeCam’s inquality]
∫
x min{p(x), q(x)}dν(x) ≥ 1

2

(∫
x

√
p(x)q(x)dν(x)

)2

Proof.(∫
x

√
p(x)q(x)dν(x)

)2

=

(∫
x∈Rn

√
min{p(x), q(x)}max{p(x), q(x)}dν(x)

)2

≤
∫
x

min{p(x), q(x)}dν(x)

∫
x

max{p(x), q(x)}dν(x) (Cauchy-Schwartz)

≤ 2

∫
x

min{p(x), q(x)}dν(x)

by noting that
∫
x max{p(x), q(x)}dν(x) ≤

∫
x p(x)dν(x) +

∫
x q(x)dν(x) = 2.

Definition 2. The Kullback Liebler divergence between P and Q is

KL(P,Q) =

∫
x

log
(p(x)

q(x)

)
p(x)dν(x).

Lemma 5 (Pinsker’s inequality). TV (P,Q) ≤ min
{√

KL(P,Q)/2, 1− 1
2 exp(−KL(P,Q))

}
.

Proof. The first argument is known as Pinsker’s inequality, and the following proof is due to Pollard.

For random variables X and Y ≥ 0 Sedrakyan’s inequality says E[X
2

Y] ≥ E[|X|]2
E[Y] . Define r(x) =

p(x)
q(x) − 1. Then

KL(P,Q) =

∫
x

(
(1 + r(x)) log(1 + r(x))− r(x)

)
q(x)dν(x)

≥ 1

2

∫
x

r(x)2

1 + r(x)/3
q(x)dν(x) (Taylor series)

≥ 1

2

(∫
x |r(x)|q(x)dν(x)

)2∫
x

(
1 + r(x)/3

)
q(x)dν(x)

(Sedrakyan’s inequality)

=
1

2

(∫
x
|p(x)− q(x)|dν(x)

)2

(
∫
x r(x)q(x)dν(x) = 0)

= 2TV (P,Q)2. (Lemma 3)

18 CHAPTER 1. MULTI-ARMED BANDITS

The second argument follows by TV (P,Q) = 1−
∫
x min{p(x), q(x)}dν(x) and

∫
x

min{p(x), q(x)}dν(x) ≥ 1

2

(∫
x

√
p(x)q(x)dν(x)

)2

(Lemma 4)

=
1

2
exp

(
2 log(

∫
x
p(x)

√
q(x)/p(x)dν(x))

)
≥ 1

2
exp

(
2

∫
x
p(x) log(

√
q(x)/p(x))dν(x)

)
(Jensen’s inequality)

=
1

2
exp

(
−
∫
x

log(q(x)
p(x))q(x)dν(x)

)
=

1

2
KL(P,Q).

Lemma 6 (Chain-rule). Let P =
∏n
t=1 p(·) and Q =

∏n
t=1 q(·) be product measures with respect to

p, q respectively. Then KL(P,Q) = nKL(p, q).

Proof.

KL(P,Q) = EP [log(
n∏
t=1

p(Xt)

q(Xt)
)] = EP [

n∑
t=1

log(
p(Xt)

q(Xt)
)] = nKL(p, q)

Definition 3. Fix measures P,Q on (Ω,F) with Q� P . The Radon-Nikodym derivative of P with
respect to Q is a random variable dP

dQ : Ω→ R+ such that P (A) =
∫
ω∈A dP (ω) =

∫
ω∈A

dP
dQ(ω)dQ(ω)

for all A ∈ F .

Lemma 7. Let P,Q be two probability measures on (Ω,F). Let Z be a random variable defined
on this space and define PZ(A) = P (Z ∈ A) =

∫
ω∈Ω:Z(ω)∈A dP (ω) and similarly for QZ . Then

D(PZ , QZ) =
∫

log
(
dP
dQ(Z(ω))

)
dP (ω) = EP [log

(
dP
dQ(Z)

)
].

Proof. On the one hand we have∫
z∈A

dPZ(z) =

∫
z∈A

∫
ω:Z(ω)=z

dP (ω) =

∫
z∈A

dP (z) =

∫
z∈A

dP

dQ
(z)dQ(z)

but on the other we have ∫
z∈A

dPZ(z) =

∫
z∈A

dPZ
dQZ

(z)dQZ(z)

=

∫
z∈A

dPZ
dQZ

(z)

∫
ω:Z(ω)=z

dQ(ω)

=

∫
ω:Z(ω)∈A

dPZ
dQZ

(Z(ω))dQ(ω).

1.4. LOWER BOUNDS FOR MULTI-ARMED BANDITS 19

Thus, a valid choice of dPZ
dQZ

(Z(ω)) is precisely dP
dQ(z). Now

D(PZ , QZ) =

∫
z

dPZ
dQZ

(z)dQZ(z)

=

∫
z

dP

dQ
(z)dQZ(z)

=

∫
z

dP

dQ
(z)

∫
ω:Z(ω)=z

dQ(ω)

=

∫
ω

dP

dQ
(Z(ω))dQ(ω).

To appreciate the significance of the previous lemma consider a sequence of random variables
X1, X2, . . . where Xt is Ft measurable. Let τ be a stopping time so that {τ = t} is Ft-measurable.
If P is the probability law of {Xt}τt=1 when Xt ∼ p and analogously for Q, q, then D(P,Q) =

EP [log
(∏τ

t=1 p(Xt)∏τ
t=1 q(Xt)

)
] = EP [

∑τ
t=1 log(p(xt)q(xt)

)] = KL(p, q)EP [τ].

Lemma 8 (A data-processing inequality). Let P,Q be two probability measures on (Ω,F). Let Z
be a random variable defined on this space and define PZ(A) = P (Z ∈ A) =

∫
ω∈Ω:Z(ω)∈A dP (ω) and

similarly for QZ . Then D(PZ , QZ) ≤ D(P,Q).

Proof. We will prove it for Ω discrete. Define f(x) = x log(x) so that

D(P,Q) =
∑
z

∑
ω:Z(ω)=z

P (ω) log(
P (ω)

Q(ω)
)

=
∑
z

∑
ω:Z(ω)=z

Q(ω)f(
P (ω)

Q(ω)
)

=
∑
z

QZ(z)
∑

ω:Z(ω)=z

Q(ω)

QZ(z)
f(
P (ω)

Q(ω)
)

≥
∑
z

QZ(z)f(
∑

ω:Z(ω)=z

Q(ω)

QZ(z)

P (ω)

Q(ω)
)

=
∑
z

QZ(z)f(
PZ(z)

QZ(z)
) = D(PZ , QZ)

where the inequality follows by Jensen’s since f is convex.

1.4.2 Lower bounds for estimating the mean of a Gaussian

Suppose I get n samples from a Gaussian distribution N (µ, 1). You compute the empirical mean
µ̂ = 1

n

∑n
i=1Xi. We know that |µ̂− µ| ≤

√
2 log(2/δ)/n. How tight is this? If µ ∈ {0,∆} then we

just need n = 8∆−2 log(2/δ)1

1Using the SPRT, as δ → 0 one needs just an expected number of samples equal to 2∆−2 log(2/δ).

20 CHAPTER 1. MULTI-ARMED BANDITS

Let pµ(x) = 1
2πe
−(x−µ)2/2σ2

be the Gaussian distribution with mean µ. Under H0, Xi ∼ p0 and
under H1, Xi ∼ p∆. Let φ : Rn → {0, 1}. Then the minimax probability of error is equal to

inf
φ

max{P0(φ = 1),P1(φ = 0)} ≥ inf
φ

1

2
(P0(φ = 1) + P1(φ = 0))

≥ 1

2
(1− sup

A
|P0(A)− P1(A)|)

≥ 1

4
exp(−KL(P1,P0)) (Lemma 5)

Note that

KL(P1|P0) =

∫
x

log

(
n∏
i=1

p1(xi)

p0(xi)

)
n∏
i=1

p1(xi)dx

= nKL(p1|p0) = n∆2/2

and that KL(N (0, 1)|N (∆, 1)) = ∆2/2.

We conclude that

inf
φ

max{P0(φ = 1),P1(φ = 0)} ≥ 1

4
exp

(
−n∆2/2

)
Thus, to determine whether or not n samples are from a Gaussian with mean 0 or ∆ with probability
of failure less than δ, one needs n ≥ 2∆−2 log(1/4δ).

1.4.3 Indentification

An algorithm for best-arm identification at time t is described by given a history (Is, Xs)s<t for
each time t is described by a

• selection rule It ∈ [n] is Ft−1 measurable where Ft = σ(I1, X1, I2, X2, . . . , It−1, Xt−1)

• stopping time τ is Ft measurable, and

• recommendation rule î ∈ [n] invoked at time τ which is Fτ -measurable.

Definition 4. We say that an algorithm for best-arm identification is δ-PAC if for all θ∗ ∈ Rn we
have Pθ∗ (̂i = arg maxi∈[n] θ

∗
i) ≥ 1− δ.

The following is due to [Kaufmann et al., 2016], a strengthening of the first time it appeared in
[Mannor and Tsitsiklis, 2004].

Theorem 3 (Best-arm identification lower bound). Any algorithm that is δ-PAC on {P : Pi =
N (θi, 1), θ1 > maxi 6=1 θi, θ ∈ [0, 1]n} for δ < 0.15 satisfies Eθ∗ [τ] ≥ 2 log(1

2.4δ)
∑n

i=1 ∆−2
i .

Proof sketch: The original instance has Pi = N (θ∗i , 1). Pick some j ∈ [n] and define an alternative

mean vector θ(j) ∈ [0, 1]n such that θ
(j)
i = θ∗i if i 6= j and θ

(j)
i = θ1 + ε for j = i for some arbitrarily

small number ε. Note that under θ(j), arm j is the best arm.

Because the algorithm claims to be δ-PAC, it has to output arm 1 under θ∗ and arm j under θ(j).
But these two bandit games only differ on arm j so to tell the difference between them its only
natural to sample arm j until one can figure out which instance is being played (i.e., is its mean θj

1.4. LOWER BOUNDS FOR MULTI-ARMED BANDITS 21

or θ1 + ε?) The discussion above suggests that to make this distinction with probability at least
1 − δ, it is necessary to sample arm j at least 2(θ1 − θj + ε)−2 log(1/4δ) times. Taking ε to zero
and noticing that j was arbitrary completes the sketch.

This is not a proof, however, because the number of times the algorithm samples arm j is ran-
dom whereas in the above argument it was fixed. The proof of [Kaufmann et al., 2016] provides
convenient tools to prove general lower bounds for δ-PAC settings.

1.4.4 Regret, minimax

Theorem 4 (Minimax regret lower bound). For every T ≥ n there exists a set of instances
Pθ = N (θ, I) such that supPθ Eθ[RT] ≥

√
nT/512.

Proof. Let θ = (∆, 0, . . . , 0). For any algorithm, by the pigeon hole principle, there exists an
arm î ∈ [n] such that E[Tî] ≤ T/n. Define θ′ to be identical to θ except set θ̂i = 2∆. Let
ν =

∏n
i=1N (θi, 1) and ν ′ =

∏n
i=1N (θ′i, 1).

Note that

Eν′ [Regret] =

n∑
i=1

(θ̂i − θi)Eν′ [Ti] ≥ (θ̂i − θ1)Eν′ [T1] = ∆Eν′ [T1] ≥ ∆Pν′(T1 ≥ T/2)T/2

by Markov’s inequaltiy, and similarly we have

Eν [Regret] =

n∑
i=1

(θ1 − θi)Eν [Ti] = ∆(T − Eν [T1]) ≥ ∆(1− Pν(T1 ≥ T/2))T/2.

We observe that

max
µ∈{ν,ν′}

Eµ[Regret] ≥ (Eν′ [Regret] + Eν [Regret])/2

=
∆T

4
(1 + Pν′(T1 ≥ T/2)− Pν(T1 ≥ T/2))

≥ ∆T

4
(1− sup

E
|Pν′(E)− Pν(E)|)

≥ ∆T

4
(1−

√
KL(N (θ̂i, 1)|N (θ′

î
, 1))Eν [Tî]/2)

=
∆T

4
(1−

√
2∆2Eν [Tî])

≥ ∆T

4
(1−

√
2∆2T/n).

Taking ∆ =
√

n
8T completes the proof.

1.4.5 Gap-dependent regret

Lemma 9. Any strategy that satisfies E[Ti(t)] = o(ta) for any arm i with ∆i > 0 and a ∈ (0, 1),

we have that limT→∞ inf R̄T
log(T) =

∑n
i=2

2
∆i

.

Takeaway: This is what his field does: prove an initial upper, then lower, then chase it.

22 CHAPTER 1. MULTI-ARMED BANDITS

1.4.6 Revisiting MAB with Optimism

Why go beyond action elimination algorithms? Because they will never hit the asymptotic lower
bound, for one thing, since if we look at when the second to last arm exits, the lowerbounds are
the same.

α-UCB which is arg maxi θ̂i,Ti(t) +
√

2α log(t)
Ti(t)

as α→ 1 achieves the lower bound.

Any sub-linear regret algorithm plays arm 1 an infinite number of times, so assume µ̂1 ≈ µ1.
Minimizing the maximum upper bound. Thus, we expect the number of times the ith arm is pulled
is 2∆−2

i log(T), which is optimal.

UCB1 in its most popular form was developed by [Auer et al., 2002].

MOSS first achieved
√
nT regret [Audibert and Bubeck, 2009].

KL-UCB is finite-time analysis with optimal constants for asymptotic regret [Cappé et al., 2013].

The recent work of [Lattimore, 2018] defined a UCB-based algorithm that achieves asymptotic

optimal constants, and finite regret bounds of
∑

i
log(T)

∆−1
i

and
√
nT .

Chapter 2

Linear bandits

2.1 Problem statement

Now suppose each arm i = 1, . . . , n has a feature vectors xi ∈ Rd. And more over, there exists some
θ∗ ∈ Rd such that a pull of arm It ∈ [n] results in a reward yt = 〈xIt , θ∗〉+ ηt where ηt ∼ N (0, 1).

Applications: Drug-discovery, Spotify, Netflix, ads

In the previous setup, pulling arm i provided no information about arm j, but now suddenly it
does.

2.2 Review of least squares

Given a sequence of arm choices and observed rewards let {xt, yt, ηt}τt=1 we denote the stacked
sequences of each as X ∈ Rτ×d, Y ∈ Rτ , and η ∈ Rτ respectively where Y = Xθ∗ + η. Using this
information we can derive a least-squares estimate of θ∗ given as follows

θ̂ = (XTX)−1XTY = (XTX)−1XT (Xθ∗ + η) = θ∗ + (XTX)−1XT η.

Fix any z ∈ Rd, then Thus

z>(θ̂ − θ∗) = z>(X>X)−1X>η.

Note that η ∼ N (0, I). For any W ∼ N (µ,Σ) we have AW + b ∼ N (Aµ+ b, AΣA>). Thus

z>(θ̂ − θ∗) ∼ N (0, z>(X>X)−1z).

so that

P
(
z>(θ̂ − θ∗) ≥

√
2z>(X>X)−1z log(1/δ)

)
≤ δ.

We will use the notation ‖z‖2A = z>Az so that with probability at least 1− δ

z>(θ̂ − θ∗) ≤ ‖z‖(X>X)−1

√
2 log(1/δ)

23

24 CHAPTER 2. LINEAR BANDITS

Aside: Gaussian to sub-Gaussian

For an arbitrary constant µ,

P (xT (θ̂ − θ∗) > µ) = P (wT η > µ)

≤ exp(−λµ)E[exp(λwT η)], let λ > 0 Chernoff Bound

= exp(−λµ)E[exp(λ
t∑
i=1

wiηi)]

= exp(−λµ)
t∏
i=1

E[exp(λwiηi)] independence of wiηi

≤ exp(−λµ)

t∏
i=1

exp(λ2w2
i /2) sub-Gaussian assumption

= exp(−λµ) exp(
λ2

2
||w||22)

≤ exp(− µ2

2||w||22
) λ =

µ

||w||22

= exp(− µ2

2xT (XTX)−1x
) = δ,

where in the final step we made use of the following equality

||w||22 = xT (XTX)−1XTX(XTX)−1x = xT (XTX)−1x.

Thus with probability at least 1− δ,

xT (θ̂ − θ∗) ≤
√

2xT (X>X)−1x log(
1

δ
)

=: ‖x‖(X>X)−1

√
2 log(1/δ)

2.3 Experimental design and Kiefer-Wolfowitz

Note that if I take measurements (x1, . . . , xn) ∈ X and observe their corresponding observations
yi = 〈xi, θ∗〉 + ηi where ηi ∈ ′,∞, then E[(θ̂ − θ)(θ̂ − θ)>] = σ2(XTX)−1 and also, θ̂ − θ∗ ∼
N (0, σ2(X>X)−1). We can visualize this as a confidence ellipsoid for each choice of X. And
we can even think of optimizing the choice. Recall that the PDF of a Gaussian is φ(x) =

1
(2π|Σ|)d/2 e

−x>Σ−1x/2. With entropy 1
2 log(2πe|Σ|).

When the number of selected points is large, its more convenient to think of sampling n points
from a distribution placed over X . Define

Aλ =
∑
x∈X

λxxx
>

so that for every X ∈ Rτ×d there exists some λ ∈ 4X such that X>X =
∑

x∈X dλxτexx> = Aλ.

This Aλ can then be used to shape the covariance θ̂:

2.3. EXPERIMENTAL DESIGN AND KIEFER-WOLFOWITZ 25

• A-optimality: minimize fA(λ) = Tr(A−1
λ) minimizes E[‖θ̂ − θ‖22]

• E-optimality: minimize fE(λ) = maxu:‖u‖≤1 u
>A−1

λ u minimizes maxu:‖u‖≤1 E[(〈u, θ̂ − θ〉)2]

• D-optimality: maximize gD(λ) = log(|Aλ|) maximizes the entropy of distribution. Also, if
Eλ = {x : x>A−1

λ x ≤ d} then D-optimality is the minimum volume ellipsoid that contains X .

• G-optimality: minimize fG(λ) = maxx∈X x
>A−1

λ x minimizes maxx∈X E[(〈x, θ̂ − θ∗〉)2]

Lemma 10 (Kiefer-Wolfowitz (1960)). For any X with d = dim(span(X)), there exists a λ∗ ∈ 4X
that

• maxλ gD(λ) = gD(λ∗)

• minλ fG(λ) = fG(λ∗)

• fG(λ∗) = d

• support(λ∗) = (d+ 1)d/2

Proposition 2. If λ∗ is the G-optimal design for X then if we pull arm x ∈ X exactly dτλ∗xe times
for some τ > 0 and compute the least squares estimator θ̂. Then for each x ∈ X we have with
probability at least 1− δ

〈x, θ̂ − θ∗〉 ≤ ‖x‖(∑x∈X dτλ∗xexx>)−1

√
2 log(1/δ)

≤ 1√
τ
‖x‖(∑x∈X λ

∗
xxx
>)−1

√
2 log(1/δ)

≤
√

2d log(1/δ)

τ

and we have taken at most τ+ d(d+1)
2 pulls. Thus, for any δ′ ∈ (0, 1) we have P(

⋃
x∈X {|〈x, θ̂−θ∗〉| >√

2d log(2|X |/δ′)
τ }) ≤ δ′.

Notes:

• The support size of (d + 1)d/2 is trivial application of Caratheodory’s theorem. Many algo-
rithms to find this efficiently.

• Note that one can find a λ∗ with a constant approximation with just support O(d).

• Leverage scores if V -optimality

• John’s ellipsoid is equivalent to G/D-optimality

[Pukelsheim, 2006, Yu et al., 2006]. [Yu et al., 2006, Soare et al., 2014, Soare, 2015, Lattimore and Szepesvari, 2017],

26 CHAPTER 2. LINEAR BANDITS

2.3.1 Frank-Wolfe for D/G-optimal design

Define g(λ) = logdet(
∑

x∈X λxxx
>). Recall that for any λ ∈ 4X we have by Kiefer-Wolfowitz that

[∇g(λ)]x′ = ‖x′‖2
(
∑
x∈X λxxx

>)−1 ≥ d.

Input: Finite set (x1, . . . , xn) ⊂ Rd, λ1 ∈ 4n.
for k = 1, 2, . . .
Ik = arg maxi ‖xi‖2(∑n

j=1 λ
k
j xjx

>
j)−1

λk+1 = (1− γk)λk + γk[∇g(λ)]Ik where

γk = arg max
γ

g
(

(1− γ)λk + γeIk

)
If maxi ‖xi‖2(∑n

j=1 λ
k+1
j xjx>j)−1

≤ 2d Terminate

The analysis of the algorithm critically leverages the step size selection. Let A(λ) =
∑n

i=1 λixix
>
i

so that g(λ) = logdet(A(λ)). Note that for some step size γ and i ∈ [n] we have

g ((1− γ)λ+ γei) = g
(

(1− γ)[λ+ γ
1−γei]

)
= d log(1− γ) + logdet(A(λ) + γ

1−γxix
>
i)

= d log(1− γ) + logdet(A(λ)(I + γ
1−γA(λ)−1xix

>
i))

= d log(1− γ) + logdet(A(λ)) + log(1 + γ
1−γ ‖xi‖

2
A(λ)−1)

which means, plugging in the definition of γk and Ik,

g(λk+1)− g(λk) = max
γ

d log(1− γ) + log(1 + γ
1−γ ‖xIk‖

2
A(λk)−1)

= max
τ
−d log(1 + τ) + log(1 + τ‖xIk‖

2
A(λk)−1)

≥ max
τ
−dτ + τ‖xIk‖

2
A(λ)−1 − τ2‖xIk‖

4
A(λk)−1/2

=
(‖xIk‖2A(λ)−1 − d)2

2‖xIk‖4A(λk)−1

where we have taken the reparameterization τ = γ
1−γ which implies γ = τ/(1 + τ), and the fact

log(1 + x) ≥ x− x2/2 for x ≥ 0.

Let K be the final iterate of the algorithm when it terminates. By the definition of the termination
condition and Ik, for all k ≤ K we have that ‖xIk‖2A(λk)−1 > 2d. Thus,

g(λK+1) ≥ g(λK) +
(‖xIK‖2A(λK)−1 − d)2

2‖xIK‖4A(λK)−1

≥ g(λ1) +
K∑
k=1

(‖xIk‖2A(λ)−1 − d)2

2‖xIk‖4A(λk)−1

= g(λ1) +

K∑
k=1

(1− d

‖xIK‖2A(λ)−1

)2/2

≥ g(λ1) +K/8

2.4. ELIMINATION ALGORTIHM FOR REGRET MINIMIZATION 27

which implies K ≤ 8(maxλ g(λ)− g(λ1)).

There exists an algorithm to produce an initiliazation with |support(λ1)| = 2d and maxλ g(λ) −
g(λ1) ≤ 5d log(d) [?]. This implies that |support(λ(K+1))| ≤ 40d log(d). But our above analysis is
actually quite weak, one can improve this result to O(d log log(d)) with a more careful Taylor series
upper bound.

2.4 Elimination algortihm for Regret Minimization

This section is inspired by [Lattimore and Szepesvári, 2020].

Input: Finite set X ⊂ Rd, confidence level δ ∈ (0, 1).
Let X1 ← X , `← 1
while |X`| > 1 do

Let λ̂` ∈ 4X` be a d(d+1)
2 -sparse minimizer of f(λ) = max

x∈X`
‖x‖2(∑x∈X`

λxxx>)−1

ε` = 2−`, τ` = 2dε−2
` log(4`2|X |/δ)

Pull arm x ∈ X exactly dλ̂`,xτ`e times and construct the least squares estimator θ̂` using
only the observations of this round
X`+1 ← X` \

{
x ∈ X` : maxx′∈X`〈x′ − x, θ̂`〉 > 2ε`

}
`← `+ 1

Output: X`
After T time steps, define the regret as

RT = 〈x?, θ∗〉 − E

[
T∑
t=1

〈xt, θ∗〉

]

= E

∑
x 6=x?

Tx∆x

where ∆x = 〈x? − x, θ∗〉.

Lemma 11. Assume that maxx∈X 〈x?−x, θ∗〉 ≤ 4. With probability at least 1− δ, we have x? ∈ X`
and maxx∈X`〈x? − x, θ∗〉 ≤ 8ε` for all ` ∈ N.

Proof. For any V ⊆ X and x ∈ V define

Ex,`(V) = {|〈x, θ̂`(V)− θ∗〉| ≤ ε`}

where it is implicit that θ̂` := θ̂`(V) is the G-optimal design constructed in the algorithm at stage
` with respect to X` = V. Note that this is precisely the analogous events of multi-armed bandits.

28 CHAPTER 2. LINEAR BANDITS

The key piece of the analysis is that

P

 ∞⋃
`=1

⋃
x∈X`

{Ecx,`(X`)}

 ≤ ∞∑
`=1

P

 ⋃
x∈X`

{Ecx,`(X`)}

=
∞∑
`=1

∑
V⊆X

P

(⋃
x∈V
{Ecx,`(V)},X` = V

)

=

∞∑
`=1

∑
V⊆X

P

(⋃
x∈V
{Ecx,`(V)}

)
P(X` = V)

≤
∞∑
`=1

∑
V⊆X

δ|V|
2`2|X |P(X` = V) ≤ δ

Thus, in what follows, assume E :=
⋂
x∈X

⋂∞
`=1{Ex,`(X`)} holds.

Fix any ` for which x? ∈ X` (note x? ∈ X1). Then for any x ∈ X` we have

〈x− x?, θ̂`〉 = 〈x, θ̂` − θ∗〉 − 〈x?, θ̂` − θ∗〉+ 〈x− x?, θ∗〉
≤ 2ε`

which implies x? ∈ X`+1. Thus, x? ∈ X` for all `. On the other hand, any x for which 〈x?−x, θ∗〉 >
4ε` we have

max
x′∈X`

〈x′ − x, θ̂`〉 ≥ 〈x? − x, θ̂`〉

= 〈x?, θ̂` − θ∗〉 − 〈x, θ̂` − θ∗〉+ 〈x? − x, θ∗〉
> 2ε`

which implies maxx∈X`+1
〈x, θ∗〉 ≥ 〈x?, θ∗〉 − 4ε` = 〈x?, θ∗〉 − 8ε`+1.

For any ` ≥ dlog2(8∆−1)e we have that X` = {x?}. Suppose you run for T timesteps. Then for any
ν ≥ 0 the regret is bounded by:∑
x∈X\x?

∆xTx =
∑

x∈X\x?:∆x≤ν

∆xTx +
∑

x∈X\x?:∆x>ν

∆xTx

≤ νT +
∞∑
`=1

∑
x∈X`\x?:∆x>ν

∆xdτ`λ̂`,xe

≤ Tν +

dlog2(8(∆∨ν)−1)e∑
`=1

8ε`(|support(λ̂`)|+ τ`)

= Tν +

dlog2(8(∆∨ν)−1)e∑
`=1

8ε`(
(d+1)d

2 + 2dε−2
` log(4`2|X |/δ))

≤ Tν + 4(d+ 1)ddlog2(8(∆ ∨ ν)−1)e+

dlog2(8(∆∨ν)−1)e∑
`=1

16dε−1
` log(4`2|X |/δ)

≤ Tν + 4(d+ 1)ddlog2(8(∆ ∨ ν)−1)e+ 16d log(4 log2
2(16(∆ ∨ ν)−1)|X |/δ)

dlog2(8(∆∨ν)−1)e∑
`=1

2`

≤ Tν + 4(d+ 1)ddlog2(8(∆ ∨ ν)−1)e+ 512d(∆ ∨ ν)−1 log(4 log2
2(16(∆ ∨ ν)−1)|X |/δ)

2.5. ELIMINATION ALGORITHM FOR PURE EXPLORATION 29

Setting ν = 0 yields a regret bound ofO(d∆−1 log(|X | log(∆−1)/δ)) which impliesRT ≤ c d∆ log(|X |T).

Minimizing over ν > 0 yields a regret bound of O(
√
dT log(log(T/d)|X |/δ)) which implies RT ≤

c
√
dT log(|X |T).

Remarks:

• Let X = {ei : i ∈ [d]}. Then for this action set, this bound is nearly minimax according to
our lower bounds!

• However, this is also concerning: we know that in the bandit setting the regret scales like∑d
i=2 ∆−1

i log(T) but this scales d∆−1 log(T), which is significantly worse. Can we achieve
this?

• For pure-exploration, an analogous analysis shows that one can identify the best-arm in
d

∆2 log(1/δ) pulls. But this is exactly the same rate we would have gotten if we did G-optimal
once in the beginning and sample according to that!

• Optimism won’t help here

2.5 Elimination algorithm for Pure exploration

This section is inspired by [Fiez et al., 2019].

Showing that x? is the best arm is equivalent to showing that 〈x? − x, θ∗〉 > 0 for all x ∈ X \ x?.
Given a finite number of observations, we have an estimate θ̂ and a confidence set for θ∗.

〈x? − x, θ̂〉 = 〈x? − x, θ̂ − θ∗〉+ 〈x? − x, θ∗〉

= 〈x? − x, θ̂ − θ∗〉+ ∆x

Recalling above, we have for any vector z ∈ Rd that |〈z, θ̂ − θ∗〉| ≤ ‖z‖(X>X)−1

√
2 log(1/δ) w.p.

≥ 1− δ.
We need to show that this confidence set is completely inside the x? region. Where we need to
decrease uncertainty is in the directions x − x?, clearly, which is not the G-optimal design. The
most realistic optimization program

ρ? := inf
λ∈4X ,τ∈N

τ

subject to max
x∈X

‖x? − x‖2
(
∑
x∈X τλxxx

>)−1

∆2
x

≤ 1

2

= inf
λ∈4X

max
x∈X

‖x? − x‖2
(
∑
x∈X λxxx

>)−1

∆2
x

Once can prove a lower bound of log(1/2.4δ)ρ?.

30 CHAPTER 2. LINEAR BANDITS

Input: Finite set X ⊂ Rd, confidence level δ ∈ (0, 1).
Let X1 ← X , t← 1
while |X`| > 1 do

Let λ̂` ∈ 4X be a d(d+1)
2 -sparse minimizer of f(λ;X`) where

f(V) = inf
λ∈X

f(λ;V) = inf
λ∈X

max
x,x′∈V

‖x− x′‖2(∑x∈X λxxx
>)−1

Set ε` = 2−`, τ` = 2ε−2
` f(X`) log(4`2|X |/δ)

Pull arm x ∈ X exactly dτ`λ̂`,xe times and construct θ̂`
X`+1 ← X` \

{
x ∈ X` : maxx′∈X`〈x′ − x, θ̂t〉 > ε`

}
t← t+ 1

Output: Xt+1

Lemma 12. Assume that maxx∈X 〈x?−x, θ∗〉 ≤ 2. With probability at least 1− δ, we have x? ∈ X`
and maxx∈X`〈x? − x, θ∗〉 ≤ 4ε` for all ` ∈ N.

Proof. For any V ⊆ X and x ∈ V define

Ex,`(V) = {|〈x− x?, θ̂`(V)− θ∗〉| ≤ ε`}

where it is implicit that θ̂` := θ̂`(V) is the design constructed in the algorithm at stage ` with
respect to X` = V. Given X`, with probability at least 1− δ

2`2|X |

|〈x− x?, θ̂` − θ∗〉| ≤ ‖x− x?‖(∑x∈Vdτ`λ`,x(V)exx>)−1

√
2 log(4`2|X |/δ)

≤
‖x− x?‖(∑x∈V λ`,x(V)xx>)−1

√
τ`

√
2 log(4`2|X |/δ)

≤

√√√√‖x− x?‖2(∑x∈V λ`,x(V)xx>)−1

2ε−2
` f(V) log(4`2|X |/δ)

√
2 log(4`2|X |/δ)

= ε`

By exactly the same sequence of steps as above, we have P(
⋂∞
`=1

⋂
x∈X`{|〈x− x

?, θ̂t− θ∗〉| > εt}) =

P
(⋂

x∈X
⋂∞
`=1 Ex,`(X`)

)
≥ 1− δ, so assume these events hold. Consequently, for any x′ ∈ X`

〈x′ − x?, θ̂`〉 = 〈x′ − x?, θ̂` − θ∗〉+ 〈x′ − x?, θ∗〉

≤ 〈x′ − x?, θ̂` − θ∗〉
≤ ε`

so that x? would survive to round `+ 1. And for any x ∈ X` such that 〈x? − x, θ∗〉 > 2ε` we have

max
x′∈X`

〈x′ − x, θ̂`〉 ≥ 〈x? − x, θ̂`〉

= 〈x? − x, θ̂` − θ∗〉+ 〈x? − x, θ∗〉
> −ε` + 2ε`

= ε`

which implies this x would be kicked out. Note that this implies that maxx∈X`+1
〈x? − x, θ∗〉 ≤

2ε` = 4ε`+1.

2.5. ELIMINATION ALGORITHM FOR PURE EXPLORATION 31

Theorem 5. Assume that maxx∈X 〈x? − x, θ∗〉 ≤ 2. Then with probability at least 1 − δ, x? is
returned from the algorithm at a time τ that satisfies

τ ≤ cρ? log(∆−1)[log(1/δ) + log(log(∆−1)) + log(|X |)].

Proof. Define S` = {x ∈ X : 〈x? − x, θ∗〉 ≤ 4ε`}. Note that by assumption X = X1 = S1. The
above lemma implies that with probability at least 1−δ we have

⋂∞
`=1{X` ⊆ S`}. This implies that

f(X`) = min
λ∈4X

max
x,x′∈X`

‖x− x′‖2(∑x∈X λxxx
>)−1

≤ min
λ∈4X

max
x,x′∈S`

‖x− x′‖2(∑x∈X λxxx
>)−1

= f(S`)

For ` ≥ dlog2(4∆−1)e we have that S` = {x?}, thus, the sample complexity to identify x? is equal
to

dlog2(4∆−1)e∑
`=1

∑
x∈X
dτ`λ̂`,xe =

dlog2(4∆−1)e∑
`=1

(
(d+1)d

2 + τ`

)

=

dlog2(4∆−1)e∑
`=1

(
(d+1)d

2 + 2ε−2
` f(X`) log(4`2|X |/δ)

)

≤ (d+1)d
2 dlog2(4∆−1)e+

dlog2(4∆−1)e∑
`=1

2ε−2
` f(S`) log(4`2|X |/δ)

≤ (d+1)d
2 dlog2(4∆−1)e+ 4 log(

4 log2
2(8∆−1)|X |

δ)

dlog2(4∆−1)e∑
`=1

22`f(S`).

We now note that

ρ? = inf
λ∈4X

max
x∈X

‖x− x?‖2
(
∑
x∈X λxxx

>)−1

(〈x− x?, θ∗〉)2

= inf
λ∈4X

max
`≤dlog2(4∆−1)e

max
x∈S`

‖x− x?‖2
(
∑
x∈X λxxx

>)−1

(〈x− x?, θ∗〉)2

≥ 1

dlog2(4∆−1)e
inf

λ∈4X

dlog2(4∆−1)e∑
`=1

max
x∈S`

‖x− x?‖2
(
∑
x∈X λxxx

>)−1

(〈x− x?, θ∗〉)2

≥ 1

16dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

22` inf
λ∈4X

max
x∈S`
‖x− x?‖2(∑x∈X λxxx

>)−1

≥ 1

64dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

22` inf
λ∈4X

max
x,x′∈S`

‖x− x′‖2(∑x∈X λxxx
>)−1

≥ 1

64dlog2(4∆−1)e

dlog2(4∆−1)e∑
`=1

22`f(S`)

where we have used the fact that maxx,x′∈St ‖x−x′‖2(∑x∈X λxxx
>)−1 ≤ 4 maxx∈St ‖x−x?‖2(∑x∈X λxxx

>)−1

by the triangle inequality.

32 CHAPTER 2. LINEAR BANDITS

2.6 Regret minimization revisited

Okay, now that we know how to do optimal pure exploration, how do we turn this into an algorithm
that is optimal?

Let RT (X , θ) = Eθ[
∑T

t=1 ∆Xt], ∆x = maxx′∈X 〈x′ − x, θ〉
The next theorem is from [Lattimore and Szepesvári, 2020].

Theorem 6. Fix any X ⊂ Rd that spans Rd and θ∗ ∈ Rd such that arg maxx∈X 〈x, θ∗〉 is unique.

Any policy for which RT (X , θ∗) = o(T a) for any a > 0 also satisfies lim infT→∞
RT (X ,θ∗)

log(T) ≥ r?

where

r? := inf
α∈[0,∞)X

∑
x∈X

αx∆x

subject to max
x∈X

‖x? − x‖2
(
∑
x∈X αxxx

>)−1

∆2
x

≤ 1

2

Note that

ρ? := inf
α∈[0,∞)X

1

2

∑
x∈X

αx

subject to max
x∈X

‖x? − x‖2
(
∑
x∈X αxxx

>)−1

∆2
x

≤ 1

2

Notes

• There exists an asymptotic algorithm [Lattimore and Szepesvari, 2016], but no satisfying
finite-time algorithm as of yet.

• Information directed sampling may be near-optimal and very high performance.

Chapter 3

Sequential statistics and Martingales

Much of this chapter was written as summaries of the excellent notes and books of [Roch, ,
Pollard, 2002, Lattimore and Szepesvári, 2020]. Please see these resources for clarifications and
details.

3.1 Probability theory review

Let us introduce some notations by way of an example. Suppose we toss an unbiased coin twice.

• Sample space: Ω = {TT, TH,HT,HH}

• Outcome: ω ∈ Ω

• Probability measure: P(ω) = 1/4 for all ω ∈ Ω

• Random variable (function on Ω to the reals): X(ω) = #heads (e.g., X(TH) = 1)

• Event (subset of Ω): A = {ω ∈ Ω : X(ω) = 1} = {HT, TH}, P(A) = P(HT) + P(TH) = 1/2

• Expectation: E[X] =
∑

ω∈ΩX(ω)P(ω) = 1

• Distribution: X is a binomial random variable with n = 2 and p = 1/2

3.1.1 Basic definitions

Definition 5 (σ-algebra). A collection F of subsets of a set Ω is a σ-algebra on Ω if

1. Ω ∈ F

2. F ∈ F =⇒ F c ∈ F

3. for a sequence of sets Fn ∈ F for all n,
⋃
n Fn ∈ F

Note that the first and second property imply that ∅ ∈ F . Also note that for any sequence of sets
Fn ∈ F , we have that

⋂
n Fn = (

⋃
n Fn)c ∈ F by the second and third properties.

33

34 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

The trivial σ-algebra is just the power set of Ω. For example, a σ-algebra of Ω = {TT, TH,HT,HH}
is

F =∅, {TT}, {HT}, {TH}, {HH}, {TT, TH}, {TT,HH}, {HT, TH}, {HT,HH},
{TT,HT, TH}, {TT,HT,HH}, {TT, TH,HH}, {HT, TH,HH}, {TT, TH,HT,HH}

Definition 6 (Probabilty measure). For a σ-algebra F on Ω, P is a probability measure if

1. P : F → [0, 1]

2. P(∅) = 0

3. P(Ω) = 1

4. for a sequence of sets Fn ∈ F with Fn ∩ Fm = ∅ for all n,m, P(
⋃
n Fn) =

∑
n P(Fn)

For our coin example, {TT,HT,HH} ∈ F and {TT,HT,HH} = {TT}∪{HT}∪{HH} are disjoint
sets. Since all four outcomes are equally likely with probability 1/4 we have

P({TT,HT,HH}) = P({TT} ∪ {HT} ∪ {HH}) = P({TT}) + P({HT}) + P({HH}) =
1

4
+

1

4
+

1

4
=

3

4

Definition 7 (Probability space). For a set (sample space) Ω, σ-algebra F on Ω, and probability
measure P, we call (Ω,F ,P) a probability space.

Definition 8 (Measurable function). Let (Ω,F ,P) be a probability space. For some h : Ω → R
define h−1(A) = {ω ∈ Ω : h(ω) ∈ A}. We say h is F-measurable if h−1(B) ∈ F for all Borel sets
B of R.

Definition 9 (Random variable). Let (Ω,F ,P) be a probability space. We call X : Ω → R a
random variable if X is an F-measurable function.

For our coin example, let X denote the number of heads of the first two tosses. For any set
A 6⊂ {0, 1, 2} we have that X−1(A) = ∅ which is in F . Also note that X−1(0) = {TT}, X−1(1) =
{HT, TH}, and X−1(2) = {HH}. Moreover, X−1([−1, 1.5]) = {TT,HT, TH} which is also in F .
We may conclude that X is a random variable on (Ω,F ,P).

Definition 10 (Natural σ-algebra). Let Xt for t ∈ T be a set of random variables on a probability
space (Ω,F ,P). Let

σ({Xt}t∈T)

be the smallest σ-algebra on which Xt for all t ∈ T are measurable.

For the random variable X denoting the number of heads among the first two flips, note that

σ(X) = ∅, {TT}, {HT, TH}, {HH}, {TT,HT, TH}, {TT,HH}, {HT, TH,HH}, {TT,HT, TH,HH}

which is a strict subset of F = 2Ω.

3.1. PROBABILITY THEORY REVIEW 35

3.1.2 Conditional Expectation

For a probability space (Ω,F ,P) and A,B ∈ F we define

P(A|B) =
P(A ∩B)

P(B)

and is read as the probability of event A given event B. For our coin example, with X denoting
the number of heads in the two tosses, we can compute

P(HT |X = 1) =
P({HT} ∩ {X = 1})

P(X = 1)
=

P({HT})
P(X = 1)

=
1/4

1/2
= 1/2.

Likewise, we can consider the conditional expectation of a random variable X given some A ∈ F
defined as

E[X|A] =
∑
x

xP(X = x|A).

For our coin example, if Y = 1{first flip is H} then we can compute

E[X|Y = 1] = 0 · P(X = 0|Y = 1) + 1 · P(X = 1|Y = 1) + 2 · P(X = 2|Y = 1)

= 0 · P(X = 0 ∩ {Y = 1})
P(Y = 1)

+ 1 · P(X = 1 ∩ {Y = 1})
P(Y = 1)

+ 2 · P(X = 2 ∩ {Y = 1})
P(Y = 1)

= 0 · P(∅)
1/2

+ 1 · P(HT)

1/2
+ 2 · P(HH)

1/2
= 3/2.

Once can also easily conclude that E[X|Y = 0] = 1/2. Observe that we can succinctly write
E[X|Y = y] = y+1

2 so that we can say ‘the expectation of X given Y is equal to Y+1
2 .’ We can

notate this as E[X|Y] = Y+1
2 and note that this itself a random variable, since Y is a random

variable. Indeed, since X : Ω→ R, Y : Ω→ R, we observe that E[X|Y] : Ω→ R is a valid random
variable.

More generally, for any probability space (Ω,F ,P) with finite Ω and random variables X : Ω→ R
and Y : Ω→ R, we define E[X|Y] : Ω→ R as the random variable such that E[X|Y](ω) = E[X|Y =

36 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

Y (ω)] =
∑

x xP(X = x|Y = Y (ω)). Note that for any set A ∈ R we have that∑
ω∈Y −1(A)

E[X|Y](ω)P(ω) =
∑
y∈A

∑
ω∈Y −1(A)

1{Y (ω) = y}E[X|Y](ω)P(ω)

=
∑
y∈A

∑
ω∈Y −1(A)

1{Y (ω) = y}E[X|Y = y]P(ω)

=
∑
y∈A

E[X|Y = y]P(Y = y)

=
∑
y∈A

∑
x

xP(X = x|Y = y)P(Y = y)

=
∑
y∈A

∑
x

xP(X = x, Y = y)

=
∑
y∈A

∑
x

∑
ω∈Ω

X(ω)1{X(ω) = x, Y (ω) = y}P(ω)

=
∑
y∈A

∑
ω∈Ω

X(ω)1{Y (ω) = y}P(ω)

=
∑

ω∈Y −1(A)

X(ω)P(ω).

Note that for all A ⊂ R we have that Y −1(A) ∈ σ(Y). Thus, our definition of conditional expecta-
tion under finite Ω: E[X|Y](ω) =

∑
x xP(X = x|Y = Y (ω)) satisfies∑

ω∈H
E[X|Y](ω)P(ω) =

∑
ω∈H

X(ω)P(ω) ∀H ∈ σ(Y).

In general (i.e., for arbitrary Ω) we will define E[X|Y](ω) as any function that satisfies this identity,
with each H ∈ σ(Y) providing a constraint on the function.

Given this definition is really just in terms of the σ-algebra, there is also a natural definition of
conditional expectation for any sub-σ-algebra H ⊂ F :

Definition 11. Let X be a random variables defined on (Ω,F ,P) and let H ⊂ F be a sub-σ-algebra.
Then we say E[X|H] : H → R is the conditional expectation of X given H if∫

ω∈H
E[X|H](ω)dP(ω) =

∫
ω∈H

X(ω)dP(ω) H ∈ H

We conclude that E[X|Y] := E[X|σ(Y)] under this definition. It turns out that E[X|H] always
exists, and is unique.

Confirm that a particularly simple example is E[X|σ(X)] = X since X is trivially measurable on
all H ∈ σ(X). The next lemma captures much of the intuition of conditional expectation.

Lemma 13. Fix any (Ω,F ,P) and a sub-σ-algebra G ⊂ F . If Z is G-measurable R.V. and X is
an F-measurable random variable, then

E[X + Z|G] = Z + E[X|G].

Moreover, if Z is a bounded then

E[XZ|G] = ZE[X|G].

3.2. MARTINGALES, OPTIONAL STOPPING, MAXIMAL INEQUALITIES 37

Proof. The first statement follows by linearity of conditional expectation and that Z is G measurable
so E[Z|G] = Z.

For the second statment, since Z is assumed bounded, there exists some L ≥ 0 such that −L ≤
Z(ω) ≤ L for all ω ∈ Ω. By taking an arbitrarily fine cover of [−L,L] we may assume Z is a
discrete random variable taking values {zj}j ⊂ [−L,L]. For any j we have Gj = Z−1(zj) ∈ G and∫

ω∈Gj
E[XZ|G](ω)dP(ω) =

∫
ω∈Gj

X(ω)Z(ω)dP(ω)

= zj

∫
ω∈Gj

X(ω)dP(ω)

= zj

∫
ω∈Gj

E[X|G](ω)dP(ω)

For any G ∈ G there exists an index set I ⊂ N such that G =
⋃
j∈I Gj . Thus,∫

ω∈G
E[XZ|G](ω) =

∑
j∈I

∫
ω∈Gj

E[XZ|G](ω)dP(ω)

=
∑
j∈I

zj

∫
ω∈Gj

E[X|G](ω)dP(ω) =

∫
ω∈G

Z(ω)E[X|G](ω)dP(ω).

Since E[X|Z] = E[X|σ(Z)], the above lemma is saying just the intuitive facts that E[X + Z|Z] =
Z + E[X|Z] and E[XZ|Z] = ZE[X|Z].

3.1.3 Filtrations

In our coin example, we have been talking about the event space after both been flipped. But
now suppose the coins were drawn sequentially, first observing the first flip, and then the second.
Filtrations allow us to incorporate time or a sequence of observations into probability.

Formally, let X1, X2, . . . be a sequence of random variables on (Ω,F ,P). And now imagine that
we observe Xt sequentally so that at time t we observe Xt, potentially take some action, and only
at the next time observe Xt+1. Once we have observed {Xs}ts=1 what actions we might potentially
are limited to those that depend on measurable random variables, which are precisely those in
Ft := σ({Xs}ts=1). Note that we clearly have {Ω, ∅} = F0 ⊂ F1 ⊂ · · · ⊂ F . Under this notation,
reasoning about, say E[Xt+1|{Xs}ts=1] is exactly equivalent to E[Xt+1|Ft], as per the discussion
on conditional expectation above. The σ-algebra Ft can be interpreted as the history making a
statement like “given all observations of up to t, what is the expectation of Xt+1?”

We can also reason about a growing set of σ-algebras that are not necessarily derived from random
variables. We say F = {Ft}nt=1 is a filtration of F if Ft ⊂ Ft+1 for all t. A sequence of random
variables {Xt}nt=1 is F-adapted if Xt is Ft measurable for all 1 ≤ t ≤ n. Given a probability space
(Ω,F ,P) and a filteration F of F , we cann the tuple (Ω,F ,F,P) a filtered probability space.

3.2 Martingales, Optional stopping, Maximal inequalities

Additional material on this section can be found in [Lattimore and Szepesvári, 2020] and [Howard et al., 2018].

38 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

Definition 12. Fix some filtered probability space (Ω,F ,F,P). An F-adapted sequence of random
variables is an F-adapted martingale if E[Xt+1|Ft] = Xt for all t and E[|Xt|] <∞. Furthermore, if

• Xt is a super-martingale if E[Xt+1|Ft] ≤ Xt

• Xt is a sub-martingale if E[Xt+1|Ft] ≥ Xt

Definition 13. Let F = {Ft}t∈N be a filtration. A random variable τ ∈ N is a stopping time with
respect to F with values in N ∪ {∞} if 1{τ ≤ t} is Ft measurable for all t ∈ N.

Example 1. Let Z1, Z2, . . . be an F adapted sequence and define St =
∑t

i=1. A valid stopping
time may be τ = min{t ∈ N : St ≥ ε} because τ is Ft measurable: given St we can determine
whether it is greater than or equal to ε or not. An example of a time that is not a stopping time
is τ ′ = max{t ∈ N : St ≥ ε} because given only Ft, the information up to time t, we do not know
whether St′ will exceed ε again at some future time t′ > t. Thus, 1{τ ′ = t} is not meaurable with
respect to Ft and thus, is not a stopping time.

Lemma 14 (Doob’s optional stopping). Let F = {Ft}t∈N be a filtration and {Xt}t be an F-adapted
martingale and τ be an F-stopping time. If either of the following two events holds

• ∃N ∈ N such that P(τ ≤ N) = 1, or

• E[τ] <∞ and E[|Xt+1 −Xt| |Ft] < c for all t < τ for some c > 0,

then Xτ is well-defined and E[Xτ] = E[X0]. Furthermore, if

• Xt is a super-martingale then E[Xτ] ≤ E[X0]

• Xt is a sub-martingale then E[Xτ] ≥ E[X0]

Lemma 15 (Maximal inequality). Let {Xt}t be an F-adapted sequence of random variables with
Xt ≥ 0 almost surely. Then for any ε > 0, if

• Xt is a super-martingale then P(maxt∈NXt ≥ ε) ≤ E[X0]/ε

• Xt is a sub-martingale then P(maxt∈{1,...,n}Xt ≥ ε) ≤ E[Xn]/ε

Proof. We first present the proof of the super-martingale case, which is thanks to [Lattimore and Szepesvári, 2020].
Fix n ∈ N and let τ = min{n + 1,min{t : Xt ≥ ε}}. Clearly, τ is finite (less than n + 1) and thus
we can apply Doob’s optional stopping. Note that τ ≤ n ⇐⇒ ∃t ≤ n : Xt ≥ ε Then by optional
stopping,

E[X0] ≥ E[Xτ] ≥ E[Xτ1{τ ≤ n}] ≥ εP(τ ≤ n) = εP(∃t ≤ n : Xt ≥ ε) = εP(An)

where An := ∃t ≤ n : Xt ≥ ε. Note that A1 ⊂ A2 ⊂ A3 ⊂ . . . so if we define Bn = An \An−1 then

P(∃t ∈ N : xt ≥ ε) = P(
⋃
t∈N

An) = P(
⋃
t∈N

Bn)

=
∑
t∈N

P(Bn) = lim
n→∞

n∑
t=1

P(Bn)

= lim
n→∞

P(An) ≤ E[X0]

ε
.

3.3. ANYTIME CONCENTRATION INEQUALITIES 39

The following proof of the sub-martingale case is thanks to [Lawler, 2006]. Let τ = min{t ≤ n :
Xt ≥ ε}. Again, τ is finite so we can apply Doob’s optional stopping. Using the tower rule of
expectations we have

E[Xn] ≥ E[Xn1{τ ≤ n}]

=
n∑
j=1

E[Xn1{τ = j}]

=

n∑
j=1

E[E[Xn1{τ = j}|Fj]]

=

n∑
j=1

E[E[Xn|Fj]1{τ = j}]

=
n∑
j=1

E[Xj1{τ = j}]

≥ ε
n∑
j=1

E[1{τ = j}]

= εP(max
j=1,...,n

Xj ≥ ε)

Example: Maximal inequality Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {−1, 1}.
Verify that St =

∑t
i=1 Zi is a martingale. Also note that for any λ > 0 we have by Jensen’s

inequality that E[exp(λSt)|Ft−1] = E[exp(λZt)|Ft−1] exp(λSt−1) ≥ exp(λE[Zt|Ft−1]) exp(λSt−1) =
exp(λSt−1). Thus, exp(λSt) is a sub-martingale. Applying the maximal inequality for sub-martingales
we have for any N ∈ N that

P(max
t∈{1,...,N}

St ≥
√

2N log(1/δ)) = P(max
t∈{1,...,N}

exp(λSt) ≥ exp(λ
√

2N log(1/δ)))

≤ exp(−λ
√

2N log(1/δ))E[exp(λSN)]

≤ exp(−λ
√

2N log(1/δ)) exp(λ2N/2)

where the last inequality follows from the fact that SN is a sum of N IID random variables,
so E[exp(λSN)] ≤ exp(λ2N/2). By setting λ =

√
2 log(1/δ)/N we obtain P(maxt∈{1,...,N} St ≥√

2N log(1/δ)) ≤ δ. Since all we used is that E[exp(λSN)] ≤ exp(λ2N/2), we could have also
applied a standard Chernoff bound at time N to obtain P(SN ≥

√
2N log(1/δ)) ≤ δ. This above

example seems to be getting a guarantee on t ∈ {1, . . . , N − 1} for free! It turns out we can do
even better.

3.3 Anytime concentration inequalities

3.3.1 Linear boundaries

Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {−1, 1}. Define the random walk St =∑t
i=1 Zi. If Mt(λ) = exp(λSt − tλ2/2) then Mt is a super-martingale since

E[Mt+1(λ)|Ft] = E[exp(λSt+1 − (t+ 1)λ2/2)|Ft] = exp(λSt − tλ2/2)E[exp(λZt+1 − λ2/2)|Ft] ≤Mt(λ) · 1

40 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

Applying the maximal inequality for super-martingales we have

P(∃t ∈ N : St ≥ tλ/2 + log(1/δ)/λ) = P(∃t ∈ N : Mt(λ) ≥ 1/δ) ≤ δ

since E[M0(λ)] = 1. The above holds for any λ and says the random walk St, with probability
at least 1 − δ does not go above the line tλ/2 + log(1/δ)/λ for all t ∈ N. But if we take λ =√

2 log(1/δ)/N then we have that

P(max
t∈{1,...,N}

St ≥ (t/
√
N +

√
N)
√

log(1/δ)/2) ≤ δ,

a strict improvement over the maximal inequality!

3.3.2 Curved boundaries with a mixing distribution

Let Z1, Z2, . . . be Bernoulli(1/2) random variables in {−1, 1}. If St =
∑t

i=1 Zi then Mt(λ) =
exp(λSt − tλ2/2) is a super-martingale for any λ ∈ R. Let h be any probability distribution over
R. Define M̄t =

∫
λMt(λ)dh(λ). Then M̄t is a super-martingale since

E[M̄t+1|Ft] = E
[∫

λ
Mt+1(λ)dh(λ)|Ft

]
=

∫
λ
E [Mt+1(λ)|Ft] dh(λ)

≤
∫
λ
Mt(λ)dh(λ)

= M̄t.

Suppose we take h(λ) = 1√
2πν2

e−λ
2/2ν2

. Then

M̄t =

∫
λ
Mt(λ)dh(λ) =

1√
2πν2

∫
exp(λSt − tλ2/2− λ2/2ν2)dλ

=
1√

2πν2

∫
exp(λSt − λ2(t+ ν−2)/2)dλ

=
1√

2πν2

∫
exp(S2

t (t+ ν−2)−1/2− (St(t+ ν−2)−1 − λ)2/2(t+ ν−2)−1)dλ

=

√
(t+ ν−2)−1

ν2
exp(S2

t (t+ ν−2)−1/2)

=

√
ν−2

t+ ν−2
exp(S2

t (t+ ν−2)−1/2).

Applying the maximal inequality for super-martingales we have

P(∃t : |St| ≥

√
2(t+ ν−2)

(
log(1/δ) + 1

2 log(
t+ ν−2

ν−2
)

)
) = P(∃t : M̄t ≥ 1/δ) ≤ δ.

A particularly convenient choice for ν = 1, which implies

P(∃t : |St| ≥
√

(t+ 1) log(t+1
δ2)) =≤ δ.

3.3. ANYTIME CONCENTRATION INEQUALITIES 41

(a) Fix δ = 0.05. The ‘fixed time Chernoff’ repre-
sents

√
2t log(1/δ) which holds at each t but not

all t ≤ 500 simultaneously (which is why it is dot-
ted). The ‘max inequality’ holds for all t ≤ 500,
and the linear boundaries hold for all t ∈ N si-
multaneously.

(b) Fix δ = 0.05. The ‘fixed time Chernoff’
represents

√
2t log(1/δ) which holds at each t

but not all t ∈ N simultaneously (which is why
it is dotted). All other curves do hold for all
t ∈ N simultaneously. “union bound 2t2” plots√

2 log(2t2/δ).

Intuitively, h(λ) is a probability distribution over linear boundaries parameterized by λ.

The above Figures compares these linear and curved boundaries. We see that the curved boundary
just derived appears much tighter than our naive union bound used in the proofs of the early days
of this course. Let us consider a few more interesting examples.

3.3.3 Predictable sequences, Azuma-style inequalities

Let Z1, Z2, . . . be an Ft-adapted sequence and assume σt is predictable in the sense that σt
is Ft−1-measurable. Furthermore, assume E[Zt|Ft−1] = 0 and that for any λ > 0 we have
E[exp(λZt)|Ft−1] ≤ exp(λ2σ2

t /2). Define St =
∑t

i=1 Zi and Vt =
∑t

i=1 σ
2
i . Then Mt(λ) =

exp(λSt − λ2Vt/2) is a super-martingale. Thus,

P(∃t ∈ N : St ≥ λVt/2 + log(1/δ)/λ) = P(∃t : Mt(λ) ≥ 1/δ) ≤ δ.

Likewise, computing M̄t with h(λ) = 1√
2π
e−λ

2/2 yields

P(∃t ∈ N : |St| ≥
√

(Vt + 1) log(Vt+1
δ2)) = P(∃t : M̄t ≥ 1/δ) ≤ δ.

Note that “time” t does not appear anywhere in these bounds explicitly, and has been replaced by
Vt. While not anytime, the next proposition lemma is also sometimes convenient.

Proposition 3 (Azuma-Hoeffding). Let M1,M2, . . . be an Ft-adapted martingale and assume σt
is predictable in the sense that σt is Ft−1-measurable. Furthermore, assume that for any λ > 0 we
have E[exp(λ(Mt −Mt−1))|Ft−1] ≤ exp(λ2σ2

t /2) with M0 = 0 for all t ∈ N. Then for any n ∈ N
we have

P (Mn −M0 ≥ ε) ≤ exp

(
ε2/2∑n
t=1 σ

2
t

)

42 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

Proof. The proof closely follows the same logic as the Chernoff bound technique:

P (Mn −M0 ≥ ε) = min
λ≥0

P (exp(λ(Mn −M0)) ≥ exp(λε))

≤ min
λ≥0

e−λεE [exp(λ(Mn −M0))]

= min
λ≥0

e−λεE [E [exp(λ(Mn −Mn−1) + λ(Mn−1 −M0))|Fn−1]]

≤ min
λ≥0

e−λε+λ
2σ2
n/2E [exp(λ(Mn−1 −M0))]

≤ min
λ≥0

e−λε+λ
2
∑n
t=1 σ

2
t /2

where the first inequality follows by Markov, the second by assumption, and the final by iterating
the same sequence of steps. The final result follows from solving for the minimizing λ and plugging
it in.

Now suppose for λ ∈ (0, 1/c) we have E[exp(λZt)|Ft−1] ≤ exp(
λ2σ2

t
2(1−cλ)). Then Mt(λ) = exp(λSt −

λ2Vt
2(1−cλ)) is a supermartingale. Thus,

P(∃t ∈ N : St ≥
λVt

2(1− cλ)
+ log(1/δ)/λ) = P(∃t : Mt(λ) ≥ 1/δ) ≤ δ. (3.1)

Suppose Zt ≤ b and E[Z2
t |Ft−1] ≤ σ2

t , then

E[exp(λZt)|Ft−1] = E[
∞∑
k=0

(λZt)
k

k!
|Ft−1]

= E[1 + λZt +
∞∑
k=2

(λZt)
k

k!
|Ft−1]

≤ 1 +
∞∑
k=2

λkνbk−2

k!

≤ 1 +
λ2σ2

t

2

∞∑
k=2

(λb/3)k−2

= 1 +
λ2σ2

t

2

1

1− λb/3

≤ exp(
λ2σ2

t /2

1− λb/3
)

where we’ve used the facts that k!/2 ≥ 3k−2 and 1 + x ≤ ex.

Proposition 4 (Azuma-Bernstein). Let M1,M2, . . . be an Ft-adapted martingale and assume σt
is predictable in the sense that σt is Ft−1-measurable. Furthermore, assume Mt ≤ b and E[(Mt −
Mt−1)2|Ft−1] ≤ σ2

t with M0 = 0 for all t ∈ N. Then for any n ∈ N we have

P (Mn −M0 ≥ ε) ≤ exp

(
ε2/2∑n
t=1 σ

2
t

)

3.3. ANYTIME CONCENTRATION INEQUALITIES 43

Proof. By the same sequence of steps used to prove Azuma-Hoeffding above, we have that

P (Mn −M0 ≥ ε) ≤ min
λ≥0

exp

(
−λε+

λ2
∑n

t=1 σ
2
t /2

1− λb/3

)
≤ exp

(
−ε2/2∑n

t=1 σ
2
t + εb/3

)
where the last line follows by magical algebra.

3.3.4 Vector-valued martingales

Now suppose Z1, Z2, · · · ∈ Rd is a Ft-adapted random sequence that satisfies E[exp(〈λ, Zt〉)|Ft−1] ≤
exp(‖λ‖2Σt/2) for any λ ∈ Rd for a Σt predictable sequence. Define St =

∑t
i=1 Zi and Vt =

∑t
i=1 Σi.

Then Mt(λ) = exp(〈λ, St〉 − ‖λ‖2Vt/2) is a super-martingale. By the same arguments as above, for

any λ ∈ Rd we can contruct a linear boundary as follows:

P(∃t ∈ N : 〈λ, St〉 − ‖λ‖2Vt/2 ≥ log(1/δ)) ≤ δ.

Note that maxλ〈λ, St〉 − ‖λ‖2Vt/2 = ‖St‖2V −1
t

/2 with the maximizer being V −1
t St. Let Sr,ε be an

ε-net of a radius r d-ball and note that |Sr,ε| ≤ (4r/ε)d. For any λ ∈ Rd, let λ̃ be in our full cover.
Then we have that

〈λ, St〉 − ‖λ‖2Vt/2 ≤ 〈λ̃, St〉 − ‖λ̃‖
2
Vt/2 + 〈λ− λ̃, St〉 − ‖λ‖2Vt/2 + ‖λ̃‖2Vt/2

If h(λ) = 1
(2π/γ)d/2

exp(−‖λ‖2γ/2) be a mean-zero Gaussian distribution with covariance γ−1I. If

M̄t =
∫
λMt(λ)dh(λ) then

M̄t =

∫
λ
Mt(λ)dh(λ)

=
1

(2π/γ)d/2

∫
λ

exp(〈λ, St〉 − ‖λ‖2Vt/2− ‖λ‖
2γ/2)dh(λ)

=
1

(2π/γ)d/2

∫
λ

exp(〈λ, St〉 − ‖λ‖2Vt+γI/2)dh(λ)

=
1

(2π/γ)d/2

∫
λ

exp(1
2‖St‖

2
(Vt+γI)−1 − 1

2‖(Vt + γI)−1St − λ‖2(Vt+γI))dh(λ)

=
|Vt + γI|−1/2

γ−d/2
exp(1

2‖St‖
2
(Vt+γI)−1)

then repeating the same steps as above we conclude that

P(∃t : ‖St‖(Vt+γI)−1 ≥

√
2 log(1/δ) + log(

|Vt + γI|
γd

)) ≤ δ. (3.2)

3.3.5 Application: Online linear regression

Let x1, x2, · · · ∈ Rd be an Ft−1-measurable sequence, and for each t ∈ N let yt ∈ R be Ft-measurable.
We assume there exists θ∗ ∈ Rd such that each yt = 〈θ∗, xt〉+ηt where ηt is mean-zero, independent

44 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

of xt, and E[exp(sηt)|Ft−1] ≤ exp(s2/2) for any s ∈ R. In the previous example let Zi = xiηi so
that St =

∑t
i=1 xtηt and Vt =

∑t
i=1 xtx

>
t since

E[exp(〈λ, xtηt〉)|Ft−1] = E[exp(〈λ, xt〉ηt)|Ft−1]

≤ exp(〈λ, xt〉2/2)

= exp(‖λ‖2
xtx>t

/2).

Thus, Equation 3.2 holds for any γ > 0. Fix some γ > 0 and define

θ̂t = arg min
θ

t∑
i=1

(yi − 〈xi, θ〉)2 + γ‖θ‖22

= (

t∑
i=1

xix
>
i + γI)−1

t∑
i=1

xiyi

= (Vt + γI)−1Vtθ∗ + (Vt + γI)−1St

Now notice

‖θ̂t − θ∗‖(Vt+γI) = ‖θ̂t − (Vt + γI)−1(Vt + γI)θ∗‖(Vt+γI)
= ‖(Vt + γI)−1St − γ(Vt + γI)−1θ∗‖(Vt+γI)
= ‖St − γθ∗‖(Vt+γ−1I)−1

≤ ‖St‖(Vt+γI)−1 + γ‖θ∗‖(Vt+γI)−1

≤ ‖St‖(Vt+γI)−1 +
√
γ‖θ∗‖2.

We conclude that

P
(
∃t : ‖θ̂t − θ∗‖(Vt+γI) ≥

√
γ‖θ∗‖2 +

√
2 log(1/δ) + log(γ−d|Vt + γI|)

)
(3.3)

≤ P
(
∃t : ‖St‖(Vt+γI)−1 ≥

√
2 log(1/δ) + log(γ−d|Vt + γI|)

)
≤ δ.

If we assume maxt ‖xt‖22 ≤ L then we also have by Jensen’s inequality

log
(
|Vt + γI|1/d

)
= log

(
d∏
i=1

λi

)1/d

=
d∑
i=1

1

d
log(λi)

≤ log

(
d∑
i=1

1

d
λi

)

= log

(
1

d
Trace(Vt + γI)

)
= log (tL/d+ γ)

so that for all t ∈ N we have

‖θ̂t − θ∗‖(Vt+γI) ≤
√
γ‖θ∗‖2 +

√
2 log(1/δ) + d log(tLdγ + 1)

Due to its usefulness, we summarize the above discussion in a proposition.

3.4. WALD’S IDENTITY, HYPOTHESIS TESTING, LIKELIHOOD RATIOS 45

Proposition 5. Fix δ ∈ (0, 1), γ ≥ 0, and θ∗ ∈ Rd. Assume for all t ≥ 1 that yt = 〈θ∗, xt〉 + ηt
and E[exp(sηt)|Ft−1] ≤ exp(s2/2) for any s ∈ R where Ft is such that x1, y1, . . . , xt−1, yt−1, xt are
Ft−1 measurable. If St =

∑t
i=1 xtηt, Vt =

∑t
i=1 xtx

>
t , and θ̂t = (Vt + γI)−1St, then

‖θ̂t − θ∗‖(Vt+γI) ≤
√
γ‖θ∗‖2 +

√
2 log(1/δ) + log(γ−d|Vt + γI|)

for all t ≥ 1 simultaneously with probability at least 1 − δ. Moreover, if maxt ‖xt‖22 ≤ L then
log(γ−d|Vt + γI|) ≤ d log(tLdγ + 1).

3.4 Wald’s identity, Hypothesis testing, Likelihood ratios

Lemma 16 (Wald’s identity). Let Zt be IID random variables with E[Zt] = µ. If τ is a stopping
time with E[τ] <∞ then E[

∑τ
t=1 Zt] = µE[τ].

Proof. Note that Xn =
∑n

t=1 Zt − µn is a martingale. If µ ∈ {−∞,∞} the result is trivial so
assume otherwise. If µ is finite then

µ = E[Zt] = E[max{0, Zt+1}]− E[max{0,−Zt+1}]

implies at most one of these summands could be infinite in magnitude (since∞−∞ is not defined).
But since µ is finite by assumption, neither piece can be infinite in magnitude. Thus, there exists
some c > 0 such that

E[|Xt+1 −Xt| |Ft] = E[|Zt+1 − µ|] ≤ |µ|+ E[max{0, Zt+1}] + E[max{0,−Zt+1}] ≤ c.

We can apply Doob’s optional stopping to conclude

E[

τ∑
t=1

Zt − µτ] = E[Xτ] = E[X0] = 0

which implies the result by subtracting µE[τ] from both sides.

Let X1, X2, . . . be an Ft-adapted sequence of random variables. Consider the hypothesis test

H0 :Xt ∼ p0 ∀t
H1 :Xt ∼ p1 ∀t.

Define the likelihood ratio Lt =
∏t
s=1

p1(Xs)
p0(Xs)

. Let Ei[·],Pi[·] denote expectation and probability
under Hi. Note that under H0 we have that Lt is a martingale since

E0[Lt+1|Ft] = Lt

∫
x

p1(x)

p0(x)
p0(x)dx = Lt

∫
x
p1(x)dx = Lt.

Similarly, we have that L−1
t is a martingale under H1. This allows us to apply the maximal

inequality to conclude that

max {P0(∃t ∈ N : Lt ≥ 1/δ),P1(∃t ∈ N : Lt ≤ δ)} ≤ δ.

46 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

We will show that if τ := min{t ∈ N : Lt /∈ (δ, 1/δ)} then

E0[τ] ≤ log(e/δ)

KL(p0|p1)
+ 1 and E1[τ] ≤ log(e/δ)

KL(p1|p0)
+ 1.

Compare this with our minimax lower bound of above. Since they nearly match, we conclude that
this method known as the sequential probability ratio test (SPRT) is optimal.

By Wald’s inequality we have

E0[log(Lτ)] = E0[τ]E0[log(p1(X1)
p0(X1))] = −E0[τ]KL(p0|p1).

But on the other hand, we also have

E0[log(Lτ)] = E0[log(Lτ)1{Lτ > 1/δ}] + E0[log(Lτ)1{Lτ < δ}]
≥ E0[log(Lτ)1{Lτ < δ}]

≥ E0[(log(Lτ−1) + log(p1(Xτ)
p0(Xτ)))1{Lτ < δ}]

≥ log(δ) + E0[log(p1(Xτ)
p0(Xτ))1{Lτ < δ}]

= log(δ) + E0[log(p1(Xτ)
p0(Xτ))1{log(p1(Xτ)

p0(Xτ)) < log(δ)− log(Lτ−1)}]

= log(δ)− E0[log(p0(X1)
p1(X1))1{p1(X1) < p0(X1)}]

≥ log(δ)−KL(p0|p1)− 1

where the last line follows from

E0[log(p0(X1)
p1(X1))1{p1(X1) < p0(X1)}] =

∫
x
p0(x) log(p0(x)

p1(x))1{p1(x) < p0(x)}dx

=

∫
x:p1(x)<p0(x)

p0(x) log(p0(x)
p1(x))dx

=

∫
x
p0(x) log(p0(x)

p1(x))dx−
∫
x:p1(x)>p0(x)

p0(x) log(p0(x)
p1(x))dx

= KL(p0|p1) +

∫
x:p1(x)>p0(x)

p0(x) log(p1(x)
p0(x))dx

= KL(p0|p1) +

∫
x:p1(x)>p0(x)

p0(x) log(1 + p1(x)−p0(x)
p0(x))dx

≤ KL(p0|p1) +

∫
x:p1(x)>p0(x)

(p1(x)− p0(x))dx

≤ KL(p0|p1) + 1

where the first inequality follows from log(1 + x) ≤ x. Putting the pieces together, we conclude

that E0[τ] ≤ log(e/δ)
KL(p0|p1) + 1. Repeating the process for H1 produces an analogous result.

Binary hypothesis test for Gaussians with known variance Let p0(x) = 1√
2π
e−x

2/2 and

p1(x) = 1√
2π
e−(x−∆)2/2 so that we are deciding two Gaussian distributions, each with variance 1

3.4. WALD’S IDENTITY, HYPOTHESIS TESTING, LIKELIHOOD RATIOS 47

and seperated by ∆. Note that

Lt =

t∏
s=1

p1(Xs)

p0(Xs)

=
t∏

s=1

exp(−(Xs −∆)2/2 +X2
s /2)

= exp(
(t∑
s=1

Xs

)
∆− t∆2/2)

= exp(∆(St − t∆/2)

where St =
∑t

s=1Xs. Applying the maximal inequality of above and rearranging, we have

P0(∃t ∈ N : St ≥ t∆/2 + log(1/δ)/∆) = P0(∃t ∈ N : Lt ≥ 1/δ) ≤ δ.

Compare this to the line-crossing super-martingale bound of above. They are equivalent with
λ = ∆. Because of the optimality of the SPRT, we conclude that a linear boundary is optimal for
deciding between two means. Unfortunately, the precise parameterization of λ requires knowledge
of the unknown parameter.

48 CHAPTER 3. SEQUENTIAL STATISTICS AND MARTINGALES

Chapter 4

Contextual Bandits

4.1 Introduction

This section is inspired by [Lattimore and Szepesvári, 2020]

For t = 1, 2, . . .

• Nature reveals ct
iid∼ D

• Player chooses xt ∈ X and observes yt = v(ct, xt) + εt

which models users showing up to websites, or patients showing up to the doctor with different
symptoms.

4.1.1 Finite contexts

Suppose the space of contexts, denoted C, is finite. Then a natural algorithm would be to run an
individual multi-armed bandit algorithm (action elimination, UCB, etc.) per context. We know
that after T time steps, such a strategy applied to context c ∈ C would satisfy

max
x∈X

T∑
t=1

1{ct = c}v(c, x)−
T∑
t=1

1{ct = c}v(c, xt) .
√
Tc|X | log(Tc|X |/δ) ≤

√
Tc|X | log(T |X |/δ).

where Tc :=
∑T

t=1 1{ct = c}. Summing over contexts were have

∑
c∈C

max
x∈X

T∑
t=1

1{ct = c} (v(c, x)− v(c, xt)) .
∑
c∈C

√
Tc|X | log(T |X |/δ)

≤
√
|C| |X | log(T |X |/δ) (4.1)

by Cauchy-Schwartz.

The clear problem with this strategy is that this regret is trivial if |C| is very large. Indeed, if we
had just ignored the context altogether at each time t, we could just play a multi-armed bandit
algorithm to achieve

max
x∈X

T∑
t=1

(v(ct, x)− v(ct, xt)) .
√
|X | log(T |X |/δ). (4.2)

49

50 CHAPTER 4. CONTEXTUAL BANDITS

While the right hand side of (4.2) appears much smaller than the right hand side of (4.1) (by a
factor of

√
|C|) we point out that the left had sides are not equivalent – they’re using a different

benchmark of regret! The first compares to the best single action per context whereas the latter
compares itself to the single best action with respect to all contexts. The first is a much higher
standard. The next section formalizes a unifying benchmark, which we denote as policy regret.

4.1.2 Policy Regret

A policy π : C → X maps contexts to actions. The value of a policy π is defiend as

V (π) = EC,ε[v(C, π(C)) + ε] = EC [v(C, π(C))].

We assume at the start of the game the learner has access to a set of policies � which may be
infinite, but for simplicity we will assume it is finite. At each time, we assume the action taken is
according to some policy πt ∈ Π so that the regret is defined as

RT = T ·max
π∈Π

V (π)− E[
T∑
t=1

V (πt)]

and for convenience, we will fix a π? := arg maxπ∈Π V (π).

Connecting to the previous section, |Π| = |X ||C| and |Π| = |X | respectively.

4.2 Policy evaluation

Suppose for each policy π ∈ Π we wished to estimate V (π) up to tolerance ε > 0 with probability
at least 1 − δ. A naive strategy would be to simple play policy π for some number of trials to
estimate its value. That is, for some τ ∈ N, play each π ∈ Π for τ trials in response to the IID
contexts. For each π this would result in a set of rewards {rπt }τt=1 each in [0, 1] which we can use

to define V̂ (π) = 1
τ

∑τ
t=1 r

π
t . By Hoeffding’s inequality and a union bound, we have that

P

(⋃
π∈Π

{|V̂ (π)− V (π)| ≥
√

log(2|Π|/δ)/2τ

)
≤ δ.

Thus, if τ ≥ ε−2 log(2|Π|/δ)/2 samples were taken for each policy π ∈ Π we can estimate each V (π)
up to tolerance ε with probability at least 1− δ using ε−2|Π| log(2|Π|/δ)/2. But this linear scaling
in |Π| is awful if |Π| is large! Can we do better?

4.2.1 Logging policy

The core difficulty of model evaluation in contextual bandits is that if I take action i and receive
a reward with mean v(ct, i), I don’t observe v(ct, j) for some j 6= i. But if every context appears
very rarely so that I cannot rely on seeing the same context multiple times, how can I predict what
I should have done? We will employ the use of a randomized logging policy to help us solve this
riddle.

For any context c fix an exploration distribution µ(x|c) ∈ 4X such that µ(x|c) > 0 for all x, c. The
distribution µ(x|c) will act as our randomized logging policy to collect data in aid of estimating each
V (π) efficiently. We can define µ(x|c) independently of Π, or we can perform “proper learning”

4.2. POLICY EVALUATION 51

so that µ(x|c) is actually playing a random policy π ∈ Π at each time. To do this, fix some
distribution over policies λ ∈ 4X , and then at each time t, draw πt ∼ λ and play xt = πt(ct). Here,
µ(x|c) =

∑
π∈Π λπ1{π(c) = x}.

If we play the logging policy for τ ∈ N rounds, at each time t = 1, . . . , τ nature reveals a context
ct ∼ D, the logging policy plays xt ∼ µ(·|c), and receives reward rt = v(ct, xt) + εt ∈ [0, 1] where
E[εt] = 0, by assumption. This results in a dataset {(ct, xt, rt, pt)}τt=1 where pt := µ(xt|ct). Given
this dataset, we wish to estimate each V (π). We describe two ways to do so described as model the
bias and model the world. We will also consider a hybrid of the two.

4.2.2 Model the bias

If we just naively estimated V (π) with 1
τ

∑τ
t=1 rt1{π(ct) = xt} this would be a biased estimator:

its expectation may not converge to V (π) no matter how large τ is. We now define an unbiased
estimator for V (π). Define the inverse propensity scoring estimator as

v̂(ct, x) := rt
1{xt = x}

pt
, and V̂ (π) =

1

τ

τ∑
t=1

v̂(ct, π(ct)).

Note that V̂ (π) is unbiased since

E[V̂ (π)] =
1

τ

τ∑
t=1

E[v̂(ct, π(ct))] =
1

τ

τ∑
t=1

E[E[v̂(ct, π(ct))|ct]] = EC∼D[v(C, π(C))] = V (π)

and

E[v̂(ct, x)|ct] = E
[
rt

1{xt = x}
pt

|ct
]

=
∑
x′∈X

µ(x′|ct)E
[
rt

1{xt = x}
µ(xt|ct)

|ct, xt = x′
]

=
∑
x′∈X

µ(x′|ct)v(ct, x
′)

1{x′ = x}
µ(x′|ct)

= v(ct, x).

The variance of V̂ (π) is

E[(V̂ (π)− V (π))2] =
1

τ2

τ∑
t=1

E[E[(v̂(ct, π(x))− v(ct, π(x)))2|ct]] ≤
1

τ
EC∼D

[
1

µ(π(C)|C)

]
due to

E[(v̂(ct, x)− v(ct, x))2|ct] ≤ E[(v̂(ct, x))2|ct]

≤ E
[
1{xt = x}
µ(xt|ct)2

|ct
]

(rt ∈ [0, 1])

≤
∑
x′∈X

µ(x′|ct)
1{x′ = x}
µ(x′|ct)2

=
1

µ(x|ct)
.

52 CHAPTER 4. CONTEXTUAL BANDITS

If vmax := maxc maxπ∈Π
1

µ(π(c)|c) then by Bernstein’s inequality we have

P

(⋃
π∈Π

{|V (π)− V̂ (π)| ≤

√
2 log(2|Π|/δ)

τ
EC∼D

[
1

µ(π(C)|C)

]
+

2v̂max log(2|Π|/δ)
3τ

}

)
≤ δ

In particular, if we set µ(x|c) = 1
|X | for all x, c then for any τ ≥ 2|X | log(2|Π|/δ) we have

|V (π)− V̂ (π)| ≤
√

2|X | log(2|Π|/δ)
τ

+
2|X | log(2|Π|/δ)

3τ
≤
√

4|X | log(2|Π|/δ)
τ

for all π ∈ Π with probability at least 1 − δ. Thus, it suffices to take τ = 4ε−2|X | log(2|Π|/δ)
samples to estimate every V (π) up to tolerance ε with probability at least 1− δ.

Lemma 17 (Bernstein’s inequality). Let X1, . . . , Xm be independent random variables such that
1
m

∑m
i=1 E[(Xi − E[Xi])

2] ≤ σ2 and |Xi| ≤ B. Then∣∣∣∣∣ 1

m

m∑
i=1

Xi − E[Xi]

∣∣∣∣∣ ≤
√

2σ2 log(2/δ)

m
+

2B log(2/δ)

3m

with probability at least 1− δ.

4.2.3 Model the world

Consider a function class F such that for each f ∈ F we have f : C × X → R. The idea is that
some function f∗ ∈ F is close enough to v(c, x) to be useful, and that we can identify f∗ or some
function close to it using our collected dataset {(ct, xt, rt, pt)}τt=1. Let

f̂ = arg min
f∈F

τ∑
t=1

(rt − f(ct, xt))
2.

We can then estimate V (π) with V̂ (π) = 1
τ

∑τ
t=1 f̂(ct, π(ct)). Note that for any f ∈ F we have that

E

[
1

τ

τ∑
t=1

(rt − f(ct, xt))
2

]
= E

[
1

τ

τ∑
t=1

(rt − v(ct, xt) + v(ct, xt)− f(ct, xt))
2

]

=
1

τ

τ∑
t=1

E
[
(rt − v(ct, xt))

2
]

+
1

τ

τ∑
t=1

E
[
(v(ct, xt)− f(ct, xt))

2
]

= E
[
(r1 − v(c1, x1))2

]
+ E

[∑
x∈X

1{x = x1}(v(c1, x)− f(c1, x))2

]

= E
[
(r1 − v(c1, x1))2

]
+ E

[∑
x∈X

µ(x|c1)(v(c1, x)− f(c1, x))2

]

≤ 1/4 + E

[∑
x∈X

µ(x|C)(v(C, x)− f(C, x))2

]

4.3. STOCHASTIC LINEAR MODEL 53

Also note that by a similar calculation, we could consider an importance sampled version that
satisfies

E

[
1

τ

τ∑
t=1

(rt − f(ct, xt))
2

pt

]
≤ 1

4
E

[∑
x∈X

1{x1 = x}
µ(x|c1)

]
+ E

[∑
x∈X

1{x1 = x}(v(c1, x)− f(c1, x))2

µ(x|c1)

]

≤ |X |
4

+ E

[∑
x∈X

(v(c1, x)− f(c1, x))2

]

but note that its not clear that this is a much better metric, but it will certainly have higher
variance. Importantly, note that if v ∈ F and µ(x|c) > 0 for all x, c then the minimum of both
of these objectives are identical and equal to v, and as τ → ∞ we have that f̂ → v. We say the
contextual bandit instance is realizable if v ∈ F , and a great number of works have taken advantage
of this fact. If v 6∈ F then this technique is biased and no matter how much data you collect, you
may never get accurate estimates for the true value of a policy π ∈ Π. Nevertheless, this method is
extremely popular in practice because its so easy to solve a least squares problem like the above for
arbitrary function classes, like neural networks. Then people will just use xt = arg maxx∈X f(ct, x),
totally bypassing the definition of the policy class Π.

4.2.4 Doubly robust estimators

The model the bias approach potentially has high variance and the model the world approach
potentially has high bias. Doubly robust methods get the best of both worlds: unbiased but if
the model f̂ is close to the true v then the variance is reduced [Dud́ık et al., 2011]. Technically, f̂
should be trained using data independent of our dataset {(ct, xt, rt, pt)}τt=1, like a hold-out set, but
in practice people will often just reuse the dataset. Define

v̂DR(ct, x) = f̂(ct, x) + (rt − f̂(ct, x))
1{xt = x}

pt
.

It is easy to check this is unbiased with expectation v(ct, x). In the variance calculation of IPS
we simply used the fact that rt was bounded in magnitude by 1. Here, we will take advantage of
the possibility that rt may be close to f̂(ct, x). If rt still has lots of intrinsic variance, this method
won’t help much, but if |rt − f̂(ct, x)| is small, it can help a lot.

4.3 Stochastic Linear model

Consider a very special case of model the world where we assume that v(c, x) = 〈φ(c, x), θ∗〉 for
some θ∗ ∈ Rd and Π is induced by all possible θ ∈ Rd with π(c) = arg maxx∈X 〈φ(c, x), θ∗〉 We can
restate the above models as For t = 1, 2, . . .

• Nature reveals (xt,1, . . . , xt,n) = Xt ⊂ Rd

• Player chooses It ∈ [n] and observes yt = 〈xt,It , θ∗〉+ εt

When we had a fixed action set, we built confidence intervals on 〈xi, θ̂ − θ∗〉. Now that we don’t
know what action sets to expect, a natural to assume maxi,t ‖xi,t‖ ≤ 1 and build confidence intervals

on supu:‖u‖2≤1〈u, θ̂−θ∗〉 = ‖θ̂−θ∗‖2, or equivalently, define a set Ct with the guarantee that θ∗ ∈ Ct
for all t. When an action set Xt shows up, we could eliminate all provably sub-optimal arms by

54 CHAPTER 4. CONTEXTUAL BANDITS

setting Xt = X \{x : maxx′∈X 〈x′−x, θ〉 < 0 ∀θ ∈ Ct} and play uniformly in this set. An alternative
is to run UCB, defining:

UCBt(x) = max
θ∈Ct
〈x, θ〉

and play xt = arg maxx∈Xt UCBt(x). If x?t = arg maxx∈Xt〈x, θ∗〉 then

〈x?t , θ∗〉 ≤ UCBt(x?t) ≤ UCBt(xt) = 〈xt, θ̃〉

where θ̃ = arg maxθ∈Ct〈xt, θ〉. Thus, the instantaneous regret at time t satisfies

rt = 〈x?t − xt, θ∗〉

≤ 〈xt, θ̃ − θ∗〉

≤ ‖xt‖A−1
t−1
‖θ̃ − θ∗‖At−1

≤ 2‖xt‖A−1
t−1

√
βt−1

Thus, the random regret satisfies

R̂T =
T∑
t=1

rt ≤

√√√√T
T∑
t=1

r2
t ≈

√√√√2TβT

T∑
t=1

‖xt‖2A−1
t−1

Let θ̂t be the `2-regularized least-squares estimate of θ∗ with regularization parameter λ > 0 given
by

θ̂t = arg min
θ
‖X1:tθ −Y1:t‖+ λ‖θ‖22 = (XT

1:tX1:t + λI)−1XT
1:tY1:t

where we are denoting X1:t as a matrix with rowsXT
1 , X

T
2 , . . . , X

T
t and Y1:t as the vector (Y1, . . . , Yt)

T .
The following theorem says that with high probability θ∗ lies with high probability in an ellipsoid
with center at θ̂t.

Theorem 7. Confidence Ellipsoid. Assume the same as in Theorem ??, let V = Iλ, λ > 0, define
Yt = 〈Xt, θt〉 + ηt and assume that ‖θ∗‖ ≤ S. Then for any δ > 0, with probability at least 1 − δ,
for all t ≥ 0, θ∗ lies in the set

Ct =

θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
2 log(

det(V t)1/2) det(λI)−1/2

δ
) + λ1/2S

 .

Furthermore, if for all t ≥ 1, ‖Xt‖2 ≤ L then with probability at least 1− δ, for all t ≥ 0, θ∗ lies in
the set

C ′t =

{
θ ∈ Rd : ‖θ̂ − θ‖V t ≤ R

√
d log(

1 + tL2/λ

δ
) + λ1/2S

}
.

4.4 Stochastic Contextual Bandits for General policy classes

Let’s return to the general setting of trying to minimize policy regret without assuming a parametric
structure on v(c, x). Fix some policy set Π.

4.4. STOCHASTIC CONTEXTUAL BANDITS FOR GENERAL POLICY CLASSES 55

4.4.1 τ-greedy

Consider running the uniform exploration logging policy of above for τ steps. If ετ :=

√
4|X | log(2|Π|/δ)

τ

and π̂ = arg maxπ∈Π V̂ (π) then

V (π̂) = V (π̂)− V̂ (π̂)︸ ︷︷ ︸
≥−ετ

+ V̂ (π̂)− V̂t(π?)︸ ︷︷ ︸
≥0

+ V̂ (π?)− V (π?)︸ ︷︷ ︸
≥−ετ

+V (π?)

≥ V (π?)− 2ετ

If we explore uniformly for τ rounds according to our logging policy and than exploit or T − τ
rounds then we achieve a regret of at most

1 · τ + 2ετ (̇T − τ) ≤ τ + T

√
4|X | log(2|Π|/δ)

τ

which is minimized at τ = (|X |T 2 log(2|Π|/δ))1/3 which yields a regret ofO(T 2/3(|X | log(2|Π|/δ))1/3)
regret.

4.4.2 Reduction to cost-sensitive classification

The above τ -greedy procedure requires a solution to the optimization problem π̂ = arg maxπ∈Π V̂ (π).
Note that

arg max
π∈Π

V̂ (π) = arg max
π∈Π

1

τ

τ∑
t=1

1{xt = π(ct)}
pt

rt

= arg max
π∈Π

1

τ

τ∑
t=1

(1− 1{xt 6= π(ct)})
rt
pt

= arg min
π∈Π

1

τ

τ∑
t=1

1{xt 6= π(ct)}
rt
pt
.

where the last line is empirical risk minimization of the 0/1-loss with example-label pairs (ct, xt)
weighted by rt

pt
.

Example 2. Let φ : C × X → Rd be a feature map and assume Π is parameterized by Rd so that
for every θ ∈ Rd there exists a π ∈ Π such that π(ct) = arg maxx∈X 〈θ, φ(ct, x)〉. Note, unlike Sec-
tion 4.3, we are not assuming anything about the relationship between 〈θ, φ(c, x)〉 and v(c, x). A nat-

ural convex relaxation of 1{xt 6= π(ct)} is cross-entropy loss − log(exp(〈θ,φ(ct,xt)〉)∑
x∈X exp(〈θ,φ(ct,x)〉)). We can ap-

proximate π̂ = arg maxπ∈Π V̂ (π) with an iterative algorithm where θk+1 = θk+ηk
∑τ

t=1
rt
pt
∇θ log(exp(〈θ,φ(ct,xt)〉)∑

x∈X exp(〈θ,φ(ct,x)〉))

for some step size sequence ηk.

4.4.3 Elimination algorithm

We will make the strong assumption that the distribution of contexts D is known a priori. This is
not so implausible due to historical data, and often one can proceed in stages where the previous
stage’s data can be used to approximate the context distribution. The algorithm and analysis is
inspired by [Dudik et al., 2011].

56 CHAPTER 4. CONTEXTUAL BANDITS

Recall the value of a policy π ∈ Π as V (π) = EC∼D[v(C, π(C))]. Taking our G-optimality approach,
we aim to sequentially define a distribution λ over policies Π and at each time play according to
πt ∼ λ. Given an active set of policies still under consideration, we wish to identify the distribution
that minimizes

min
λ∈∆

Π̂

max
π∈Π̂

E[(V̂t(π)− V (π))2]

for some active set Π̂ ⊂ Π.

Input: Policy set Π such that π : X → [n] for all π ∈ Π, confidence level δ ∈ (0, 1).

Let Π̂1 ← Π, `← 1, T0 ← 0
while |Π̂`| > 1 do

ε` = 2−`, τ` = d16nε−2
` log(2|Π|T/δ)e, γ` = min{ 1

2n ,
√

log(2|Π|T/δ)
9nτ`

}, T` = T`−1 + τ`

Q` = arg minQ∈4Π̂`
maxπ∈Π̂`

EC
[

1
Qγ` (π(C)|C)

]
s.t. Qγ(x|c) = γ + (1− γn)

∑
π∈Π̂`:π(c)=xQ(π)

for t = T`−1 + 1, . . . , T`
Observe context ct
Play xt ∼ Qγ(·|ct), set pt = Qγ(xt|ct) and observe reward rt = v(ct, xt) + ηt

Set V̂`(π) = 1
T`−T`−1

∑
t∈(T`−1,T`]

rt
1{π(ct)=ct}

pt

Π̂`+1 ← Π̂` \
{
π ∈ Π̂`|maxπ′∈Π̂`

V̂`(π
′)− V̂`(π) ≥ 2ε`

}
t← t+ 1

Output: Πt+1

The following lemma is somewhat of a generalization of Kiefer-Wolfowitz.

Lemma 18. Let ξ ∈ Ξ be a random variable and let φ : X × Ξ→ Rd. Then

min
λ∈4X

max
x∈X

Eξ

φ(x, ξ)>

(∑
x′∈X

λx′φ(x′, ξ)φ(x′, ξ)>

)†
φ(x, ξ)

 ≤ d,
with equality if dimspan({φ(x, ξ) : x ∈ X}) = d for all X ∈ X .

Proof. Define f(λ) = Eξ [f(λ; ξ)] and f(λ; η) = logdet
(∑

x∈X λxVηφ(x, η)φ(x, η)>V >η
)

where Vη ∈
Rk×d satisfies V >η Vηφ(x; η) = φ(x; η) and k = dimspan({φ(x, η) : x ∈ X}). First note that for any

A : R→ Rk×k we have d
dt logdet (A(t)) |t=t0 = Trace(A(t0)−1 dA(t)

dt |t=t0). Thus

∂f(λ; ξ)

∂λx
= Trace

(∑
x′∈X

λx′Vξφ(x′, ξ)φ(x′, ξ)>V >X

)−1

Vξφ(x, ξ)φ(x, ξ)>V >ξ

= φ(x, ξ)>V >ξ

(∑
x′∈X

λx′Vξφ(x′, ξ)φ(x′, ξ)>V >ξ

)−1

Vξφ(x, ξ)

= φ(x, ξ)>

(∑
x′∈X

λx′φ(x′, ξ)φ(x′, ξ)>

)†
φ(x, ξ)

Note that for any λ we have 〈∇f(λ; ξ), λ〉 = dimspan(φ(x′, ξ) : x′ ∈ X). Let λ∗ = arg minλ∈X f(λ)

4.4. STOCHASTIC CONTEXTUAL BANDITS FOR GENERAL POLICY CLASSES 57

and fix any x ∈ X . Then by first order conditions,

0 ≥ 〈∇f(λ∗), ex − λ∗〉
= Eξ

[
〈∇f(λ∗; ξ), ex〉 − dimspan(φ(x′, ξ) : x′ ∈ X)

]
≥ Eξ

φ(x, ξ)>

(∑
x′∈X

λ∗x′φ(x′, ξ)φ(x′, ξ)>

)†
φ(x, ξ)

−max
η∈X

dimspan(φ(x′, η) : x′ ∈ X)

Because x ∈ X was arbitrary, this completes the first part of the proof. Now suppose d =
maxη∈X dimspan(φ(x′, η) : x′ ∈ X). Then by the previous display we have

d ≥ max
x∈X

Eξ

φ(x, ξ)>

(∑
x′∈X

λ∗x′φ(x′, ξ)φ(x′, ξ)>

)†
φ(x, ξ)

≥ min

λ∈4X
max
x∈X

Eξ

φ(x, ξ)>

(∑
x′∈X

λx′φ(x′, ξ)φ(x′, ξ)>

)†
φ(x, ξ)

≥ min

λ∈4X

∑
x∈X

λxEξ

φ(x, ξ)>

(∑
x′∈X

λx′φ(x′, ξ)φ(x′, ξ)>

)†
φ(x, ξ)

= d

which completes the proof.

However, the original proof in [Dudik et al., 2011] proves this result in a very different way, appeal-
ing to Sion’s minimax theorem.

Lemma 19. For any finite policy set Π we have

min
Q∈4Π

max
π∈Π

EC
[

1

Q(π(C)|C)

]
≤ |X |,

with equality if | ∪π∈Π π(c)| = |X | for all c. Moreover, for any finite policy set Π and γ ≤ 1
2|X | we

have

min
Q∈4Π

max
π∈Π

EC
[

1

Qγ(π(C)|C)

]
= min

Q∈4Π

max
π∈Π

EC
[

1

γ + (1− γ|X |)Q(π(C)|C)

]
≤ 2|X |.

Proof. Consider i = 1, . . . , |X | actions and for each c ∈ C define πc := eπ(c) ∈ {0, 1}|X |. For any
Q ∈ 4Π

π>c

(∑
π′∈Π

Q(π′)π′cπ
′>
c

)†
πc =

1∑
π′∈Π:π′(c)=π(c)Q(π′)

=
1

Q(π(c)|c)

Applying the above lemma we have

min
q∈4Π

max
π∈Π

EC

π>C
(∑
π′∈Π

qπ′π
′
Cπ
′>
C

)†
πC

 ≤ |X |.

58 CHAPTER 4. CONTEXTUAL BANDITS

Remark 1. In light of the connection to Kiefer-Wolfowitz, where one appealed to Caratheodory’s
theorem to find a sparse solution that grew only quadratically in the dimension, one may wonder
if Q can also be sparse in this setting. If |C| < ∞ then by constructing a sparse solution via
Caratheodory for each c ∈ C we can always find a solution Q that is |C| |X | sparse. Can we do
better? Unfortunately, for some absolute constant α � 2, [Agarwal et al., 2014] prove that for
sufficiently small γ > 0 there exists a contextual bandit instance with |C| = 1

2
√

2α|X |γ such that if a

Q ∈ 4Π satisfies maxπ∈Π EC
[

1
γ+(1−γn)Q(π(C)|C)

]
≤ α|X |, then |support(Q)| ≥ (|C|−1)|X | = 1

4
√

2αγ
.

They also show how to obtain a O(1/γ)-sparse solution for a very similar optimization problem for
any contextual bandit instance.

Lemma 20. For all ` = 1, 2, . . . we have π? ∈ Π̂` and max
π∈Π̂`

V (π) ≥ V (π?)− 8ε`.

Proof. Let τ` = T`−T`−1. Noting that the variance of V̂`(π) is bounded by max
π∈Π̂`

EC
[

1
Qγ` (π(C)|C)

]
,

we apply Bernstein’s inequality at each stage ` to find

|V (π)− V̂`(π)| ≤

√
4n log(2|Π|T/δ)

τ`
+

2 log(2|Π|T/δ)
3γ`τ`

≤

√
16n log(2|Π|T/δ)

τ`

for the choice of γ` = min{ 1
2n ,
√

log(2|Π|T/δ)
9nτ`

} to equalize the terms for large τ`. The last inequality

holds if τ` ≥ n log(2|Π|T/δ). To make the right hand side less than ε`, it suffices to take τ` =
d16nε−2

` log(2|Π|T/δ)e.
For any fixed Π̂` with π? ∈ Π̂`, we have that any π ∈ Π̂` satisfies

V̂`(π)− V̂`(π?) = V̂`(π)− V (π) + V (π)− V (π?)︸ ︷︷ ︸
≤0

+V (π?)− V̂`(π?)

≤ 2ε`.

On the other hand, for any π such that V (π?)− V (π) > 4ε`

max
π′∈Π̂`

V̂`(π
′)− V̂`(π) ≥ V̂`(π?)− V̂`(π)

= V̂`(π
?)− V (π?) + V (π?)− V (π)︸ ︷︷ ︸

>4ε`

+V (π)− V̂`(π)

> 2ε`

which implies this π will be kicked out. This means that max
π∈Π̂`+1

V (π) ≥ V (π?)−4ε` ≥ V (π?)−
8ε`+1.

Extending the proof to all ` and random Π̂` is identical to above for linear bandits.

Suppose you run for T timesteps. Let ∆ = minπ 6=π? V (π?)− V (π). Then for any ν ≥ 0 the regret

4.4. STOCHASTIC CONTEXTUAL BANDITS FOR GENERAL POLICY CLASSES 59

is bounded by:

Tν+

dlog2(4(∆∨ν)−1)e∑
`=1

(γ`n+ 8ε`(1− γ`n))τ`

= Tν +

dlog2(4(∆∨ν)−1)e∑
`=1

(n
√

log(2|Π|T/δ)
9nτ`

+ 8ε`)τ`

= Tν +

dlog2(4(∆∨ν)−1)e∑
`=1

n
√
d16nε−2

` log(2|Π|T/δ)e log(2|Π|T/δ)/9n+ 8ε`d16nε−2
` log(2|Π|T/δ)e

≤ Tν +

dlog2(4(∆∨ν)−1)e∑
`=1

2nε−1
` log(4|Π|T/δ) + 128nε−1

` log(4|Π|T/δ)

≤ Tν + 8 + 130n log(2|Π|T/δ)
dlog2(4(∆∨ν)−1)e∑

t=1

2t

≤ Tν + 8 + 2080n(∆ ∨ ν)−1 log(2|Π|T/δ).

As before, using the upper bound (∆ ∨ ν) ≤ ν and optimizing over ν we have that the regret is no
great than O(

√
nT log(|Π|T/δ)).

Notes: [Dudik et al., 2011] compute a different Qt every time a new context ct arrives instead
of our algorithm, above, which computes it only once per stage. Also, when estimating the
value of a policy, they use all the observed data up to the current time, whereas our algo-
rithm only uses the data from that round. Reusing data introduces dependencies that are easily
handled by the martingale-based bounds of above since we can define our filtration as Ft−1 =
(c1, x1, r1, . . . , ct−1, xt−1, rt−1, ct) so that ct ∈ Ft−1 which makes pt a predictable sequence.

While the τ -greedy algorithm is computationally efficient via a reduction to cost-sensitive clas-
sification, it is unclear how to make the above elimination algorithm computationally efficient.
Fortunately, [Agarwal et al., 2014] did precisely that by approximately solving the optimization
problem over 4Π using an iterative algorithm which results in a finite cover over Π.

4.4.4 A
√
T computationally efficient algorithm

In this section we will propose an algorithm analogous to [Agarwal et al., 2014], but presented a
bit differently.

60 CHAPTER 4. CONTEXTUAL BANDITS

Input: Policy set Π such that π : C → [n] for all π ∈ Π, confidence level δ ∈ (0, 1).

Let Π̂1 ← Π, `← 1, T0 ← 0
for ` = 1, 2, . . .

ε` = 2−`, τ` = d16nε−2
` log(2|Π|T/δ)e, γ` = min{ 1

2n ,
√

log(2|Π|T/δ)
9nτ`

}, T` = T`−1 + τ`
Let Q` be any Q ∈ 4Π that satisfies both∑

π∈Π

∆̂`−1(π)Q(π) ≤ c0ε` (4.3)

EC
[

1

Qγ`(π(C)|C)

]
≤ n+

∆̂`−1(π)

γ`
∀π ∈ Π (4.4)

where Qγ(x|c) = γ + (1− γn)
∑

π∈Π:π(c)=x

Q(π)

for T` steps
Observe context ct
Play xt ∼ Qγ`` (·|ct), set pt = Qγ`` (xt|ct) and observe reward rt = v(ct, xt) + ηt

Set V̂`(π) = 1
T`−T`−1

∑
t∈(T`−1,T`]

rt
1{π(ct)=ct}

pt
and ∆̂`(π) = maxπ V̂`(π

′)− V̂`(π)

`← `+ 1
Output: Πt+1

On stage `, for any λ < γ` and π ∈ Π, we have by Equation 3.1 that with probability at least 1− δ
that S ≤ λV

2(1−cλ) + log(|Π|/δ)/λ where S =
∑

t∈(T`−1,T`]
rt

1{π(ct)=ct}
pt

, V = τ`EC
[

1
Qγ` (π(C)|C)

]
, and

c = 1/3γ`. Thus, taking λ = γ`/2 we have with probability at least 1− δ that for all π ∈ Π

|V̂`(π)− V (π)| ≤ λEC
[

1

Qγ`(π(C)|C)

]
+

log(2|Π|T/δ)
τ`λ

=
γ`
2
EC
[

1

Qγ`(π(C)|C)

]
+

log(2|Π|T/δ)
τ`γ`/2

.

Since γ` ≈ ε`
n , log(2|Π|T/δ)

τ`γ`/2
. ε`, and there always exists a Q to with EC

[
1

Qγ` (π(C)|C)

]
≤ 2n, we

have that we will have that |V̂1(π) − V (π)| ≤ ε1. By an inductive argument, one can show that
Equation 4.4 guarantees that V̂`(π) − V (π) ≤ c(ε` + ∆(π)) for some small c < 1. In particular, it
implies that

∆̂`(π) = max
π

V̂`(π
′)− V̂`(π)

≥ V̂`(π∗)− V̂`(π)

= ∆(π) + V̂`(π
∗)− V (π∗) + V (π)− V̂`(π)

= ∆(π)− c(2ε` + ∆(π))

which is at least ∆(π)/2 when ε` ≤ ∆(π)/2. This, in turn, implies that Equation 4.3 is using accu-
rate estimates of ∆̂`(π). Thus, approximating ∆̂`(π) ≈ max{∆(π), ε`, if a feasible Q` is identified
at each round, then during round ` one will incur an average regret of at most c0(ε` + γ`n) since
P(xt = x) = γ` + (1 − γ`n)1{πt(ct) = x} and πt ∼ Q`. Then the regret analysis of above follows
identically. Now all that remains is to show that (i) there exists a feasible Q` at each round with
high probability, and (ii) such a Q` can be identified using a computationally efficient procedure.

To solve (i) we will explicitly construct a feasible Q`. For j ≤ ` define Πj = {π ∈ Π : ∆(π) ≤ ε`}
and

Pj = arg min
P∈4Π:support(P)⊂Πj

max
π∈Πj

EC
[

1

P γj (π(C)|C)

]

4.4. STOCHASTIC CONTEXTUAL BANDITS FOR GENERAL POLICY CLASSES 61

where P γ(x|c) = γ + (1 − γn)
∑

π∈Πj :π(c)=x P (π). With τj and γj defined as above, let P̄` =
1
T`

∑`
j=1 Pjτj where we recall that T` =

∑`
j=1 τj . Note that Pj is essentially the distribution

identified in the computationally inefficient algorithm at each round j. Thus, Equation 4.4 will
be satisfied almost immediately, since for any π such that ∆(π) ≤ εj we have P̄ γ`` (π(c)|c)T` ≥
P
γj
j (π(c)|c)τj which makes the LHS less than O(εj). To show that Equation 4.3 is satisfied, we

observe that ∑
π∈Π

∆̂`−1(π)P̄`(π) ≈
∑
π∈Π

∆(π)P̄`(π)

=
∑̀
j=0

∑
π∈Π:∆(π)≤εj

∆(π)P̄`(π)

≤ 1

T`

∑̀
j=0

∑
π∈Π:∆(π)≤εj

εjPj(π)τj

.
1

T`

∑̀
j=0

∑
π∈Π:∆(π)≤εj

εjPj(π)nε−2
j log(2|Π|T/δ)

=
1

T`

∑̀
j=0

nε−1
j log(2|Π|T/δ)

.
1

T`
nε−1
` log(2|Π|T/δ)

.
1

τ`
nε−1
` log(2|Π|T/δ)

. ε`

where we have used the inequality
∑`

j=0 a
j ≤ 2a` for a ≥ 2.

To solve (ii) we employ the use of a Frank-Wolfe style algorithm, as used in [Agarwal et al., 2014].
In particular, at each step we find some π that invalidates Equation 4.4 (which can be cast as a
cost-sensitive classification problem) increase Q(π), and then renormalize Q so that Equation 4.3
is satisfied. The process will eventually terminate with a Q that doesn’t necessarily sum to one
(but does not exceed it). To make the policy sum to 1, use the empirical best policy.

4.4.5 Frank-Wolfe

Frank-Wolfe for contextual bandits
Input: φ : [n]× Ξ→ Rd, γ > 0, α ∈ Rn+, λ(0) ∈ 4n
Set: t = 1, ωi(λ) = E

[
φ(j, ξ)>(

∑n
i=1 λiφ(i, ξ)φ(i, ξ)> + γI)−1φ(j, ξ)

]
do

k = arg maxi=1,...,n ωi(λ
(t−1))− αi

η = ωi(λ
(t−1))−αi

ωi(λ(t−1))2

λ(t) = λ(t−1) + ηek
if
∑n
j=1 αjλ

(t)
j > d

λ(t) = λ(t) · d∑n
j=1 αjλ

(t)
j

t = t+ 1
until maxi=1,...,n ωi − 2αi ≤ 0
Output: Single element in V

62 CHAPTER 4. CONTEXTUAL BANDITS

f(λ) = −Eξ[logdet(
n∑
i=1

λiφ(i, ξ)φ(i, ξ)> + γI)] +
n∑
i=1

λiαi

∂f(λ)

∂λj
= −E

[
Trace

(
(
n∑
i=1

λiφ(i, ξ)φ(i, ξ)> + γI)−1φ(j, ξ)φ(j, ξ)>

)]
+ αj

= −E

[
φ(j, ξ)>(

n∑
i=1

λiφ(i, ξ)φ(i, ξ)> + γI)−1φ(j, ξ)

]
+ αj

=: −ωj + αj

For some λ and k ∈ [n] such that ωk ≥ 2αk consider

f(λ+ ηek) = −Eξ[logdet(
n∑
i=1

λiφ(i, ξ)φ(i, ξ)> + γI + ηφ(k, ξ)φ(k, ξ)>)] +
n∑
i=1

λiαi + ηαk

= f(λ)− log(1 + ηωk) + ηαk

≤ f(λ)− ηωk + η2ω2
k/2 + ηαk

= f(λ)− (ωk − αk)2

2ω2
k

≤ f(λ)− 1/2

using the fact that log(1 + x) ≥ x− x2/2 and the prescribed step size.

Fix λ and let g(c) = f(cλ) so that

g(c) = −Eξ[logdet(

n∑
i=1

cλiφ(i, ξ)φ(i, ξ)> + γI)] +

n∑
i=1

cλiαi

g′(c) = −E

Trace

(

n∑
i=1

cλiφ(i, ξ)φ(i, ξ)> + γI)−1
n∑
j=1

λjφ(j, ξ)φ(j, ξ)>

+

n∑
j=1

αjλj

= −1

c
E

Trace

(
n∑
i=1

cλiφ(i, ξ)φ(i, ξ)> + γI)−1(c
n∑
j=1

λjφ(j, ξ)φ(j, ξ)> + γI − γI)

+
n∑
j=1

αjλj

= −1

c
E

[
Trace

(
I − γ(

n∑
i=1

cλiφ(i, ξ)φ(i, ξ)> + γI)−1

)]
+

n∑
j=1

αjλj

≥ −d
c

+

n∑
j=1

αjλj .

Thus, g(1) ≥ g(c) if c = d∑n
j=1 αjλj

. So if at some point in the algorithm, if
∑n

j=1 αjλj > d then

λ 7→ cλ. Thus, the projection step does not increase the objective.

If λ(0) = 0 then the algorithm terminates after O(n log(1/γL)) steps.

Chapter 5

Other topics in bandits

5.1 Non-parametric bandits

5.1.1 Bandits in an RKHS, Gaussian Process Bandits, Bayesian Optimization

5.1.2 Bandit Convex Optimization

5.1.3 Lipschitz Bandits

5.2 Infinite-armed bandits

5.3 Alternative kinds of feedback

5.3.1 Dueling bandits

5.3.2 Slates

63

64 CHAPTER 5. OTHER TOPICS IN BANDITS

Chapter 6

Active Learning for Classification

This chapter is concerned learning a binary classifier while requesting as few labels as possible.
Specifically, for an example space X and label space {0, 1} let H be a hypothesis class such that
for each h ∈ H we have h : X → {0, 1}. For example, X could be a set of images in some database,
and each image x ∈ X either contains a man-made object y = 1 or not y = 1. After labels for
examples in a subset of X are observed, one can construct ĥ ∈ H which can then be applied to
every image in the database X to predict their unknown labels.

In the pool-based setting, at any point we can choose any x ∈ X and then request its label y ∈ {0, 1}.
We evaluate an algorithm by the number of labels requested and the number of errors the learned
classifier ĥ makes over the entire pool X , whether they were queried or not. In the streaming
setting, there exists a distribution D over X and we can only obtain samples x ∼ D. In this
setting, we evaluate an algorithm based on how many total examples are drawn from D (amount
of unlabeled data), the number of labels that are requested, and the error of the classifier over X
with respect to D. Note, by taking D to be a uniform distribution over X , one can always apply
an algorithm for the streaming setting to the pool-based setting. On the other hand, if we had
no restriction on the amount of unlabeled data, one could keep sampling from D until any desired
x ∈ support(D) ⊂ X eventually is returned (though this could take a very long time).

6.1 Separable, pool-based setting

We say a problem is separable if there exists an h∗ ∈ H such that for every x ∈ X and its
corresponding label y ∈ {0, 1}, h∗(x) = y. The goal of exact learning in the pool-based setting
is to identify h∗ using as few queries as possible. In this section, we propose different strategies
for accomplishing this. For a deterministic algorithm A, let S(X ,H, h,A) be the number of labels
that algorithm A requests before identifying the true hypothesis h∗ = h, and let S(X ,H,A) =
maxh∈HS(X ,H, h,A). In the pool-based setting, |X | < ∞ which implies |H| < ∞. Thus, any
deterministic algorithm can be thought of as a binary tree where each node specifies which x ∈ X
to request the label for, and each child node to move to depends on the label y ∈ {0, 1}. The leaves
of this tree correspond to a unique h ∈ H. Because a binary tree with |H| leaves has depth at least
dlog2(|H|)e we have the immediate proposition.

Proposition 6. For any hypothesis space H defined over X , any algorithm A satisfies S(X ,H,A) ≥
dlog2He.

Note that for some hypothesis classes, this lower bound is achievable:

65

66 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

Example 3 (Binary search). Let n ∈ N be a power of two, X = {1, . . . , n}, and Hthresholds =
{h(x) = 1{x ∈ {1, . . . , k}} : k ∈ {1, . . . , n}}. Each h ∈ H corresponds to a unique index k ∈ [n]
and the label for each query i ∈ X = [n] is equivalent to asking whether i ≤ k or i > k. Performing
bisection/binary search identifies the correct hypothesis after exactly log2(n) = log2(|H|). Thus,
minAS(X ,Hthresholds,A) = dlog2 |Hthresholds|e.

However, clearly log2(|H|) is not always possible:

Example 4 (Needle in a haystack). Fix n ∈ N, X = {1, . . . , n}, and Hneedle = {h(x) = 1{x =
k} : k ∈ {1, . . . , n}}. Exhaustive search is clearly the best one could hope for here, which takes
n− 1 = |H| − 1 queries. Thus, minAS(X ,Hneedle,A) = |Hneedle| − 1

Moreover, its easy to see that minAS(X ,H,A) ≤ |H|−1 in general since without loss of generality
we have |X | ≤ |H|, otherwise queries in X are equivalent. The above two examples show that
minAS(X ,H,A) lies somewhere between dlog2 |H|e and |H| − 1. Can we get a bit tighter?

6.1.1 Extended teaching dimension and the Halving algorithm

Here we introduce a combinatorial quantity called the extended teaching dimension that describes
the complexity of exact learning [Hegedus, 1995]. First, some definitions. Let n = |X |.

Definition 14. We say S ⊂ X is a specifying set for b ∈ {0, 1}n (with respect to H) if |{h ∈ H :
h(x) = b(x) ∀x ∈ S}| ≤ 1.

Definition 15. For any X and hypothesis class H over X , define extended teaching dimension
Ext-TD(H) as Ext-TD(H) = min{k : ∀b ∈ {0, 1}|X |,∃ specifying set S for b with |S| ≤ k}.

Examples make these definitions clearer.

Example 5 (Thresholds). If b = 0 then S = {1} suffices since h(1) = 1 for all h ∈ H. If b ∈ {0, 1}n
such that b 6∈ Hthresholds and b 6= 0 then there exists some 1 ≤ i < j ≤ n such that b(i) = 0 and
b(j) = 1 so S = {i, j} suffices. Finally, if b ∈ H then there exists an index i such that b(i) = 1 and
b(i+ 1) = 0 and so S = {i, i+ 1} suffices. Thus Ext-TD(Hthresholds) = 2.

Example 6 (Needle in a Haystack). Take S to be any subset of [n] with |S| = n − 1. Fix any
b ∈ {0, 1}n. If b(i) = 0 for all i ∈ S then the remaining index either uniquely specifies an h ∈ H or
is equal to 0, in which no h ∈ H is consistent. If |{b(i) = 1 : i ∈ S}| ≥ 1 then either no h ∈ H is
consistent or the correct h is specified (since b cannot contain multiple 1s). Finally, if b = 0 and
|S| < n−2 then there are two hypotheses in H that are consistent with any S ⊂ X . Together, these
cases imply that Ext-TD(Hneedle) = |S| − 1.

Theorem 8. For any H we have Ext-TD(H) ≤ minAS(X ,H,A) ≤ Ext-TD(H)dlog2(|H|)e.
Moreover, the upper bound is achieved by the Halving algorithm.

Proof. Suppose A is an algorithm that takes at most S(X ,H,A) queries when run on any instance
h ∈ H. Without loss of generality, we may assume that after receiving a label in each round, A
checks whether there exists more than one hypothesis consistent with the observations. If so it
continues, if not it stops. Moreover, assume that if A is played on some b 6∈ H and it encounters a
query that is inconsistent with any h ∈ H it also stops and outputs Fail. Note that this algorithm
takes no more than S(X ,H,A) queries when it is run on any b ∈ {0, 1}n. Thus, when run on any

6.1. SEPARABLE, POOL-BASED SETTING 67

b ∈ {0, 1}n, the set of measured example, label pairs is a specifying set for b with respect to H.
This proves the lower bound.

The upper bound follows from the Halving algorithm. At each round, if b(x) = h∗(x) for all
x ∈ S then V = {h∗} by the definition of the specifying set. If there exists an x ∈ S such that
b(x) 6= h∗(x) then at least half of the hypotheses in V at the start of the round are removed, due
to majority vote. Because this can occur at most dlog2(|H|)e times and the size of each specifying
set is at most Ext-TD(H), the result follows.

Halving Algorithm for exact learning
Input: Finite hypothesis set H such that each h : X → {0, 1}.
Initialize: version space V = H
while |V | > 1

Set b(x) = MajorityVote(h(x) : h ∈ V) for all x ∈ X
Let S ⊂ X be a minimal specifying set for b ∈ {0, 1}|X | with respect to H and request h∗(x) for all

x ∈ S
Update V = {h ∈ V : h(x) = h∗(x)}

Output: Single element in V

The result of Theorem 8 sheds light on the sample complexity of exact learning. However, the
Halving algorithm and its analysis has many downsides. First, its not clear how to compute a
minimal specifying set. Second, even if one could, the computational complexity of the algorithm
scales like |X | |H| which is almost always intractable. Finally, even as a theoretical result alone,
the definition of Ext-TD(H) is very combinatorial and can be difficult to bound.

6.1.2 Generalized binary search

There have been many variants of greedy information gain algorithms that have been proposed
and analyzed. They go by names like query by committee, splitting algorithm, or generalized bi-
nary search [Freund et al., 1997, Dasgupta, 2005a, Nowak, 2011, Golovin and Krause, 2011]. These
generalized binary search algorithms define a probability distribution p over H and take queries to
remove as much mass as possible.

Generalized Binary Search (GBS) for exact learning
Input: Finite hypothesis set H such that each h : X → {0, 1}. Probability distribution p ∈ 4H
Initialize: Version space V = H
while |V | > 1

Set x′ ← arg minx∈X
∣∣ 1

2 −
∑
h∈V p(h)h(x)

∣∣
Request h∗(x′) and update V = {h ∈ V : h(x′) = h∗(x′)}

Output: Single element in V

Theorem 9 ([Dasgupta, 2005a]). Fix any finite hypothesis class H and p ∈ 4H. Let OPT =
minA Eh∼p [S(X ,H, h,A)]. The GBS algorithm satisfies Eh∼p [S(X ,H, h,AGBS)] ≤ 4OPT maxh∈H log(1/p(h)).

When p is taken to be the uniform distribution over H this amounts to a log(|H|) approximation
ratio. Note that while the previous section has been considering S(X ,H,A) maxh∈HS(X ,H, h,A),
this theorem is concerned with the average case sample complexity Eh∼p [S(X ,H, h,A)].

For some special classes of H, or those that possess certain geometrical properties, this average-
case approximation ratio can be shown to be a constant [Nowak, 2011]. A related greedy approach
attempts to remove as many pairs of hypotheses that cannot be distinguished between. Its sample
complexity is given in terms of the splitting index [Dasgupta, 2005b].

68 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

6.1.3 Open problems

All of the above algorithms are computationally infeasible since they scale like |X | |H|. If X ⊂ Rd
and H is the space of linear half-spaces then O(|X |d). Ideally, an algorithm for this setting would
only require calls to an oracle of the form arg minh∈H

∑
x∈S 1{h(x) 6= h∗(x)} for any S ∈ X . In

special cases, such as the space of half-space classifiers, one can efficiently approximate the volume
of the version space thereby making algorithms like GBS with a uniform prior potentially runnable.

For this pool-based setting, the extended teaching dimension is the only result that I am aware of
that provides a nearly matching upper and lower bound that quantifies the sample complexity (i.e.,
not a non-constructive OPT). [Dasgupta, 2005b] proves an upper bound in terms of the splitting
index. However, the lower bound relies on either the number of unlabeled data being large or the
number of labels needed being large–this is vacuous in the pool-based setting. Reducing the gap
between the upper and lower bound of Theorem 8 is a great open problem. Especially if the new
bounds are in terms of efficiently computable quantities.

The extended teaching dimension bounds are worst-case over the class of H. Which means that if I
embed a set of hard instances in H, the teaching dimension and thus the sample complexity of this
appended class is at least as hard as learning the hard instances. Is there some notion of segmenting
H into equivalence classes of instances of difficulty such that some instances are learnable with very
queries while others may require a lot, and this is reflected in the sample complexity?

6.2 Separable, streaming setting

While in the pool-based setting we assumed that |X | < ∞ and can be enumerated over, when we
move to the streaming setting we make no such restriction. Here X can be uncountable and we
assume we have access to a sampling oracle such that we can query an xt ∼ DX over X . If we
request a corresponding label yt ∈ {0, 1} we assume that the pair (xt, yt) ∼ D. For simplicity we
will still assume H is finite.

Define the risk of any h ∈ H with respect to D as R(h) := E(X,Y)∼D[1{h(X) 6= Y }. We do not
assume that we know D directly, but we can collect an iid dataset {(xi, yi)}ni=1 from drawn from D.

Hence, define the empirical risk as R̂n(h) = 1
n

∑n
i=1 1{h(xi) 6= yi}. For i.i.d. draws {xi, yi}ni=1, the

empirical risk R̂(h) is an unbiased estimator of the true risk R(h) for any hypothesis h ∈ H. Let
h∗ = arg minh∈HR(h) be a hypothesis of minimum true risk in H. Then, the goal of the learner
is to return a hypothesis h ∈ H with true risk R(h) as close as possible to the minimum true risk
R(h∗).

6.2.1 Review of passive learning

We start with the problem of passive learning for binary classification. Herein, we have a set of
data points and labels {(xi, yi)}ni=1 drawn i.i.d. from distribution D. Our goal is to find how fast
the true risk goes down as a function of n. Intuitively, the lower the risk we want, the more data
points we need to sample. Further, there must be a positive relationship between the number of
hypotheses we have in the hypothesis space and the number of data points we need to identify the
hypothesis with the minimum true risk almost surely. The following theorem characterizes these
relationships:

Theorem 10. Fix a distribution D over X ×{0, 1} and a finite set of hypotheses H (i.e., |H| <∞).
We assume that the data is separable so thatminh∈H P(X,Y)∼D(h(X) 6= Y) = 0. Given n IID

6.2. SEPARABLE, STREAMING SETTING 69

draws from D, {(xi, yi)}ni=1, let ĥn = arg minh∈H R̂n(h) be the empirical risk minimizer. For any

ε, δ ∈ (0, 1), we have P
(
R(ĥn) > ε

)
≤ δ whenever n ≥ ε−1 log(|H|δ). In other words, for any

ε, δ ∈ (0, 1), with probability 1− δ, we have R(ĥn) ≤ log(
|H|
δ

)

n

Before going over the proof, it is worth noting that the theorem assumes a finite set of hypotheses
in the hypothesis class H. Such assumption, besides being practical from an optimization point of
view, also simplifies the theory. Given that an infinite hypothesis class applied to a finite number
of points observations yields a finite number of labellings, intuitively, assuming a finite hypothesis
should not be too restrictive. We refer the interested reader to Boucheron et al. [Boucheron, 2005]
in order to better understand how to make this argument rigorous by appealing to quantities like
the Vapnik-Chervonenkis (VC) dimension and Rademacher complexity.

Proof. First note that R̂n(ĥn) = 0 since R̂n(ĥn) = minh∈H R̂n(h) ≤ R̂n(h∗) = 0. Now we can write:

Pr
(
R(ĥn) > ε

)
= Pr

(⋃
h∈H
{R(h) > ε ∧ R̂n(h) = 0}

)
≤
∑
h∈H

Pr
(
{R(h) > ε ∧ R̂n(h) = 0}

)
, (6.1)

where we performed a union bound to obtain the inequality. We can now find a bound for each
element—Pr

(
{R(h) > ε, R̂n(h) = 0}

)
. This is the probability that a hypothesis with true risk

greater than ε shows zero empirical risk in n points drawn i.i.d. from D. Since the true risk for
this hypothesis is greater than ε, the probability that this hypothesis correctly identifies a random
point is lower than 1− ε. Thus, we can write:

Pr
(
R(ĥn) > ε

)
≤
∑
h∈H

Pr
(
{R(h) > ε ∧ R̂n(h) = 0}

)
≤
∑
h∈H

(1− ε)n ≤ |H|e−nε

using the approximation 1− x ≤ e−x for x ≥ 0. Thus, Pr
(
R(ĥn) > ε

)
≤ |H|e−εn = δ. Solving for

n, we find n ≥ ε−1 log(|H|δ), and this completes the proof.

Example 7. As a concrete example, let us assume x being uniform on [0, 1], and that the hypothesis
class is defined as H = {1{x ≤ i−1

m−1} : i = 1, ...,m}; that is, there are m classifiers uniformly spaced
in our hypothesis class (i.e., |H| = m). If y = h∗(x) for some h∗ ∈ H (i.e., the perfect classifier
exists in the hypothesis class), then we can apply Theorem ?? and say that after n observations

with probability at least 1− δ we have R(ĥn) ≤ log(m/δ)
n .

6.2.2 CAL, Disagreement-based learning

Now we will attempt to reduce the number of labels that are requested while achieving the same
performance as passive learning. The style of algorithm we consider here is known as a disagreement-
based learner. [Hanneke et al., 2014] provides an excellent survey of these methods.

Definition 16. For some hypothesis class H and subset V ⊂ H where for each h ∈ H, h : X →
{0, 1}, the region of disagreement is defined as

DIS(V) = {x ∈ X : ∃ h, h′ ∈ H s.t. h(x) 6= h′(x)}

which is the set of unlabeled examples x for which there are hypotheses in V that disagree on how
to label x.

70 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

The CAL1 algorithm [Cohn et al., 1994] (see Algorithm 3) at time t, in response to Nature revealing
xt ∼ DX , decides to request yt if and only if xt ∈ DIS(Vt−1) where Vt represents the subset of
hypotheses in H that is consistent with all data requested up to time t. Note that if xt 6∈ DIS(Vt−1)
then all h ∈ Vt−1 agree on its label. Because h∗ ∈ Vt for all t on the assumption that yt = h∗(xt),
if xt 6∈ DIS(Vt−1) then we can conclude that yt = h(xt) for all h ∈ Vt−1. Thus, after n unlabeled
examples, CAL has the same performance guarantee as the passive learning algorithm that observes
all n labels. All that is left to do is bound how many samples CAL takes.

Computational efficiency Note, the check “xt ∈ DIS(Vt−1)” can often be computed efficiently.
To see how, note that xt ∈ DIS(Vt−1) if and only if there exists an h ∈ Vt−1 such that h(xt) 6=
h∗(xt). Now, h ∈ Vt−1 if and only if h(xs) = h∗(xs) for all s ∈ Zt−1. Thus, an equivalent check
to xt ∈ DIS(Vt−1) is a check if there exist an h1 ∈ H such that h1(xs) = ys for all (xs, ys) ∈
Zt−1∪ (xt, 1) and and an h0 ∈ H such that h0(xs) = ys for all (xs, ys) ∈ Zt−1∪ (xt, 0). This inspires
the algorithm efficient CAL. This idea was first introduced in [Dasgupta et al., 2008]. If H is the
set of linear halfspaces, such a check is a linear program.

Algorithm 1 CAL

1: Initialize: Z0 = ∅, V0 = H
2: for t = 1, 2...n do
3: Nature reveals unlabeled data point xt
4: if xt ∈ DIS(Vt−1) then
5: Query yt, and set Zt = Zt−1 ∪ (xt, yt)
6: else
7: Zt = Zt−1

8: end if
9: Vt = {h ∈ H : h(xi) = yi ∀(xi, yi) ∈ Zt}

10: end for
11: return any h ∈ Vn

Algorithm 2 Efficient CAL

1: Initialize: Z0 = ∅
2: for t = 1, 2...n do
3: Nature reveals unlabeled data point xt
4: if for ŷ ∈ {0, 1} ∃hŷ ∈ H : hŷ(xs) =

ys, ∀(xs, ys) ∈ Zt−1 ∪ (xt, ŷ) then
5: Query yt, and set Zt = Zt−1 ∪ (xt, yt)
6: else
7: Zt = Zt−1

8: end if
9: end for

10: return arg minh∈H
∑

(x,y)∈Zt 1{h(x) 6= y}.

CAL (and other disagreement-based methods) use a concept called the disagreement coefficient for
analyzing the label complexity. Define the disagreement (pseudo) metric ρ on H as ρ(h, h′) :=
PX∼DX (h(X) 6= h′(X)). Let B(h, r) := {h′ ∈ H : ρ(h, h′) ≤ r} denote the closed ball centered at
h ∈ H with radius r.

Definition 17. The disagreement coefficient of h ∈ H with respect to a hypothesis class H and
distribution DX is defined as

θh = sup
r

PX∼DX (X ∈ DIS(B(h, r)))

r

As we will see, a small disagreement coefficient is a sufficient condition for efficient active learning
algorithms. Essentially, it says that as the version space collapses around h∗, there is always
sufficient mass between some sub-optimal h and h∗ to rule out h in a bounded amount of time.

As an example, consider our example of before with DX uniform on [0, 1] andH as thresholds. Then,
interpreting h∗ as a number in [0, 1] denoting the threshold location, DIS(B(h∗, r)) = [h∗−r, h∗+r]
and so PX∼DX (X ∈ DIS(B(h∗, r))) = 2r. Therefore, the disagreement coefficient is equal to θh∗ =

supr
Pr(DIS(B(h∗,r)))

r = 2r
r = 2. With the exception of very nice situations (uniform distribution,

symmetric geometry, etc.) the disagreement coefficient is often very difficult to calculate. Some

1Named for its inventors Cohn, Atlas, and Ladner

6.2. SEPARABLE, STREAMING SETTING 71

“nice” classes include i) homogeneous hyperplanes in Rd with data uniformly distributed on a
sphere: θ ≤

√
d, ii) general hyperplanes in Rd with the data density bounded below: θ = O(d), and

iii) intervals [a, b] on R: θ =∞.

Theorem 11. Let h∗ = arg minh∈HR(h) and assume R(h∗) = 0. Suppose n iid labeled examples
{(xi, yi)}ni=1 are drawn from D and Vn = {h ∈ H : h(xi) = yi ∀i ∈ [n]}. If we request λ additional
labels only when the samples lie in the disagreement region DIS(Vn), where λ = 2θh∗ log(|H|/δ),
then, with probability greater than 1− δ we have suph∈Vn+λ

R(h) ≤ suph∈Vn
1
2R(h).

Proof. The disagreement coefficient allows for a bound that relates the region of disagreement to
the true risk of any h ∈ Vn. First, observe that:

PX∼DX (X ∈ DIS(Vn))

suph∈Vn R(h)
≤

PX∼DX (X ∈ DIS(B(h∗, suph∈Vn R(h))))

suph∈Vn R(h)

≤ θh∗

where the first inequality follows from the fact that in the RHS we replace Vn with a bigger set. To
see this, for any h ∈ Vn we have that ρ(h, h∗) = PX∼DX (h(X) 6= h∗(X)) = PX∼DX (h(X) 6= Y) =
R(h) ≤ maxh∈Vn R(h), which implies h ∈ B(h∗, suph∈Vn R(h)). The second inequality follows by
the definition of the disagreement coefficient.
By the definition of risk we have:

sup
h∈Vn+λ

R(h) = sup
h∈Vn+λ

P(h(X) 6= Y)

= sup
h∈Vn+λ

P(h(X) 6= Y |X ∈ DIS(Vn))P(X ∈ DIS(Vn))

≤ sup
h∈Vn+λ

P(h(X) 6= Y |X ∈ DIS(Vn)) θh∗ sup
h∈Vn

R(h)

where the second equality exploits the fact that P(h(X) 6= Y |X /∈ DIS(Vn)) = 0 since h∗, h ∈ Vn
and Y = h∗(X). To bound, P(h(X) 6= Y |X ∈ DIS(Vn)) note that it only looks at λ points that
land in the disagreement region of Vn. This is like a brand new problem, where we can do passive
learning only with points that land in DIS(Vn). If we apply Theorem ?? and condition on the new
version space Vn+λ, then the risk of any classifier in the new version space if we see only λ samples
satisfies:

Pr(h(X) 6= Y |X ∈ DIS(Vn)) ≤ log(|Vn+λ|/δ)
λ

≤ log(|H|/δ)
λ

Thus, for our specified value of λ, we conclude that suph∈Vn+λ
R(h) ≤ 1

2 suph∈Vn R(h).

Finally, we need to do the previous procedure log2(1/ε) times in order to achieve ε-error, meaning
that the bound holds simultaneously for all epochs. By taking a union bound over λ, 2λ, ..., dlog2(1/ε)e/λ,
we have that after n ≥ λdlog2(1/ε)e labels, the true risk of any classifier satisfies R(h) ≤ ε, and the
total number of requested labels is bounded by 2θh∗ log(|H|/δ) log(1/ε) with probability at least
1− δ. Compare this to passive learning which requires O(log(|H|)/ε) labels to reach an ε risk.

6.2.3 Splitting index

The CAL algorithm is very mellow in the sense that it will request the label of any example that
will remove at least one hypothesis from the current version space. It is intuitive that it may be

72 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

more advantageous for the learner to pass on some examples in favor of waiting for future examples
to cut off a more substantial chunk of the version space. If we only have access to a sample oracle
x ∼ D, this naturally leads to the question of what is the fundamental trade off between labeled
data and unlabeled data?

A hard instance [Dasgupta, 2005b]. For some τ ∈ (0, 1) let the distribution over X be denoted
as (1 − τ)Γ + τΓ′ where Γ is the uniform distribution on the set {x ∈ Rd : x2

1 + x2
2 = 1, x3 = 0}

and Γ′ is the uniform distribution on the set {x ∈ Rd : x2
1 + x2

2 = 1, x3 = 1}. Consider the set of
tilted half-spaces that go through the origin so that they bisect Γ′, and capture just a fraction ε of
Γ. Assume h∗ ∈ H. Recall at each time Nature reveals x ∼ (1− τ)Γ + τΓ′, assume τ is very tiny.
Note that by construction, if we only request labels that land on Γ′, CAL would find an ε-close
hypothesis to h∗ using just log(1/ε) queries. But it would only get a sample from Γ′ every 1/τ
unlabeled examples. If τ is tiny and one seeks to minimize the amount of unlabeled data, it is
better to run CAL on the full stream where the vast amount of data comes from Γ. This will find
an ε-good classifier after 1/ε labeled and unlabeled data. Can we formalize this trade off?

Consider a finite hypothesis space H and consider any Q ⊂
(H

2

)
where (h, h′) ∈ Q can be considered

an edge connecting any two hypotheses. For any ŷ ∈ {0, 1} define H(x,ŷ) = {h ∈ H : h(x) = ŷ}.
We say an example x ρ-splits Q if requesting its label reduces the number of edges by at least a
fraction ρ ∈ (0, 1):

max{|Q ∩H(x,0)|, |Q ∩H(x,1)|} ≤ (1− ρ)|Q|.

We are now ready to introduce the splitting index.

Definition 18. Fix any subset S ⊂ H and Q ⊂
(
S
2

)
such that P(h(X) 6= h′(X)) ≥ ε,∀(h, h′) ∈ Q.

Then we say S is (ρ, ε, τ)-splittable if P(X splits Q) ≥ τ .

Basically, the definition is saying that to reduce the number of pairs of hypotheses that differ by
at least ε by a fraction at least ρ, requires 1/τ unlabeled data. If H is finite, and H is (ρ, ε, τ)-
splittable, then it is almost immediate that there exists an algorithm that requires 1/(τρ) unlabeled
data and 1/ρ labels to identify an ε-good classifier ([Dasgupta, 2005b] suggests one, though it is
computationally intractable). What is more important is the reproduced lower bound:

Theorem 12 ([Dasgupta, 2005b]). Fix any hypothesis space H and distribution D over X ×{0, 1}.
Suppose that for some ρ ∈ (0, 1), ε ∈ (0, 1) and some τ ∈ (0, 1/2), the set S ⊂ H is not (ρ, ε, τ)-
splittable. Then any active learning strategy that achieves an accuracy of ε/2 on all target hypotheses
in S must, with probability at least 3/4 (taken over the random sampling of data), either draw ≥ 1/τ
unlabeled samples, or must request ≥ 1/ρ labels.

The above theorem characterizes the trade off between the streaming sampling oracle from X and
the pool-based setting. In the streaming setting, one may be able to use as few labels as the
learner in the pool-based setting, but they may have to wade through an arbitrarily large amount
of unlabeled data first.

6.2.4 Lower bounds

The somewhat trivial covering lower bound of Proposition 6 for the separable, pool-based setting
can be extended to the separable, streaming setting by replacing finite cardinality classes with ε-
covers with respect to the underlying distribution [Kulkarni et al., 1993]. Just like in the pool-based
setting, this style of lower bound is unlikely to be achieved by an algorithm in all cases because it is

6.3. AGNOSTIC, SAMPLING-ORACLE SETTING 73

not considering how little information each query may provide. The splitting-index lower bound of
Theorem 12 is one of the only results I am aware of that has a corresponding upper bound for a fixed
instance of DX and H, indicating that it may be fundamental. Hanneke developed a framework in
the streaming setting inspired by Hegedus’s extended teaching dimension. Essentially, the extended
teaching dimension is now a random quantity based on data, and is bounded with high probability.
The sample complexity is upper and lower bounded by quantities that match in limiting cases, but
is not as strong as the same quantity appearing in both the upper and lower bounds like in the
pool-based case. There are minimax lower bounds known for the separable setting which considers
a worst-case choice of DX for each choice of H. As described in the lower bounds section below,
these can be misleading.

6.2.5 Open problems

The algorithm in [Dasgupta, 2005b] that achieves the lower bound is computationally intractable.
Recent work has demonstrated that if one has access to a sampling distribution over H, one can use
rejection sampling to write down an algorithm that can be run, though it may still have unbounded
computation [Tosh and Dasgupta, 2017]. A significant advancement would be an algorithm that
achieves the same performance but only uses empirical risk oracles, like those used in the efficient
version of CAL. It is much more natural to efficiently minimize a loss than define a favorable
distribution over hypotheses.

6.3 Agnostic, sampling-oracle setting

In contrast to the separable setting, in the agnostic setting we now make minimal assumptions on
how labels related to our hypothesis class H. Specifically, in this setting we assume that when we
request the label of some x ∈ X we observe a Bernoulli random variable Y ∈ {0, 1} with P(Y =
1|X = x) = η(x) where η : X → [0, 1] is arbitrary. Define R(h) = EX∼ν,Y∼η(X)[1{h(X) 6= Y }].

6.3.1 Passive learning

First, let us establish the baseline of a passive learning algorithm that observes the label of every x ∼
ν. Let {(xt, yt)}nt=1 be a dataset such that xt ∼ ν and yt ∼ η(xt). Let R̂n(h) = 1

n

∑n
t=1 1{h(xt) 6= yt}

and ĥn = arg minh∈H R̂n(h). Note that for any h ∈ H we have

EX∼ν [(1{h(X) 6= Y } − 1{h∗(X) 6= Y })2] = EX∼ν [1{h(X) 6= h∗(X)}]
= EX∼ν [1{h(X) = Y, h∗(X) 6= Y }+ 1{h(X) 6= Y, h∗(X) = Y }]
≤ R(h) +R(h∗)

≤ 2 max{R(h)−R(h∗), 2R(h∗)}

74 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

By Bernstein’s inequality, we have with probability at least 1− δ

R(ĥn)−R(h∗) ≤ R̂n(ĥn)− R̂n(h∗) +

√
EX∼ν [1{ĥn(X) 6= h∗(X)}] 2 log(|H|/δ)

n
+

log(|H|/δ)
n

≤
√

max{R(ĥn)−R(h∗), 2R(h∗)} 4 log(|H|/δ)
n

+
log(|H|/δ)

n

≤ max{8 log(|H|/δ)
n

,

√
4R(h∗) log(|H|/δ)

n
+

log(|H|/δ)
n

}

≤ 8 log(|H|/δ)
n

+

√
4R(h∗) log(|H|/δ)

n

where the third inequality follows from the quadratic equation. We summarize our findings in the
following theorem.

Theorem 13. Fix a distribution D over X × {0, 1} and a finite set of hypotheses H (i.e., |H| <
∞). Given n IID draws from D, {(xi, yi)}ni=1, let ĥn = arg minh∈H R̂n(h) be the empirical risk
minimizer. Let h∗ ∈ arg minh∈HR(h) be the true risk minimizer. For any ε, δ ∈ (0, 1), we have

P
(
R(ĥn) − R(h∗) > ε

)
≤ δ whenever n ≥

(
R(h∗)
ε2

+ 1
ε

)
8 log(|H|/δ). In other words, for any

δ ∈ (0, 1), with probability 1− δ, we have R(ĥn) ≤ R(h∗) +

√
4R(h∗) log(|H|/δ)

n + 8 log(|H|/δ)
n .

6.3.2 Robust CAL

Our strategy will be to use disagreement-based learning. This algorithm and its analysis is based
on [Dasgupta et al., 2008]. While the argument here is somewhat coherent, I encourage you to go
and read the paper because like most works Sanjoy Dasgupta is involved in, it is an exemplar of
technical writing.

Algorithm 3 Robust CAL

1: Initialize: Z0 = ∅, V1 = H
2: for t = 1, 2...n do
3: Nature reveals unlabeled data point xt
4: if xt ∈ DIS(Vt) then
5: Query yt, and set Zt = Zt−1 ∪ (xt, yt)
6: else
7: Zt = Zt−1

8: end if
9: if log2(t) ∈ N then

10: L̂t(h) = 1
t

∑
(xs,ys)∈Zt 1{h(xs) 6= ys} for all h ∈ H, ĥt = arg minh∈Vt L̂t(h)

11: ρ̂t(h, h
′) =

1

t

t∑
s=1

1{h(xs) 6= h′(xs)}, βt =

√
2 log(2 log2(t)2|H|2/δ)

t

12: Vt+1 = {h ∈ Vt : L̂t(h)− L̂t(ĥt) ≤ βt
√
ρ̂t(h, ĥt) + β2

t /2}
13: else
14: Vt+1 = Vt, βt+1 = βt, ĥt+1 = ĥt
15: end if
16: end for
17: return any h ∈ V

6.3. AGNOSTIC, SAMPLING-ORACLE SETTING 75

Define the empirical risk of all the data up to time t as R̂t(h) = 1
t

∑t
s=1 1{h(xs) 6= ys}. The first

thing to note about this algorithm is that for any h, h′ ∈ Vt we have

R̂t(h)− R̂t(h′) =
1

t

t∑
s=1

(1{h(xs) 6= ys} − 1{h′(xs) 6= ys})

=
1

t

∑
(xs,ys)∈Zt

(1{h(xs) 6= ys} − 1{h′(xs) 6= ys})︸ ︷︷ ︸
=Lt(h)−Lt(h′)

+
1

t

∑
(xs,ys) 6∈Zt

(1{h(xs) 6= ys} − 1{h′(xs) 6= ys})︸ ︷︷ ︸
=0

because if for some s ≤ t we have (xs, ys) 6∈ Zt, then xs 6∈ DIS(Vs), and thus all h, h′ ∈ Vs satisfy
(1{h(xs) 6= ys}−1{h′(xs) 6= ys}) = 0. Since Vt ⊂ Vt−1 ⊂ . . . Vs we also have that all h, h′ ∈ Vt have
this difference equal to 0. However, it is important to note that while R̂t(h)−R̂t(h′) = L̂t(h)−L̂t(h′),
we can only guarantee that L̂t(h) ≤ R̂t(h).

Define the events

E0 :=

∞⋂
`=1

⋂
h∈H
{|R̂2`(h)−R(h)| ≤ β2`

√
R(h) + β2

2`/2},

E1 :=

∞⋂
`=1

⋂
h∈H
{R̂2`(h)− R̂2`(h

′) ≤ R(h)−R(h′) + β2`

√
ρ̂2`(h, h

′) + β2
2`/2}.

To show P(E0) ≥ 1 − δ/2 one simply applies Bernstein’s inequality and a union bound, exploiting
the fact that Variance(1{h(X) 6= Y }) ≤ E[(1{h(X) 6= Y })2] = R(h) (note: the chosen value of βt
is chosen to be larger than necessary for convenience). To show P(E1) ≥ 1− δ/2 we apply empirical
Bernstein’s inequality [Maurer and Pontil, 2009] similar to as in Section 6.3.1 plus a union bound.
This implies that with probability at least 1− δ/2 for any t that is a power of 2 and any h, h′ ∈ H
we have

R̂t(h)− R̂t(h′) ≤ R(h)−R(h′) +

√
2ρ̂t(h, h) log(2 log2(t)2|H|/δ)

t
+

log(2 log2(t)2|H|/δ)
t

= R(h)−R(h′) + βt
√
ρ̂t(h, h′) + β2

t /2

In particular, using the observations above, this implies that

L̂t(h
∗)− L̂t(ĥt) = R̂t(h

∗)− R̂t(ĥt)

≤ R(h∗)−R(ĥt) + βt

√
ρ̂t(h∗, ĥt) + β2

t /2

≤ βt
√
ρ̂t(h∗, ĥt) + β2

t /2

which implies h∗ ∈ Vt for all t. This proves correctness, we next prove the sample complexity.

76 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

Sample complexity analysis For any h ∈ Vt+1 we have

R̂t(h)− R̂t(h∗) = L̂t(h)− L̂t(ĥt)

≤
√
ρ̂t(h, ĥt)βt + β2

t /2

=

√
L̂t(h)βt +

√
L̂t(ĥt)βt + β2

t /2

≤
√
L̂t(h)βt +

√
L̂t(h∗)βt + β2

t /2

≤
√
R̂t(h)βt +

√
R̂t(h∗)βt + β2

t /2.

where we have exploited that for any h, h′ ∈ Vt

ρ̂t(h, h
′) =

1

t

t∑
s=1

1{h(xs) 6= h′(xs)}

=
1

t

∑
(xs,ys)∈Zt

1{h(xs) 6= h′(xs)}

≤ 1

t

t∑
s=1

1{h(xs) 6= ys}+ 1{h′(xs) 6= ys} ≤ L̂t(h) + L̂t(h
′)

and the facts that (i) R̂t(h) − R̂t(h′) = L̂t(h) − L̂t(h′) for all h, h′ ∈ Vt, (ii) L̂t(ĥt) ≤ L̂t(h
∗), and

(iii) L̂t(h) ≤ R̂t(h) for all h ∈ Vt. We now use the crazy useful fact that A ≤ B + C
√
A =⇒ A ≤

B + C2 + C
√
B for A,B,C ≥ 0 we have

R(h)− βt
√
R(h)− β2

t /2 ≤R̂t(h)

≤R̂t(h∗) +

√
R̂t(h)βt +

√
R̂t(h∗)βt + β2

t /2

≤R̂t(h∗) +

√
R̂t(h∗)βt + β2

t /2 + β2
t + βt

√
R̂t(h∗) +

√
R̂t(h∗)βt + β2

t /2

≤R(h∗) + βt
√
R(h∗) + β2

t + βt

√
R(h∗) + βt

√
R(h∗) + β2

t + (3/2)β2
t

+ βt

√
R(h∗) + βt

√
R(h∗) + β2

t + βt

√
R(h∗) + βt

√
R(h∗) + β2

t + β2
t /2

≤R(h∗) + c′1βt
√
R(h∗) + c′2β

2
t

for some constants c1, c
′
2. Applying the crazy useful fact again to A = R(h) we get that

R(h) ≤ c0R(h∗) + c1βt
√
R(h∗) + c2β

2
t

for some constants c0, c1, c2. Noting that ρν(h, h∗) = EX∼ν [1{h(x) 6= h∗(X)}] ≤ R(h) + R(h∗) we
have that

P(xt+1 ∈ DIS(Vt+1)) = P(∃h, h′ ∈ Vt+1 : h(xt) 6= h′(xt))

= P(∃h ∈ Vt+1 : h(xt) 6= h∗(xt))

≤ P(∃h ∈ H : h(xt) 6= h∗(xt), R(h) ≤ c0R(h∗) + c1βt
√
R(h∗) + c2β

2
t)

≤ P(∃h ∈ H : h(xt) 6= h∗(xt), ρ(h, h∗) ≤ (1 + c0)R(h∗) + c1βt
√
R(h∗) + c2β

2
t)

≤ θ∗(R(h∗) + c1βt
√
R(h∗) + c2β

2
t)
(
(1 + c0)R(h∗) + c1βt

√
R(h∗) + c2β

2
t

)

6.3. AGNOSTIC, SAMPLING-ORACLE SETTING 77

where we have used the definition of the disagreement coefficient. We summarize our findings in
the following theorem.

Theorem 14. Fix ε > 0 and δ ∈ (0, 1). With probability at least 1−δ if t & (R(h∗)
ε2

+1
ε) log(|H| log(1/ε)/δ)

then R(ĥt)−R(h∗) ≤ ε and

labels requested . θ∗(ν + ε)
(
R(h∗)t+

√
t log(|H| log(t)/δ) + log(t) log(|H| log(t)/δ)

)
. θ∗(ν + ε)

(R(h∗)2

ε2
+ log(

1

ε
)
)

log(|H| log(1/ε)/δ)

Note that we always have θ∗(ν+ ε) ≤ 1/(ν+ ε). If θ∗(ν+ ε) is a constant independent of ε then this
theorem says that it requires just O(log(1/ε)) labels to obtain an ε-good classifier when ε ≥ R(h∗).
On the other hand, if ε � R(h∗) then one requires O(R(h∗)2/ε2) labels. Note, this is not much
better than the passive guarantee of O(R(h∗)/ε2)! While this ladder observation is somewhat
discouraging, note that under favorable noise distributions such as Massart noise (separable, but
each label is flipped with a constant probability bounded away from 1/2) or Tsybakov noise then
the number of labels required by active and passive can be quite large.

6.3.3 Computationally efficient algorithms

Researchers approach computationally efficiency in different ways. The first approach simply
assumes access to an empirical risk oracle that returns a classifier from H that minimizes the
(weighted) empirical 0/1-loss on any set of examples. The second replaces the objective of 0/1-loss
with a convex loss and performs active learning to minimizes this convex loss (c.f., [Beygelzimer et al., 2009]).
The third approach uses a convex surrogate loss in place of a empirical 0/1-loss but still remains
the objective of 0/1-loss (c.f., [Hanneke et al., 2014]). This third approach relies on the func-
tion class being sufficiently rich and the loss function being classification calibrated which allows
one to relate the quality of the solution of the convex loss to the 0/1-loss [Bartlett et al., 2006].
[Hanneke et al., 2014] argues against the second approach as there are examples where the second
approach requires exponentially more labels than the first or third. The third approach requires
unverifiable assumptions, such as the Bayes classifier being in H. The first approach rests on naive
hope that the minimizer of the convex loss will be close to the minimizer of 0/1-loss without jus-
tification. But it is also the most practical solution, and tends to work well if not too much is
demanded from the oracle (e.g., oracle is constrained in some way).

Just like with CAL, we can derive an exactly equivalent version of Robust CAL that does not
explicitly maintain a version space. However, this reduction requires a minimization oracle that
minimizes empirical risk on one set of examples subject to making no mistakes on a different set of
examples. In practice constructing such an oracle is very awkward so we do not discuss it further,
see the original paper [Dasgupta et al., 2008] for details. [Beygelzimer et al., 2010] requires far less
from its procedure by requiring the oracle to minimize a weighted empirical subject to classifying
just a single data point as a specific label, so a single constraint. There are natural hypothesis
classes like halfspaces and trees where this is easy satisfy, and in any case, one can simply take
the Lagrange multiplier approach and place a large weight on this one loss to satisfy a constraint.
Ideally, we would like our method to rely on performing empirical risk minimization on a set of
examples, without any constraints. [Huang et al., 2015] is one of the first algorithms to achieve
this feat.

78 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

6.3.4 Minimax lower bounds

To the best of my knowledge, only minimax lower bounds are known for active learning outside
of a few specific settings [Kääriäinen, 2006, Castro and Nowak, 2008, Raginsky and Rakhlin, 2011,
Hanneke and Yang, 2015]. An instance is defined as a joint probability distribution D defined
over X × {0, 1}. That is, if we interpreted D as a density then D(x, y) = ν(x)(η(x)1{y = 1} +
(1 − η(x))1{y = 0}). Fix a collection of instances D. For any ε ∈ (0, ε0) and δ ∈ (0, δ0), let
(S)(D,H, ε, δ,A) denote the number of queries taken by algorithm A on instance D with hypothesis
class D to output a ε-good classifier with probability at least 1 − δ. Minimax lower bounds are
stated as follows: for any ε ∈ (0, ε0) and δ ∈ (0, δ0) we have that minAmaxD∈DS(D,H, ε, δ,A) ≥
Λ(D,H, ε, δ). We say an algorithm A is minimax optimal if S(D,H, ε, δ,A) . Λ(D,H, ε, δ), but
typically we will allow the upper and lower bounds to differ by small amounts. An excellent survey
of known minimax lower bounds is available in [Hanneke and Yang, 2015] for a variety of classes D
with assumed access to a sampling oracle with no cost attributed to sampling unbounded amounts
of unlabeled data. Some important classes of D include:

• Realizable/separable: There exists an h∗ ∈ H such that h∗(x) = 2η(x)− 1 ∈ {0, 1} for all
x ∈ X . ν is arbitrary.

• Massart noise: There exists an h∗ ∈ H such that h∗(x) = sign(2η(x)− 1), and there exists
a constant α > 0 such that |η(x)− 1/2| ≥ α. ν is arbitrary.

• Tsybakov noise: There exists an h∗ ∈ H such that h∗(x) = sign(2η(x)−1), and there exists
constants a ≥ 1 and α ∈ (0, 1) such that for all γ > 0 we have PX∼ν(|η(X) − 1/2| ≤ γ) ≤
a′γa/(1−a) where a′ = (1− α)(2α)α/(1−α)a1/(1−α).

• Agnostic noise: For α ≥ 0 there exists an h∗ ∈ H such that R(h∗) ≤ α. ν is arbitrary.

Note that each of the above classes is a subset of the class that follows it. Algorithms are typically
designed for either the realizable setting or agnostic setting, and then only algorithms for the ladder
are analyzed under the easier settings.

Minimax lower bounds are sometimes very weak and can even be misleading. For example,
consider the “hard instance” D of Section 6.2.3. The splitting index algorithm can identify an
ε-good classifier with just log(1/ε) queries using binary search on Γ′. On the other hand, CAL will
essentially only sample from Γ if τ is very small, and require 1/ε labels to obtain an ε-good classifier.
Thus, the splitting algorithm requires exponentially fewer samples than CAL on this instance, but
nevertheless, CAL is nearly minimax optimal for the realizable case [Hanneke and Yang, 2015].
This is because the hard instance is a particular choice of ν, not the worst-case distribution ν.

Ideally we would want instance-dependent lower bounds. That is, how many labels does an algo-
rithm require for the particular instance D you care about? We will expand on this discussion and
describe what is known for this case in the next section.

6.4 Agnostic, pool-based setting

We are again in the agnostic setting and therefore, when we request the label of some x ∈ X we
observe a Bernoulli random variable Y ∈ {0, 1} with P(Y = 1|X = x) = η(x) where η : X → [0, 1]
is arbitrary. In this pool-based setting we are going to assume that X is finite with |X | = n and
that there exists a known probability density ν defined over X that we wish to evaluate risk with

6.4. AGNOSTIC, POOL-BASED SETTING 79

respect to. Define the risk of any h ∈ H as R(h) := EX∼ν,Y∼η(X)[1{Y 6= h(X)}]. For any ε > 0

and δ ∈ (0, 1) we want an algorithm that identifies an ĥ ∈ H such that R(ĥ) −minh∈HR(h) ≤ ε
with probability at least 1 − δ using as few total requested labels as possible. While we could
apply a disagreement-based algorithm from the streaming setting to accomplish this, instead we
will reduce the problem to an instance of linear bandits. We will see that this algorithm obtains a
sample complexity that is provably superior to disagreement-based learning, sometimes requiring
exponentially fewer labels.

6.4.1 Reduction to linear bandits

Note that

R(h) := EX∼ν,Y∼η(X)[1{Y 6= h(X)}] =
∑
x∈X

ν(x)(η(x)1{h(x) 6= 1}+ (1− η(x))1{h(x) 6= 0})

=
∑
x∈X

ν(x)η(x) +
∑
x∈X

ν(x)(1− 2η(x))h(x).

Binary classification is intimately related with transductive linear bandits as we now show. Define
θ∗ = [(2η(x) − 1)]x∈X ∈ Rn and for each h ∈ H we define a vector zh = [ν(x)h(x)]x∈X ∈ Rn and
set Z = {zh : h ∈ H}. When requesting the label of example x ∈ X , we observe Y ∈ {0, 1} and
convert this into a “pull” of arm ex ∈ {0, 1}n by feeding the bandit algorithm 2Y − 1 so that
E[2Y − 1|X = x] = 2η(x)− 1 = 〈ex, θ∗〉. Thus, identifying a ĥ such that R(ĥ)−minh∈HR(h) ≤ ε
is equivalent to identifying a ẑ ∈ Z such that maxz∈Z〈z, θ∗〉 − 〈ẑ, θ∗〉 ≤ ε. We can now apply the
pure-exploration algorithm for linear bandits! Note that in that algorithm, at each stage we solved
arg minλ∈4X maxz,z′∈Z` ‖z − z′‖2A(λ)−1 . We observe that

‖z−z′‖2A(λ)−1 =
∑
x∈X

|h(x)− h′(x)|2ν(x)2

λ(x)
=
∑
x∈X

ν(x)
1{h(x) 6= h′(x)}

λ(x)/ν(x)
= EX∼ν

[
1{h(X) 6= h′(X)}

λ(X)/ν(X)

]
.

It appears we can run the linear bandit algorithm precisely as before. But there is a problem: that
algorithm used the least squares estimator for θ∗, which assumes the number of samples exceeds that
dimension, which is |X | = n here–this is equivalent to labeling every example, trivial. Fortunately,
we can solve this problem by using a regularized estimator.

6.4.2 Regularized empirical risk minimization

First, we need a deviation result. Define ρλ(h, h′) = EX∼ν [1{h(X)6=h′(X)}
λ(X)/ν(X)].

Lemma 21. Let λ and ν be two probability densities defined over X with λ � ν2. Consider a
dataset {(xt, yt, wt)}τt=1 where xt ∼ λ, yt ∼ Bernoulli(η(xt)), and wt = λ(xt)

ν(xt)
. For any γ > 0 define

R̃γ(h) =
1

τ

τ∑
t=1

1

wt + γ
1{h(xt) 6= yt}.

Then for any h, h′ ∈ H we have with probability at least 1− δ

R̃γ(h)− R̃γ(h′) ≤ R(h)−R(h′) + γρλ(h, h′) +

√
ρλ(h, h′)

2 log(1/δ)

τ
+

log(1/δ)

τ(γ + minx∈X λ(x)/ν(x))
.

2We say density p dominates q, or p� q, if support(q) ⊆ support(p)

80 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

Proof. Since γ is fixed, to simplify notation in the remainder of this proof let R̃(h) = R̃γ(h). First
note that for any h, h′ ∈ H` we have E[1

τ

∑τ
t=1

1
wt

(1{h(xt) 6= yt}−1{h′(xt) 6= yt})] = R(h)−R(h′).
Thus,

E[R̃(h)− R̃(h′)]− [R(h)−R(h′)] = E

[
1

τ

τ∑
t=1

(
1

wt + γ
− 1

wt
)(1{h(xt) 6= yt} − 1{h′(xt) 6= yt})

]

= E

[
1

τ

τ∑
t=1

−γ
wt(wt + γ)

(1{h(xt) 6= yt} − 1{h′(xt) 6= yt})

]

≤ E

[
1

τ

τ∑
t=1

γ

wt(wt + γ)
1{h(xt) 6= h′(xt)}

]

= γEX∼ν
[
1{h(X) 6= h′(X)}
λ(X)/ν(X) + γ

]
≤ γEX∼ν

[
1{h(X) 6= h′(X)}

λ(X)/ν(X)

]
= γρλ(h, h′)

If αt := 1
wt+γ

(1{h(xt) 6= yt} − 1{h′(xt) 6= yt} then R̃(h)− R̃(h′) = 1
τ

∑τ
t=1 αt where each αt is IID.

Note that αt ≤ 1/(γ + minx∈X λ(x)/ν(x)) and

E[α2
t] ≤ E[

(
1

wt + γ
(1{h(xt) 6= yt} − 1{h′(xt) 6= yt}

)2

]

≤ E[

(
1

wt + γ

)2

1{h(xt) 6= h′(xt)}]

= EX∼ν
[

λ(X)/ν(X)

(λ(X)/ν(X) + γ)2
1{h(X) 6= h′(X)}

]
= EX∼ν

[
1{h(X) 6= h′(X)}

λ(X)/ν(X)

]
= ρλ(h, h′).

By Bernstein’s inequality we have with probability at least 1− δ

R̃(h)− R̃(h′) ≤ E[R̃(h)− R̃(h′)] +

√
ρλ(h, h′)

2 log(1/δ)

τ
+

log(1/δ)

γτ

≤ R(h)−R(h′) + γρλ(h, h′) +

√
ρλ(h, h′)

2 log(1/δ)

τ
+

log(1/δ)

γτ
.

Note that the regularized estimator R̃γ(h) is only an unbiased estimator of R(h) when γ = 0. Also,
because a+

√
2ab+ b ≤ (

√
a+
√
b)2 ≤ 2(a+ b) we always have that for each h, h′ ∈ H

R̃γ(h)− R̃γ(h′) ≤ R(h)−R(h′) + 2γρλ(h, h′) +
2 log(1/δ)

τγ

with probability 1− δ which may be more convenient.

6.4. AGNOSTIC, POOL-BASED SETTING 81

Algorithm 4 An efficient estimator with importance-sampled data

1: Input: γ0 > 0, ε > 0, {(xt, yt, wt)}τt=1 s.t. wt = λ(xt)/ν(xt), H, δ ∈ (0, 1)
2: Pick h0 ∈ H arbitrarily, set Γ = {γ′ : 1/ε > γ′ > γ0 : log2(γ) ∈ Z}
3: for k = 0, 1, 2, . . . do
4: For every γ ∈ Γ let hγk+1 = arg minh∈H f(h, hk; γ) where

f(h, h′; γ) = R̃γ(h)− R̃γ(h′) + 2γρλ(h, h′) +
2 log(|H|2 log2(8/γ0ε)/δ)

τγ

5: if minγ∈Γ f(hγk+1, hk; γ) ≥ −ε then
6: Terminate and output hk
7: else
8: Set hk+1 = h

γk+1

k+1 where γk+1 = arg minγ∈Γ f(hγk+1, hk; γ)
9: end if

10: end for

Lemma 22. Consider the setting of Lemma 21. If one runs Algorithm 4 with γ0 > 0 and ε > 0
then after k ≤ 1/γ0ε iterations the procedure returns an hk ∈ H such that with probability at least
1− δ

R(hk)−R(h∗) ≤ ε+

√
ρλ(h∗, hk) 256 log(|H|2 log2(8/γ0ε)/δ)

τ
.

Moreover, without loss of generality one can take γ0 = 1/τ .

Proof. Fix a finite subset Γ ⊂ {2k : k ∈ Z} that will be determined later. By Lemma 21 we have
with probability at least 1− δ that

|R̃γ(h)− R̃γ(h′)−R(h) +R(h′)| ≤ 2γρλ(h, h′) +
2 log(|H|2|Γ|/δ)

τγ

for all γ ∈ Γ and h, h′ ∈ H.

Note that since R(h) ≤ 1 and we want a non-trivial guarantee, without loss of generality we
can take γ0 ≥ 1

τ . This means the number of iterations before the stopping criteria is met is at
most 1/γ0ε since before the stopping criteria is met, the objective is reduced by at least ε each
iteration, and 0 ≤ R̃γ(h) ≤ τ . We also would never need γ ≥ 1/ε. Thus, it suffices to take
Γ = {2k : −dlog2(1/γ0)ek ≤ dlog2(1/ε)e which means |Γ| ≤ log2(8/γ0ε).

82 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

To see the performance guarantee, at the final iterate,

−ε ≤ R̃γk+1(hk+1)− R̃γk+1(hk) + 2γk+1ρλ(hk+1, hk) +
2 log(|H|2|Γ|/δ)

τγk+1

= min
γ∈Γ

min
h∈H

R̃γ(h)− R̃γ(hk) + 2γρλ(h, hk) +
2 log(|H|2|Γ|/δ)

τγ

≤ min
γ∈Γ

min
h∈H

R(h)−R(hk) + 4γρλ(h, hk) +
4 log(|H|2|Γ|/δ)

τγ

≤ min
γ∈Γ

R(h∗)−R(hk) + 4γρλ(h∗, hk) +
4 log(|H|2|Γ|/δ)

τγ

≤ min
γ≥0

R(h∗)−R(hk) + 8γρλ(h∗, hk) +
8 log(|H|2|Γ|/δ)

τγ

= R(h∗)−R(hk) +

√
ρλ(h∗, hk) 256 log(|H|2|Γ|/δ)

τ
.

Thus, if we output hk then R(hk)−R(h∗) ≤ ε+

√
ρλ(h∗,hk) 256 log(|H|2|Γ|/δ)

τ .

6.4.3 A Version-space Elimination Algorithm

Consider Algorithm 5. It leverages the estimator of the previous section.

Algorithm 5 An Elimination-style algorithm for Binary Classification

1: Input: Policy set H such that h : X → {0, 1} for all h ∈ H, confidence level δ ∈ (0, 1).
2: Let Ĥ1 ← H
3: for ` = 1, 2, . . . do

4: Let ρ` = min
λ∈4X

max
h,h′∈Ĥ`

EX∼ν
[
1{h(X) 6= h′(X)}

λ(X)/ν(X)

]
and λ` be its minimizer

5: Set ε` = 2−`, τ` = d12ρ`ε
−2
` log(2`2|H|/δ)e, γ` =

√
log(2`2|H|/δ)

τ`ρ`

6: Draw x1, . . . , xτ` ∼ λ`, let wt = λ(xt)/ν(xt), and request their labels to obtain {(xt, yt, wt)}τ`t=1

7: Set R̃`(h) = 1
τ`

∑τ`
t=1

1
wt+γ`

1{h(xt) 6= yt} for all h ∈ H`
8: Ĥ`+1 ← Ĥ` \

{
h ∈ Ĥ`|R̃`(h)−min

h′∈Ĥ` R̃`(h
′) ≥ ε`

}
9: `← `+ 1

10: end for
11: Output:

For some h∗ ∈ arg minh∈H define the event

E :=
∞⋂
`=1

⋂
h∈H
{R̃`(h∗)− R̃`(h) ≤ R(h∗)−R(h) ≤ ε`}

6.4. AGNOSTIC, POOL-BASED SETTING 83

Noting that

γ`ρ` +

√
2ρ` log(2`2|H|/δ)

τ`
+

log(2`2|H|/δ)
γ`τ`

= (1 +
√

2)

√
2ρ` log(2`2|H|/δ)

τ`

<

√
12ρ` log(2`2|H|/δ)

τ`
≤ ε`

showing that P(E) ≥ 1 − δ is nearly identical to the linear bandit case. Thus, in what follows
assume E holds.

If h∗ ∈ Ĥ` then for any h′ ∈ H we have

R̃`(h
∗)− R̃`(h′) ≤ R(h∗)−R(h′) + ε` ≤ ε`.

Since h∗ ∈ Ĥ1, we have by induction that h∗ ∈ Ĥ` for all `, showing correctness. Now suppose for
some h ∈ H we have that R(h)−R(h∗) > 2ε`. Then

R̃`(h)− min
h′∈Ĥ`

R̃`(h
′) ≥ R̃`(h)− R̃`(h∗)

≥ R(h)−R(h∗)− ε`
> ε`

which implies h 6∈ Ĥ`. Moreover, it implies that max
h∈Ĥ`+1

R(h) − R(h∗) ≤ 2ε` for all `, or

equivalently max
h∈Ĥ` R(h)−R(h∗) ≤ 4ε` for all `. Thus, the number of samples taken before some

round ` satisfies max
h∈Ĥ` R(h)−R(h∗) ≤ ε is bounded by

dlog2(4/ε)e∑
`=1

τ` =

dlog2(4/ε)e∑
`=1

d12ρ`ε
−2
` log(2`2|H|/δ)e

. log(log(1/ε)|H|/δ)
dlog2(4/ε)e∑

`=1

ρ`ε
−2
`

= log(log(1/ε)|H|/δ)
dlog2(4/ε)e∑

`=1

ε−2
` min

λ∈4X
max
h,h′∈Ĥ`

EX∼ν
[
1{h(X) 6= h′(X)}

λ(X)/ν(X)

]

. log(log(1/ε)|H|/δ)
dlog2(4/ε)e∑

`=1

ε−2
` min

λ∈4X
max
h∈Ĥ`

EX∼ν
[
1{h(X) 6= h∗(X)}

λ(X)/ν(X)

]

. log(log(1/ε)|H|/δ)
dlog2(4/ε)e∑

`=1

min
λ∈4X

max
h∈H:R(h)−R(h∗)≤4ε`

EX∼ν
[
1{h(X)6=h∗(X)}
λ(X)/ν(X)

]
4ε2`

. log(log(1/ε)|H|/δ)dlog2(4/ε)e max
`=1,...,dlog2(4/ε)e

min
λ∈4X

max
h∈H:R(h)−R(h∗)≤4ε`

EX∼ν
[
1{h(X)6=h∗(X)}
λ(X)/ν(X)

]
4ε2`

. log(log(1/ε)|H|/δ) log(1/ε) max
ξ≥ε

min
λ∈4X

max
h∈H:R(h)−R(h∗)≤ξ

EX∼ν
[
1{h(X)6=h∗(X)}
λ(X)/ν(X)

]
ξ2

where we have upper bounded the sum over ` by the max. We immediately obtain the following
theorem.

84 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

Theorem 15. Fix any ε > 0 and δ ∈ (0, 1). Define

ρ∗(ε) := sup
ξ≥ε

min
λ∈4X

max
h∈H:R(h)−R(h∗)≤ξ

EX∼ν
[
1{h(X) 6=h∗(X)}
λ(X)/ν(X)

]
ξ2

≤ min
λ∈4X

max
h∈H

EX∼ν
[
1{h(X) 6=h∗(X)}
λ(X)/ν(X)

]
ε2 ∨ (R(h)−R(h∗))2

Any ĥ in the version space of Algorithm 5 satisfies R(ĥ)−R(h∗) ≤ ε once & ρ∗(ε) log(log(1/ε)|H|/δ) log(1/ε)
labels have been requested.

Note that ρ∗(ε) is balancing the variance (numerator) with the sub-optimality gap squared (denom-
inator) for every h ∈ H. By inspecting the proof of the following proposition, disagreement based
learning corresponds to a very particular choice of λ` at each round, namely, uniform distribution
over the disagreement region. Our optimized choice of λ is never worse than this particular choice.

Proposition 7. Define the disagreement coefficient as

θ∗(u) = sup
ξ≥u

EX∼ν [1{∃h ∈ H : h(X) 6= h∗(X), ρν(h, h∗) ≤ ξ}]
ξ

.

Then ρ∗(ε) ≤ 4(R(h∗)2

ε2
+ 1)θ∗(R(h∗) + ε).

Proof. Now, for any each ξ, if we take λξ(x) = ν(x)1{∃h∈H:h(x) 6=h∗(x),R(h)−R(h∗)≤ξ}
EX∼ν [1{∃h∈H:h(X) 6=h∗(X),R(h)−R(h∗)≤ξ}] then

min
λ∈4X

max
h∈H:R(h)−R(h∗)≤ξ

EX∼ν
[
1{h(X)6=h∗(X)}
λ(X)/ν(X)

]
ξ2

≤ max
h∈H:R(h)−R(h∗)≤ξ

EX∼ν
[
1{h(X)6=h∗(X)}
λξ(X)/ν(X)

]
ξ2

= max
h∈H:R(h)−R(h∗)≤ξ

EX∼ν [1{h(X) 6= h∗(X)}]EX∼ν [1{∃h ∈ H : h(X) 6= h∗(X), R(h)−R(h∗) ≤ ξ}]
ξ2

= max
h∈H:R(h)−R(h∗)≤ξ

ρν(h, h∗)EX∼ν [1{∃h ∈ H : h(X) 6= h∗(X), R(h)−R(h∗) ≤ ξ}]
ξ2

≤ max
h∈H:R(h)−R(h∗)≤ξ

ρν(h, h∗)EX∼ν [1{∃h ∈ H : h(X) 6= h∗(X), ρν(h, h∗) ≤ 2R(h∗) + ξ}]
ξ2

≤ (2R(h∗) + ξ)EX∼ν [1{∃h ∈ H : h(X) 6= h∗(X), ρν(h, h∗) ≤ 2R(h∗) + ξ}]
ξ2

≤

{
9R(h∗)2

ξ2
EX∼ν [1{∃h∈H:h(X)6=h∗(X),ρν(h,h∗)≤2R(h∗)+ξ}]

2R(h∗)+ξ if ξ ≤ R(h∗)
9EX∼ν [1{∃h∈H:h(X)6=h∗(X),ρν(h,h∗)≤2R(h∗)+ξ}]

2R(h∗)+ξ if ξ > R(h∗)

≤ 9(R(h∗)2

ξ2 + 1)θ∗(2R(h∗) + ξ)

where we have used the fact that

ρν(h, h∗) = EX∼ν [1{h(X) 6= h∗(X)}] ≤ EX∼ν [1{h(X) 6= Y }+ 1{Y 6= h∗(X)}] = R(h) +R(h∗)

so that ρν(h, h∗) ≤ ξ + 2R(h∗) whenever R(h)−R(h∗) ≤ ξ.

6.4.4 A Computationally efficient Algorithm

Consider Algorithm 6.

6.4. AGNOSTIC, POOL-BASED SETTING 85

Algorithm 6 Computationally efficient Algorithm for Binary Classification

1: Input: Policy set H such that h : X → {0, 1} for all h ∈ H, confidence level δ ∈ (0, 1).
2: Choose ĥ−1 ∈ H arbitrarily, set λ0 = arg minλ∈4X maxh∈H ρλ(h, ĥ−1) and τ0 ≈
ε−2
0 maxh∈H ρλ(h, ĥ0) log(|H|/δ).

3: Draw x1, . . . , xτ0 ∼ λ0, set wt = λ`(xt)/ν(xt), and request their labels to obtain {(xt, yt, wt)}τ0t=1.

Set R̃γ0(h) = 1
τ`

∑τ0
t=1

1
wt+γ

1{h(xt) 6= yt} for all h ∈ H and γ > 0. Find h̃0

4: for ` = 1, 2, . . . do
5: Let τ` be a minimal value of τ such that the objective, achieved by λ`, is no greater than ε`:

min
λ∈4X

max
h∈H

min
γ′∈Γ
−8

9
∆̃`−1(h) + 384γ′ρλ(h, ĥ`−1) +

192 log(2`2|H|2/δ)
γ′τ

6: Draw x1, . . . , xτ` ∼ λ`, set wt = λ`(xt)/ν(xt), and request their labels to obtain

{(xt, yt, wt)}τ`t=1. Set R̃γ` (h) = 1
τ`

∑τ`
t=1

1
wt+γ

1{h(xt) 6= yt} for all h ∈ H and γ > 0.
7: Set

ĥ` = arg min
h∈H

min
γ
R̃γ` (h)− R̃γ` (ĥ`−1) + 6γρλ`(h, ĥ`−1) +

6 log(2`2|H|2/δ)
γτ`

8: Set

∆̃`(h) = min
γ
R̃γ` (h)− R̃γ` (h̃`) + 2γρλ`(h, h̃`) +

4 log(2`2|H|2/δ)
γτ`

9: end for
10: Output:

Let ε` = 2−` and S` = {h ∈ H : R(h)−R(h∗) ≤ ε`} for all ` ∈ N. Define the events

E` =
⋂

h,h′∈H
{R̃γ` (h)− R̃γ` (h′)−R(h) +R(h′) ≤ 2γρλ`(h, h

′) +
2 log(2`2|H|2/δ)

γτ`
}

and E = ∩∞`=0E`. Define ∆(h, h′) = R(h)−R(h′) and for each ` define

∆̃`(h, h
′) = min

γ
R̃γ` (h)− R̃γ` (h′) + 2γρλ`(h, h̃`) + 2γρλ`(h

′, h̃`) +
4 log(2`2|H|2/δ)

γτ`

Note that ∆̃`(h, h
′) is a pessimistic estimate of the true gap ∆(h, h′) in the sense that on E we have

∆̃`(h, h
′) ≥ ∆(h, h′) for all h, h′.

We need to show that we are estimating the gaps well. We will prove a helper lemma first.

Lemma 23. Fix ` ∈ N. Then, on the event {∆̃`−1(h∗) ≤ ε`−1/8}∩E we have that R(ĥ`)−R(h∗) ≤
ε`/8.

86 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

Proof. On E and the event that ∆̃`−1(h∗) ≤ ε`−1/8 = ε`/4

ε` ≥ max
h∈H

min
γ′∈Γ
−8

9
∆̃`−1(h) + 384γ′ρλ`(h, ĥ`−1) +

192 log(2`2|H|/δ)
γ′τ`

≥ min
γ′∈Γ
−8

9
∆̃`−1(h∗) + 384γ′ρλ`(h

∗, ĥ`−1) +
192 log(2`2|H|/δ)

γ′τ`

≥ min
γ′∈Γ
−2

9
ε` + 384γ′ρλ`(h

∗, ĥ`−1) +
192 log(2`2|H|/δ)

γ′τ`

≥ 64

√
ρλ`(h

∗, ĥ`−1) log(2`2|H|/δ)
τ`

.

Now,

R(ĥ`)−R(ĥ`−1) ≤ min
γ
R̃γ` (ĥ`)− R̃γ` (ĥ`−1) + 2γρλ`(ĥ`, ĥ`−1) +

2 log(2`2|H|/δ)
γτ`

= min
h∈H

min
γ
R̃γ` (h)− R̃γ` (ĥ`−1) + 2γρλ`(h, ĥ`−1) +

2 log(2`2|H|/δ)
γτ`

≤ min
γ
R̃γ` (h∗)− R̃γ` (ĥ`−1) + 2γρλ`(h

∗, ĥ`−1) +
2 log(2`2|H|/δ)

γτ`

≤ min
γ
R(h∗)−R(ĥ`−1) + 4γρλ`(h

∗, ĥ`−1) +
4 log(2`2|H|/δ)

γτ`

= R(h∗)−R(ĥ`−1) + 8

√
ρλ`(h

∗, ĥ`−1) log(2`2|H|/δ)
τ`

= R(h∗)−R(ĥ`−1) + ε`/8

where the last line follows from the above display. Rearranging, we conclude the proof.

Lemma 24. On event E we have for all ` ∈ N

0 ≤ ∆̃`(h, h
∗)−∆(h, h∗) ≤

{
∆(h,h∗)

8 if h 6∈ S`
ε`/8 if h ∈ S`,

.

Proof. We will proceed inductively assuming it holds for `−1 and then show this implies the result

6.4. AGNOSTIC, POOL-BASED SETTING 87

for round `. Note that for ` = 0 we have for any h ∈ S0 = H

max
h∈S0

∆̃`(h, h
∗)−∆(h, h∗)

= max
h∈S0

min
γ
R̃γ0(h)− R̃γ0(h∗) + 2γρλ`(h, h̃0) + 2γρλ`(h

∗, h̃0) +
4 log(2`2|H|2/δ)

γτ0
−R(h) +R(h∗)

≤ max
h,h′∈S0

min
γ
R̃γ0(h)− R̃γ0(h′) + 2γρλ`(h, h̃0) + 2γρλ`(h

′, h̃0) +
4 log(2`2|H|2/δ)

γτ0
−R(h) +R(h′)

≤ max
h,h′∈S0

min
γ

4γρλ`(h, h̃0) + 4γρλ`(h
′, h̃0) +

8 log(2`2|H|2/δ)
γτ0

≤ max
h∈S0

min
γ

8γρλ`(h, h̃0) +
8 log(2`2|H|2/δ)

γτ0

= 16

√
maxh∈H ρλ0(h, h̃0) log(2`2|H|2/δ)

τ0

≤ ε0/8

by choosing τ0 sufficiently large. Thus ∆̃0(h, h∗)−∆(h, h∗) ≤ ε0/8 for all h ∈ S0 = H.

Now we use induction to prove the rest. For any h̃ ∈ H we have

∆̃`(h̃, h
∗)−∆(h̃, h∗)

= min
γ
R̃γ` (h̃)− R̃γ` (h∗) + 2γρλ`(h̃, h̃`) + 2γρλ`(h

∗, h̃`) +
4 log(2`2|H|2/δ)

γτ`
−R(h̃) +R(h∗)

≤ min
γ

4γρλ`(h̃, h̃`) + 4γρλ`(h
∗, h̃`) +

8 log(2`2|H|2/δ)
γτ`

≤ min
γ

4γρλ`(h̃, h̃`−1) + 4γρλ`(h̃`−1, h
∗) + 8γρλ`(h̃`, h̃`−1) +

8 log(2`2|H|2/δ)
γτ`

.

This last line will be used as the starting point for the two cases.

Case 1: h̃ ∈ S`
Now, on the base case and Lemma 23 we have that h̃`−1 ∈ S`+2 ⊂ S` and h̃` ∈ S`+3 ⊂ S`. Thus,

88 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

for any h̃ ∈ S` we have

∆̃`(h̃, h
∗)−∆(h̃, h∗) ≤ min

γ
4γρλ`(h̃, h̃`−1) + 4γρλ`(h̃`−1, h

∗) + 8γρλ`(h̃`, h̃`−1) +
8 log(2`2|H|2/δ)

γτ`

≤ max
h∈S`

min
γ

16γρλ`(h, h̃`−1) +
8 log(2`2|H|2/δ)

γτ`

≤ 1

20
max
h∈S`

min
γ
−8

9
∆̃`−1(h, h̃`−1) +

8

9
∆̃`−1(h, h̃`−1) + 382γρλ`(h, ĥ`−1) +

190 log(2`2|H|2/δ)
γτ`

≤ 1

20
max
h∈S`

min
γ
−8

9
∆̃`−1(h, h̃`−1) +

8

9
∆(h, h̃`−1) + 384γρλ`(h, ĥ`−1) +

192 log(2`2|H|2/δ)
γτ`

≤ 1

20
max
h∈S`

min
γ
−8

9
∆̃`−1(h, h̃`−1) +

8

9
∆(h, h̃`−1) + 384γρλ`(h, ĥ`−1) +

192 log(2`2|H|2/δ)
γτ`

≤ 1

20
max
h∈S`

min
γ
−8

9
∆̃`−1(h, h̃`−1) +

8

9
∆(h, h∗) + 384γρλ`(h, ĥ`−1) +

192 log(2`2|H|2/δ)
γτ`

≤ 1

20
(ε` + max

h∈H
min
γ
−8

9
∆̃`−1(h, h̃`−1) + 384γρλ`(h, ĥ`−1) +

192 log(2`2|H|2/δ)
γτ`

)

≤ ε`/8

using the facts that ∆(h, h̃`−1) = R(h)−R(h̃`−1) ≤ R(h)−R(h∗) = ∆(h, h∗) ≤ ε` for h ∈ S`, and
plugging in the condition of the optimization problem. This completes the first case.

Case 2: h̃ 6∈ S`
If h̃ 6∈ S` then there exists some j ≤ ` such that 2−j < R(h)− R(h∗) ≤ 2−j+1. On Lemma 24, we
have again that on the inductive hypothesis, h̃` ∈ S`+3 ⊂ Sj so

∆̃`(h̃, h
∗)−∆(h̃, h∗)

∆(h̃, h∗)
≤

minγ 4γρλ`(h̃, h̃`−1) + 4γρλ`(h̃`−1, h
∗) + 8γρλ`(h̃`, h̃`−1) + 8 log(2`2|H|2/δ)

γτ`

∆(h̃, h∗)

≤ max
h∈Sj

minγ 16γρλ`(h, h̃`−1) + 8 log(2`2|H|2/δ)
γτ`

R(h̃)−R(h∗)

≤ 3 max
h∈Sj

minγ 16γρλ`(h, h̃`−1) + 8 log(2`2|H|2/δ)
γτ`

2−` + 2[R(h̃)−R(h∗)]

≤ 3 max
h∈H

minγ 16γρλ`(h, h̃`−1) + 8 log(2`2|H|2/δ)
γτ`

2−` +R(h)−R(h∗)

= max
h∈H

minγ 48γρλ`(h, h̃`−1) + 24 log(2`2|H|2/δ)
γτ`

ε` + ∆(h)

Now, on the inductive hypothesis we have for any h ∈ H that

∆̃`−1(h, h∗)−∆(h) ≤ max{ε`−1,∆(h)}/8 ≤ ε`/4 + ∆(h)/8.

6.4. AGNOSTIC, POOL-BASED SETTING 89

Rearranging, we have that

9

8
∆(h) + ε`/4 ≥ ∆̃`−1(h, h∗)

= min
γ
R̃γ`−1(h)− R̃γ`−1(h∗) + 2γρλ`−1

(h, h̃`−1) + 2γρλ`−1
(h̃`−1, h

∗) +
4 log(`2|H|2/δ)

γτ`−1

≥ min
γ
R̃γ`−1(h)− R̃γ`−1(h̃`−1) + R̃γ`−1(h̃`−1)− R̃γ`−1(h∗) + 2γρλ`−1

(h, h̃`−1) + 2γρλ`−1
(h̃`−1, h

∗) +
4 log(2`2|H|2/δ)

γτ`−1

≥ min
γ
R̃γ`−1(h)− R̃γ`−1(h̃`−1) + 2γρλ`−1

(h, h̃`−1) +
2 log(2`2|H|2/δ)

γτ`−1
+R(h̃`−1)−R(h∗)

≥ ∆̃`−1(h, h̃`−1)/2 = ∆̃`−1(h)/2.

Thus, rearranging once more we have ∆(h) ≥ 4
9∆̃`−1(h)− ε`/4 and

∆̃`(h̃, h
∗)−∆(h̃, h∗)

∆(h̃, h∗)
≤ max

h∈H

minγ 48γρλ`(h, h̃`−1) + 24 log(2`2|H|2/δ)
γτ`

ε` + ∆(h)

≤ max
h∈H

minγ 48γρλ`(h, h̃`−1) + 24 log(2`2|H|2/δ)
γτ`

ε`/2 + 4
9∆̃`−1(h)

≤ 1/8

where the last inequality follows from the solution of the optimization problem.

The above lemmas imply that

∆(h) = ∆(h, h∗)

= ∆(h, h̃`−1) + ∆(h̃`−1, h
∗)

≤ ∆̃`−1(h, h̃`−1) + ε`−1/8

= ∆̃`−1(h) + ε`−1/8.

We leverage this to compute the sample complexity as follows:

min
λ∈4X

max
h∈H

min
γ′∈Γ
−8

9
∆̃`−1(h) + 384γ′ρλ(h, ĥ`−1) +

192 log(2`2|H|/δ)
γ′τ

≤ min
λ∈4X

max
h∈H

min
γ′∈Γ
−8

9
∆(h) + ε`/8 + 384γ′ρλ(h, ĥ`−1) +

192 log(2`2|H|/δ)
γ′τ

≤ min
λ∈4X

max
h∈H
−8

9
∆(h) + ε`/8 + 544

√
ρλ(h, ĥ`−1)

log(2`2|H|/δ)
γ′τ

≤ min
λ∈4X

max
h∈H
−8

9
∆(h) + ε`/8 + 544

√
ρλ(h, h∗)

log(2`2|H|/δ)
τ

+ 544

√
ρλ(h∗, ĥ`−1)

log(2`2|H|/δ)
τ

≤ min
λ∈4X

max
h∈H
−8

9
∆(h) + ε`/8 + 544

√
ρλ(h, h∗)

log(2`2|H|/δ)
τ

+ 544

√
max
h′∈S`

ρλ(h∗, h′)
log(2`2|H|/δ)

τ

which is less than ε` whenever

τ & min
λ∈4X

max
h∈H

ρλ(h, h∗)

ε2` + ∆(h)2
log(|H|/δ).

We summarize the conclusions in the following theorem.

90 CHAPTER 6. ACTIVE LEARNING FOR CLASSIFICATION

Theorem 16. Fix δ ∈ (0, 1). Then on the `th round, R(h̃`)− R(h∗) ≤ ε`/8 and the total number

of samples is bounded by minλ∈4X maxh∈H
ρλ(h,h∗)
ε2`+∆(h)2 log(|H|/δ) log(1/ε`).

6.4.5 Instance-dependent Lower bounds

Combinatorial bandits sheds some light on instance-dependent lower-bounds for the pool-based
setting.

6.5 Heuristics of note

6.5.1 Uncertainty sampling

6.5.2 Covering algorithms

6.5.3 Hypothesis-class agnostic algorithms

Part II

Adversarial bandits

91

Chapter 7

Stochastic online mirror descent

Protocal for Linear Bandits
Input: Time horizon T , action set A ⊂ Rd.
Initialize: Adversary chooses {zt}Tt=1 ⊂ Rd.
for: t = 1, · · · , T

Player chooses action At ∈ A
Player suffers (and observes) loss `(At, zt) = A>t zt

7.0.1 Preliminaries

This presentation of mirror descent follows [Bubeck et al., 2012, Ch. 5].

For any open convex set D ⊂ Rd and its closure denoted D̄, for any Legendre F on D̄ define
F ∗(x) := supy∈D̄ x

>y − F (y).

Define DF (x, y) = F (x)− F (y)− (x− y)>∇F (y).

Let the Mirror Descent iterations satisfy, a1 = arg mina∈A F (a) then

ãt+1 = ∇F ∗(∇F (at)− η∇`(at, zt)) (7.1)

at+1 = arg min
a∈A

DF (a, ãt+1) (7.2)

where we have assumed the iterates exist.

Theorem 17 (Online Mirror Descent). Let A ⊂ Rd be a closed convex action set, ` a subdifferen-
tiable loss, and F a Legendre function defined on A ⊂ D̄, such that ∇F (a) − ηz ∈ dom(∇F (D))
for all (a, z) ∈ A× Z is satisfied. Then OMD satisfies

sup
a∈A

T∑
t=1

`(at, zt)− `(a, zt) ≤
supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

DF ∗ (∇F (at)− η∇`(at, zt),∇F (at)) .

93

94 CHAPTER 7. STOCHASTIC ONLINE MIRROR DESCENT

Online Mirror Descent with Linear Losses
Input: Time horizon T , convex action set A ⊂ Rd.
Initialize: Player sets a1 = arg mina∈A F (a). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player suffers (and observes) loss `(at, zt) = a>t zt
Player observes zt
Update mirror descent iterates:

ãt+1 = ∇F ∗(∇F (at)− ηzt)
at+1 = arg min

a∈A
DF (a, ãt+1)

Corollary 2 (Online Mirror Descent with Linear Losses). Let A ⊂ D ⊂ Rd be a closed convex
action set, {zt}Tt=1 ⊂ Z, `(a, z) = a>z, and F a Legendre function defined on A ⊂ D̄, such that
∇F (a)− ηz ∈ ∇F (D) for all (a, z) ∈ A× Z is satisfied. Then OMD satisfies

sup
a∈A

T∑
t=1

(at − a)>zt ≤
supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

DF ∗ (∇F (at)− ηzt,∇F (at)) .

Stochastic Online Mirror Descent with Linear Losses
Input: Time horizon T , action set A ⊂ Rd.
Initialize: Player sets a1 = arg mina∈A F (a). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player chooses distribution Pt over A with at = E[At|Pt] =
∑

a∈A aPt(a)
Player samples At from Pt and suffers (and observes) loss `(At, zt) = A>t zt
Player computes estimate ẑt with E[ẑt|Pt] = zt
Update mirror descent iterates:

ãt+1 = ∇F ∗(∇F (at)− ηẑt)
at+1 = arg min

a∈convhull(A)
DF (a, ãt+1)

Corollary 3 (Stochastic Online Mirror Descent with Linear Losses). Let A ⊂ D ⊂ Rd be a finite
action set, {ẑt}Tt=1 ⊂ Z, `(a, z) = a>z, and F a Legendre function defined on A ⊂ D̄, such that
∇F (a)− ηz ∈ ∇F (D) for all (a, z) ∈ A× Z is satisfied. Then OMD satisfies

sup
a∈A

E

[
T∑
t=1

(At − a)>zt

]
≤ supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

E [DF ∗ (∇F (at)− ηẑt,∇F (at))] .

Proof. Applying Corollary 1 with ẑt we have

sup
a∈A

T∑
t=1

(at − a)>ẑt ≤
supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

DF ∗ (∇F (at)− ηẑt,∇F (at)) .

Taking the expectation on both sides yields the result by noting that

E

[
T∑
t=1

z>t (At − a)

]
= E

[
T∑
t=1

z>t (at − a)

]
= E

[
T∑
t=1

E[z>t (at − a)|Pt]

]
= E

[
T∑
t=1

E[ẑ>t (at − a)|Pt]

]
= E

[
T∑
t=1

ẑ>t (at − a)

]
.

7.1. SIMPLEX GAMES WITH UNNORMALIZED NEGATIVE ENTROPY 95

7.1 Simplex games with unnormalized negative entropy

Example 1 Let A = {x ∈ Rd : xi ≥ 0,
∑d

i=1 = 1}, F (x) =
∑n

i=1 xi log(xi)− xi with D = (0,∞)d.
F is Legendre and

[∇F (x)]i = log(xi)

DF (x, y) =

d∑
i=1

xi log(xiyi)−
d∑
i=1

(xi − yi)

F ∗(x) =

d∑
i=1

exp(xi)

[∇F ∗(x)]i = exp(xi)

DF ∗(x, y) =

d∑
i=1

exp(yi)(exp(xi − yi)− 1− (xi − yi))

7.1.1 Full information game, simplex action set

Assume the setting of Example 1. The following algorithm implements the updates of Mirror
Descent above for the particular loss `(a, z) = a>z.

Exponential Weights
Input: Time horizon T .
Initialize: Player sets a1 = (1/d, . . . , 1/d). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player chooses at ∈ A
Player suffers (and observes) loss `(at, zt) = a>t zt
Player observes zt
Update mirror descent iterates:

ãt+1,i = exp(−η
t∑

s=1

zs,i) at,i = ãt+1,i/

d∑
j=1

ãt+1,j .

Corollary 4 (Exponential weights). Under the conditions of Example 1 with let `(a, z) = a>z, the
exponential weights algorithm satisfies

sup
a∈A

T∑
t=1

`(at, zt)− `(a, zt) ≤
log(d)

η
+
ηT

2
≤
√

2T log(d)

96 CHAPTER 7. STOCHASTIC ONLINE MIRROR DESCENT

Proof. Note ∇a`(a, z) = z. Plug in quantities of the example to obtain for any a ∈ A

T∑
t=1

`(at, zt)− `(a, zt) =
T∑
t=1

z>t (at − a)

≤ log(d)

η
+

1

η

T∑
t=1

d∑
i=1

at,i(exp(−ηzt,i)− 1 + ηzt,i)

≤ log(d)

η
+
η

2

T∑
t=1

d∑
i=1

at,iz
2
t,i

≤ log(d)

η
+
ηT

2

where the second line uses F (x) ≤ 0 and F (a1) = log(d), the third line uses exp(−x) ≤ 1−x+ 1
2x

2

for x ≥ 0, and the last line follows from zt,i ∈ [0, 1] and at is a probability distribution.

7.1.2 Full information game, finite action set

Analogous to the categorial weather prediction problem in class, we now consider the case where the
player can only play from a distinct set {1, . . . , d} (i.e., predict rain, snow, sunny). As discussed
in class, any deterministic algorithm will suffer linear regret, so instead, at time t we choose a
probability distribution at ∈ A (in the setting of Example 1), choose distinct action It drawn
according to at so that At := eIt , and then suffer loss `(At, zt) = A>t zt = zt,It . Note that E[At] =

E[eIt] =
∑d

i=1 eiat,i = at so that E[`(At, zt)] = E[A>t zt] = a>t zt. Thus, the expected regret relative
to any probability distribution a ∈ A over distinct items in hindsight is

E

[
T∑
t=1

`(At, zt)− `(a, zt)

]
= E

[
T∑
t=1

z>t (At − a)

]

= E

[
T∑
t=1

z>t (at − a)

]

= E

[
T∑
t=1

`(at, zt)− `(a, zt)

]

where the expectation is with to the random selection of each It from at. Alternatively, we can
directly apply Corollary 2 with ẑt = zt since we are in the full information setting.

7.1. SIMPLEX GAMES WITH UNNORMALIZED NEGATIVE ENTROPY 97

Exponential Weights over finite actions
Input: Time horizon T .
Initialize: Player sets a1 = (1/d, . . . , 1/d). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player chooses at ∈ A
Player draws It ∼ at, sets At = eIt and suffers (and observes) loss `(At, zt) =

A>t zt = zt,It
Player observes zt
Update mirror descent iterates:

ãt+1,i = exp(−η
t∑

s=1

zs,i) at,i = ãt+1,i/
d∑
j=1

ãt+1,j .

Corollary 5 (Exponential weights over finite actions). Under the conditions of Example 1 where
the player can only play ei for i ∈ {1, . . . , d} with let `(a, z) = a>z, the exponential weights over
finite actions algorithm satisfies

E

[
sup
a∈A

T∑
t=1

`(eIt , zt)− `(a, zt)

]
≤ log(d)

η
+
ηT

2
≤
√

2T log(d)

Proof. Immediate from reduction described above and the previous corollary since the iterates are
identical in the full information game. Due to the oblivious adversary we have

sup
a∈A

E

[
T∑
t=1

`(at, zt)− `(a, zt)

]
= E

[
sup
a∈A

T∑
t=1

`(at, zt)− `(a, zt)

]

Note, as we did in class, one can also prove a high probability bound that would apply to a general
reactive adversary [?, Ch. 2.7]

7.1.3 Bandit feedback, finite action set

This setting is identical to the previous setting, but now we do not observe the entire vector zt
at each time t, we only observe the element we played zt,It . Using this single value, the player

constructs an unbiased estimate of zt with ẑt,i =
1{It=i}zt,i

at,i
for all i. Note that

E[ẑt,i|a1, I1, . . . , at−1, It−1, at] = E[
1{It = i}zt,i

at,i
|a1, I1, . . . , at−1, It−1, at]

=

d∑
j=1

at,j
1{j = i}zt,i

at,i

= zt,i.

Also note that E[At] = E[eIt] =
∑d

i=1 eiat,i = at.

98 CHAPTER 7. STOCHASTIC ONLINE MIRROR DESCENT

EXP3: Exponential Weights for Exploration Exploitation

Input: Time horizon T , A = {x ∈ Rd : xi ≥ 0,
∑d

i=1 = 1}.
Initialize: Player sets a1 = (1/d, . . . , 1/d). Adversary chooses {zt}Tt=1 ⊂ [0, 1]d.
for: t = 1, · · · , T

Player draws It ∼ at and suffers (and observes) loss `(eIt , zt) = zt,It
Player sets ẑt,i =

1{It=i}zt,i
at,i

Update mirror descent iterates:

ãt+1,i = exp(−η
t∑

s=1

ẑs,i) at,i = ãt+1,i/
d∑
j=1

ãt+1,j .

Corollary 6 (EXP3). Under the conditions of Example 1 where the player can only play ei for
i ∈ {1, . . . , d} with `(a, z) = a>z and only observe bandit feedback, the EXP3 algorithm satisfies

sup
a∈A

E

[
T∑
t=1

`(At, zt)− `(a, zt)

]
≤ log(d)

η
+
η

2

T∑
t=1

E

[
d∑
i=1

at,iẑ
2
t,i

]

≤ log(d)

η
+
ηTd

2
≤
√

2dT log(d)

Proof. We can directly apply Corollary 2:

E

[
sup
a∈A

T∑
t=1

(At − a)>zt

]
≤ supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

E [DF ∗ (∇F (at)− ηẑt,∇F (at))]

=
log(d)

η
+

1

η

T∑
t=1

E

[
d∑
i=1

at,i(exp(−ηẑt,i)− 1 + ηẑt,i)

]

≤ log(d)

η
+
η

2

T∑
t=1

E

[
d∑
i=1

at,iẑ
2
t,i

]

=
log(d)

η
+
η

2

T∑
t=1

E

[
d∑
i=1

at,i
1{It = i}z2

t,i

a2
t,i

]

=
log(d)

η
+
η

2

T∑
t=1

d∑
i=1

z2
t,i

≤ log(d)

η
+
ηdT

2

For an alternative proof of EXP3, see [Lattimore and Szepesvári, 2020, Ch. 11]

7.2 Other action sets

The previous section addressed the case of the action set being equal to the simplex: A = {x ∈
Rd : xi ≥ 0,

∑d
i=1 = 1}. As our Legendre potential we chose unnormalize negative entropy F (x) =

7.2. OTHER ACTION SETS 99

∑d
i=1 xi log(xi)−xi. Consider what the guarantee would be from Corollary 2 if we chose a different

function, say, F (x) = 1
2‖x‖

2
2 then:

E

[
sup
a∈A

T∑
t=1

(At − a)>zt

]
≤ supa∈A F (a)− F (a1)

η
+

1

η

T∑
t=1

E [DF ∗ (∇F (at)− ηẑt,∇F (at))]

≤ 1

η
+
η

2

T∑
t=1

E
[
‖ẑt‖22

]
=

1

η
+
η

2

T∑
t=1

E

[
d∑
i=1

ẑ2
t,i

]

=
1

η
+
η

2

T∑
t=1

E

[
d∑
i=1

z2
t,i

at,i

]
.

The issue here is that at,i can become arbitrarily close to 0 and blow up the bound. If we mix
in unfirom exploration at each round, one can show that the regret bound is O((dT)2/3) which is
significantly worse than O(

√
dT log(d)) of EXP3 above. So given an action set A how do we choose

F? The next proposition sheds some light on this question.

Proposition 8. If F is twice continuously differntiable, and if its Hessian ∇2F (x) is invertible
∀x ∈ D, then ∀x, y ∈ D, there exists ζ ∈ D such that ∇F (ζ) ∈ [∇F (x),∇F (y)] and

DF ∗(∇F (x),∇F (y)) =
1

2
‖∇F (x)−∇F (y)‖2(∇2F (ζ))−1 .

The implication of the above proposition is that ∃∇F (ζt) ∈ [∇F (at)− ηẑt,∇F (at)] and

DF ∗ (∇F (at)− ηẑt,∇F (at)) =
η2

2
‖ẑt‖2(∇2F (ζt))−1

For the choice of F (x) = 1
2‖x‖

2
2 we have ∇2F (ζt) = I for any ζt so that the Hessian is flat

across the action set. On the other hand, with the choice F (x) =
∑d

i=1 xi log(xi) − xi, we have
∇2F (x) = diag(1/x1, . . . , 1/xd) which blows up as a component of x approaches 0. But this is
perfect, since then

E [DF ∗ (∇F (at)− ηẑt,∇F (at))] = E
[
η2

2
‖ẑt‖2(∇2F (ζt))−1

]
= E

[
η2

2

d∑
i=1

ẑ2
t,iζt,i

]

= E

[
η2

2

d∑
i=1

z2
t,i

at,i
ζt,i

]

≈ η2

2

d∑
i=1

z2
t,i

where we have used the approximation that ζt ≈ at. The hessian of F is blowing up precisely at
the locations where ẑt blows up, essentially cancelling each other! We’ll see another example of this
in the next subsection.

100 CHAPTER 7. STOCHASTIC ONLINE MIRROR DESCENT

7.2.1 Bandit feedback, unit ball action set

Here we address the action set A = {x ∈ Rd : ‖x‖2 ≤ 1}. To use Corollary 2, we need to define
Pt (or equivalently, At) to make sure that E[At] = at and we need to define ẑt with E[ẑt] = zt.
Consider the following choices:

• Xt ∼ Bernoulli(‖at‖2), It ∼ uniform([d]), εt ∈ {−1, 1} with equal probability

• At = (1−Xt)εteIt + Xt at
‖at‖2

• ẑt = (1−Xt) d
1−‖at‖2AtA

>
t zt

It is straightforward to verify that E[At|at] = at and E[ẑt|at] = zt. Following the intuition of the

previous section, we need to choose F to make E
[
η2

2 ‖ẑt‖
2
(∇2F (ζt))−1

]
small. Let F (x) = − log(1 −

‖x‖2)− ‖x‖2. Note that

E
[
‖ẑt‖2(∇2F (ζt))−1

]
= E

[
‖(1−Xt)

d

1− ‖at‖2
AtA

>
t zt‖2(∇2F (ζt))−1

]
= E

[
d2

1− ‖at‖2
‖AtA>t zt‖2(∇2F (ζt))−1 |Xt = 0

]
=

d∑
i=1

1

d

d2

1− ‖at‖2
‖eie>i zt‖2(∇2F (ζt))−1

=
d

1− ‖at‖2
‖zt‖2(∇2F (ζt))−1

≤ d

1− ‖at‖2
(1− ‖ζt‖2)‖zt‖22

≤ 2d

where we have used the fact that∇2F (x) � I/(1−‖x‖2) and 1−‖zt‖2
1−‖at‖2 ≤ 2 (see [Lattimore and Szepesvári, 2020]

for second fact).

Using a shrunken action set, one can prove that the regret is bounded byO(
√
dT) (see [Lattimore and Szepesvári, 2020]).

7.2.2 Bandit feedback, finite action sets; Linear bandits

Here we study the case when |A| = n and A = {x1, . . . , xn} ⊂ Rd and maxx∈Amaxt |x>zt| ≤ 1.
Our approach will rely on a slight modification of the EXP3 algorithm:

7.2. OTHER ACTION SETS 101

EXP3(γ): Exponential Weights for Exploration Exploitation

Input: Time horizon T , n arms, η > 0, γ ∈ [0, 1], λ ∈ 4n.
Initialize: Player sets p1 = (1/n, . . . , 1/n) ∈ 4n. Adversary chooses {yt}Tt=1 ⊂
[−1, 1]n.
for: t = 1, · · · , T

Player draws It ∼ qt := (1− γ)pt + γλ and suffers (and observes) loss `(It, yt) =
yt,It

Player computes ŷt,i where E[ŷt,i|pt] = yt,i
Update iterates:

p̃t+1,i = exp(−η
t∑

s=1

ŷs,i) pt,i = p̃t+1,i/

n∑
j=1

p̃t+1,j .

A straightforward modification for the stochastic mirror descent proof accounts for the forced
exploration:

Proposition 9. [EXP3(γ)] The regret of EXP3(γ) algorithm satisfies

max
i∈[n]

E

[
T∑
t=1

yt,It − yt,i

]
≤ log(n)

η
+ 2γT +

1

η

T∑
t=1

E

[
n∑
i=1

qt,iφ(−ηŷt,i)

]

where φ(x) = ex − 1− x ≤ x2 for |x| ≤ 1.

Note, if we consider the simple multi-armed bandit setup with loss estimator ŷt,i := 1{It=i}
qt,i

yt,i,

λ = 1
n1, and γ = ηn then |ηŷt,i| ≤ ηŷt,i ≤ η/(γλ) = 1 and

max
i∈[n]

E

[
T∑
t=1

yt,It − yt,i

]
≤ log(n)

η
+ 2γT + ηnT =

log(n)

η
+ 3ηnT.

Taking η =

√
log(n)
3nT yields a regret bound of maxi∈[n] E

[∑T
t=1 yt,It − yt,i

]
≤
√

12nT log(n).

We will use the EXP3(γ) algorithm as follows:

• Set At = xIt

• λ = arg minλ′∈4X maxx∈X ‖x‖2(∑x′ λ
′
x′x
′x′>)−1

• Qt =
∑n

i=1 qt,ixix
>
i , ẑt = Q−1

t AtA
>
t zt

• yt,i = x>i zt, ŷt,i = x>i ẑt

to obtain the following theorem:

Theorem 18. Let |A| = n and A = {x1, . . . , xn} ⊂ Rd and maxx∈Amaxt |x>zt| ≤ 1. Using the
reduction to EXP3(γ) with γ = ηd we have

max
a∈A

E

[
T∑
t=1

(At − a)>zt

]
≤ log(n)

η
+ 3ηdT ≤ 2

√
3dT log(n)

102 CHAPTER 7. STOCHASTIC ONLINE MIRROR DESCENT

First note that

E[ŷt,i|pt] = E[x>i ẑt|pt]
= E[x>i Q

−1
t AtA

>
t zt|pt]

= x>i Q
−1
t E[AtA

>
t |pt]zt

= x>i zt = yt,i

We also have

E[ŷ2
t,i] = E[(x>i ẑt)

2|pt]
= E[x>i Q

−1
t AtA

>
t Q
−1
t xi(A

>
t zt)

2|pt]
≤ x>i Q−1

t xi

so that

E

[
n∑
i=1

qt,iŷ
2
t,i

]
≤

n∑
i=1

qt,ix
>
i Q
−1
t xi

≤
n∑
i=1

Trace(qt,ixix
>
i Q
−1
t)

≤ Trace(QtQ
−1
t) = d

Finally,

|ηŷt,i| = |ηx>i ẑt|
= |ηx>i Q−1

t AtA
>
t zt|

≤ η|x>i Q−1
t At|

= η|x>i Q−1
t xIt |

≤ η‖xi‖Q−1
t
‖xIt‖Q−1

t

≤ η‖xi‖(γ∑n
i=1 λixix

>
i)−1‖xIt‖(γ∑n

i=1 λixix
>
i)−1

≤ ηd

γ

so it suffices to take γ = ηd.

7.2.3 Reduction

7.3 Contextual bandits, EXP4

The following algorithm and proof are very standard. However, the textbooks [Lattimore and Szepesvári, 2020,
Bubeck et al., 2012] have some unfortunate typos and/or notation that I found confusing so I have
reproduced EXP4 here.

7.3. CONTEXTUAL BANDITS, EXP4 103

EXP4: Exponential Weights for Exploration Exploitation
Input: Time horizon T , n arms, m expers, η > 0, γ ∈ [0, 1], λ ∈ 4n.
Initialize: Player sets Q1 = (1/m, . . . , 1/m) ∈ [0, 1]1×m. Adversary chooses
{`t}Tt=1 ⊂ [0, 1]n.
for: t = 1, · · · , T

Nature reveals expert advice E(t) ∈ [0, 1]m×n

Set pt,i = EM∼Qt [E
(t)
M,i] =

∑m
j=1Qt,jE

(t)
j,i

Player draws Mt ∼ Qt and It ∼ E(t)
Mt
∈ 4n (equivalent to It ∼ pt ∈ 4n)

Player suffers (and observes) loss `t,It
Estimate arm losses ̂̀t,i =

1{It=i}`t,i
pt,i

Estimate expert losses ŷt,j =
∑n

i=1E
(t)
j,i
̂̀
t,i for all j = 1, . . . ,m

Update iterates:

Q̃t+1,i = exp(−η
t∑

s=1

ŷs,i) Qt,i = Q̃t+1,i/
m∑
j=1

Q̃t+1,j .

First we will prove some simple identities:

E[ŷt,j] = E[

n∑
i=1

E
(t)
j,i
̂̀
t,i] =

n∑
i=1

E
(t)
j,i `t,i

and

E[`t,It] = E[
n∑
i=1

pt,i`t,i] =
n∑
i=1

m∑
j=1

Qt,jE
(t)
j,i `t,i =

m∑
j=1

Qt,j

n∑
i=1

E
(t)
j,i `t,i = E[

m∑
j=1

Qt,j

n∑
i=1

ŷt,j]

The expert regret is defined as

max
k=1,...,m

E

[
T∑
t=1

`t,It −
n∑
i=1

E
(t)
k,i`t,i

]
= max

k=1,...,m
E

 T∑
t=1

m∑
j=1

Qt,j

n∑
i=1

E
(t)
j,i `t,i −

n∑
i=1

E
(t)
k,i`t,i

= max

k∈[m]
E

 T∑
t=1

m∑
j=1

Qt,j ŷt,j − ŷt,k

= max

k∈[m]
E

[
T∑
t=1

ŷt,Mt − ŷt,k

]

≤ log(m)

η
+
η

2

T∑
t=1

E

 m∑
j=1

Qt,j ŷ
2
t,j

≤ log(m)

η
+
ηnT

2

where the first two lines follow from plugging in the identities of above, the third from the definition

104 CHAPTER 7. STOCHASTIC ONLINE MIRROR DESCENT

of Mt, and the first inequality follows from the guarantee of EXP3. The last inequality follows from

E[ŷ2
t,j] = E

[
(
n∑
i=1

E
(t)
j,i
̂̀
t,i)

2

]

= E

(n∑
i=1

E
(t)
j,i

1{It = i}`t,i
pt,i

)2

= E

E(t)
j,It
`t,It

pt,It

2
=

n∑
i=1

pt,i

(
E

(t)
j,i `t,i

pt,i

)2

≤
n∑
i=1

E
(t)
j,i

pt,i

so

E

 m∑
j=1

Qt,j ŷ
2
t,j

 =
m∑
j=1

Qt,j

n∑
i=1

E
(t)
j,i

pt,i

=
n∑
i=1

∑m
j=1Qt,jE

(t)
j,i

pt,i
= n

Part III

Markov Decision Processes

105

7.4. FINITE HORIZON MARKOV DECISION PROCESSES 107

7.4 Finite Horizon Markov Decision Processes

This presentation closely follows the monograph of [Agarwal et al., 2019] with slight notation and
presentation changes.

A finite horizon Markov Decision Process (MDP) is defined as the tuple (S,A, {Ph}h, {rh}h, H, ν)
where

• State space S is finite with S = |S|

• Action space A is finite with A = |A|, all actions are available in all states

• Transition function Ph : S × A → 4S for all h ∈ [H] dictates next state probabilities. If
action ah is taken in state sh+1 at time h, then Ph(s′|s, a) is the probability that sh+1 = s′.

• Reward function rh : S ×A → [0, 1] for all h ∈ [H]. If action ah is taken in state sh+1 at time
h, then the agent receives reward rh(sh, ah).

• Horizon length H ∈ N

• Initial state distribution µ ∈ 4S from which s1 is drawn

For a policy π, a state s, and h ∈ [H], define the value function V π
h : S → R as

V π
h (s) = E

[
H∑
t=h

rh(sh, ah)|π, sh = h

]

where the expectation is with respect to both the random transitions and potentially stochastic
policy. It is understood in the above equation that π = {πh}h and at = πt(st) for all t. The
state-action value Qπh : S ×A → R is defined as

Qπh(s, a) = E

[
H∑
t=h

rh(sh, ah)|π, sh = h, ah = a

]
.

Note that V π
h (s) ∈ [0, H − h + 1] and Qπh(s) ∈ [0, H − h + 1] for any policy π. We will define

V π
0 = Es1∼ν [V π

1 (s1)]. The objective is to optimize maxπ V
π

0 .

Theorem 19 (Bellman Optimality Equations). For all (s, a, h) ∈ S ×A× [H] define

Q?h(s, a) = sup
π
Qπh(s, a)

where the sup is taken over all non-stationary and stochastic policies. For some function Qh :
S ×A → R, we have that Qh = Q?h for all h ∈ [H] if and only if for all h ∈ [H],

Qh(s, a) = rh(s, a) + Es′∼P (·|s,a)

[
max
a′∈A

Qh+1(s′, a′)

]
where QH+1 = 0. Furthermore, the deterministic policy πh(s) = arg maxa∈AQh(s, a) is an optimal
policy.

108

7.4.1 Value iteration

We will leverage the above Bellman optimality equations to derive the optimal policy. The following
procedure is known as value iteration.

• Set QH(s, a) = rH(s, a).

• For h = H − 1, . . . , 1 set:

Qh(s, a) = rh(s, a) + Es′∼P (·|s,a)

[
max
a′∈A

Qh+1(s′, a′)

]
By Theorem 19, we have that Qh(s, a) = Qπ∗h (s, a) and consequently, πh(s) = arg maxaQh(s, a) is
an optimal policy.

7.4.2 Reinforcement learning

The value iteration algorithm is optimal if the rewards and transition functions are known. But
what if they are unknown, how hard is it to learn the optimal policy? Consider an episodic setting
where before the start of each episode k, an agent defines a policy {πkh}Hh=1 and applies it in the
environment so that sk1 ∼ ν, πh(skh) = akh, and skh+1 ∼ P (·|skh, akh). This results in a trajectory

τk = {skh, akh}Hh=1. We care about regret:

Regret := E

[
KV π∗

1 (s1)−
K∑
k=1

H∑
h=1

rh(skh, a
k
h)

]

Ideally, we would like an algorithm that satisfies O(
√
K) regret.

Why is this problem hard? Consider the combination lock instance (TODO). Its very clear that a
policy that just uniform exploration will only reach the reward state with probability A−H .

7.4.3 UCB Value Iteration Algorithm

This section presents the UCB-VI algorithm of [Azar et al., 2017] and closely follows the analysis
of [Agarwal et al., 2019].

UCB-VI for Reinforcement Learning
Input: deterministic reward functions rh : S ×A → [0, 1] for all h ∈ [H], δ ∈ (0, 1)
Initialize: For all ` ∈ N let n`h(s, a, s′) =

∑`−1
i=1 1{(sih, aih, sih+1) = (s, a, s′)},

n`h(s, a) =
∑`−1

i=1 1{(sih, aih) = (s, a)},

P̂ `h(s′|s, a) = n`h(s, a, s′)/n`h(s, a)

for k = 1, 2, . . . ,K
V̂ k
H+1 = 0

for h = H,H − 1, . . . , 1

Q̂kh(s, a) = min

{
H,H

√
log(2KHSA/δ)

2nkh(s,a)
+ rh(s, a) + P̂ kh · V k

h+1

}
V̂ k
h (s) = maxa Q̂

k
h(s, a) and πkh(s) arg maxa Q̂

k
h(s, a)

Roll-out {πkh} such that s1 ∼ ν and akh = πkh(sh) and sh+1 ∼ Ph(·|skh, akh) for all h ∈ [H]

7.4. FINITE HORIZON MARKOV DECISION PROCESSES 109

The intuition for this algorithm is that V̂ k
h and Q̂kh are optimistic in the sense that with high

probability, we have that V̂ k
h (s) ≥ V π∗

h (s) and Q̂kh(s, a) ≥ Qπ∗h (s, a) for all s, a, h. Thus, just like
UCB for bandits, at least intuitively, taking an action either results in a high reward, or information
against taking that action in the future.

Theorem 20. For any K ∈ N we have that UCB-VI satsifies

K∑
k=1

V π∗
0 − V πk

0 ≤ H2S
√

8AK log(2KHSA/δ)

with probability at least 1− 2δ.

Define the event

Eoptimism :=

K⋂
k=1

H⋂
h=1

⋂
s,a

{∣∣∣∣∣∑
s′

(Ph(s′|s, a)− P̂ kh (s′|s, a))V π∗
h+1(s′)

∣∣∣∣∣ ≤ H
√

log(2KHSA/δ)

2nkh(s, a)

}

We have that P(Eoptimism) ≥ 1− δ as a corollary of the following lemma.

Lemma 25. Fix any V : S → [0, H]. Then for any (s, a, h, k) ∈ S ×A× [H]× N

P

(∣∣∣∣∣∑
s′

(Ph(s′|s, a)− P̂ kh (s′|s, a))V (s′)

∣∣∣∣∣ ≤ H
√

log(2/δ)

2nkh(s, a)

)
≥ 1− δ.

Proof. IfX` = 1{s = s`h, a = a`h}
∑

s′(Ph(s′|s, a)−1{s`h+1 = s′})V (s′) then E[X`|F `h] = 0. Note that

1{s = s`h, a = a`h} is a predictable sequence and F `h-measurable. Thus, by Hoeffding’s inequality
we have E[exp(λX`)|F `h] ≤ exp(λ2H21{s = s`h, a = a`h}/8). It follows from Azuma-Hoeffding that∣∣∣∣∣nkh(s, a)

∑
s′

(Ph(s′|s, a)− P̂h(s′|s, a))V (s′)

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
`=1

X`

∣∣∣∣∣
≤ H

√
nkh(s, a) log(2/δ)/2

where we have used the fact that
∑k−1

`=1 H
21{s = s`h, a = a`h} = nkh(s, a). Union bounding over all

S,A,K,H completes the proof.

Lemma 26. On event Eoptimism we have that V̂ k
h (s) ≥ V π∗

h (s) and Q̂kh(s, a) ≥ Qπ∗h (s, a) for all
s, a, h.

Proof. First note that if Q̂kh(s, a) = H for any (s, a, h, k) then we trivially have that Q̂kh(s, a) = H ≥
Qπ∗h (s, a). Thus, assume otherwise. Note that trivially we have that Q̂kH(s, a) ≥ Qπ∗H (s, a) = rH(s, a)
for all s, a. We will prove the result by induction using the base case of

V̂ k
H(s) = max

a
Q̂kH(s, a) ≥ Q̂kH(s, π∗(s)) ≥ Qπ∗H (s, π∗(s)) = V π∗

H (s).

110

Thus, assume V̂ k
h+1(s′) ≥ V π∗

h+1(s′) for all s′ ∈ S and observe that for all s, a

Qπ∗h (s, a) = rh(s, a) +
∑
s′

Ph(s′|s, a)V π∗
h+1(s′)

= rh(s, a) +
∑
s′

P̂ kh (s′|s, a)V π∗
h+1(s′) +

∑
s′

(Ph(s′|s, a)− P̂ kh (s′|s, a))V π∗
h+1(s′)

≤ rh(s, a) +
∑
s′

P̂h(s′|s, a)V̂ k
h+1(s′) +H

√
log(2KHSA/δ)

nkh(s, a)

= Q̂kh(s, a).

Using the same logic as for H, we conclude that V̂ k
h (s) ≥ V k

h (s) for all h ∈ [H].

V π∗
0 − V πk

0 = Es1 [V π∗
1 (s1)− V πk

1 (s1)]

≤ Es1
[
V̂ k

1 (s1)− V πk
1 (s1)

]
= Es1

[
V̂ k

1 (s1)− r(s1, πk(s1))−
∑
s′

P1(s′|s1, πk(s1))V πk
2 (s′)

]

= Es1

[
Q̂k1(s1, πk(s1))− r(s1, πk(s1))−

∑
s′

P1(s′|s1, πk(s1))V πk
2 (s′)

]

= Es1

[
H

√
log(2KHSA/δ)

2nk1(s1, a1)
+
∑
s′

P̂ k1 (s′|s1, πk(s1))V̂ k
2 (s′)−

∑
s′

P1(s′|s1, πk(s1))V πk
2 (s′)

]

= Es1

[
H

√
log(2KHSA/δ)

2nk1(s1, a1)
+
∑
s′

[P̂ k1 (s′|s1, πk(s1))− P1(s′|s1, πk(s1))]V̂ k
2 (s′) +

∑
s′

P1(s′|s1, πk(s1))[V̂ k
2 (s′)− V πk

2 (s′)]

]

= Es1,a1∼πk

[
H

√
log(2KHSA/δ)

2nk1(s1, a1)
+
∑
s′

[P̂ k1 (s′|s1, a1)− P1(s′|s1, a1)]V̂ k
2 (s′)

]
+ Es2∼πk [V̂ k

2 (s2)− V πk
2 (s2)]

=
H∑
h=1

Esh,ah∼πk

[
H

√
log(2KHSA/δ)

2nk1(sh, ah)
+
∑
s′

[P̂ kh (s′|sh, ah)− Ph(s′|sh, ah)]V̂ k
h (s′)

]

Now define the event

Ecomplexity :=
K⋂
k=1

H⋂
h=1

⋂
s,a

{
sup

V ∈[0,H]S

∣∣∣∣∣∑
s′

[P̂ kh (s′|s, a)− Ph(s′|s, a)]V (s′)

∣∣∣∣∣ ≤ H
√
S log(2KHSA/δ)

2nkh(s, a)

}
.

Lemma 27. For any K ∈ N, we have that P(Ecomplexity) ≥ 1− δ.

7.4. FINITE HORIZON MARKOV DECISION PROCESSES 111

Proof. Fix any (s, a) ∈ S ×A and h ∈ [H]. Observe that

sup
V ∈[0,H]S

∣∣∣∣∣∑
s′

(Ph(s′|s, a)− P̂ kh (s′|s, a))V (s′)

∣∣∣∣∣ = max
V ∈{0,H}S

∣∣∣∣∣∑
s′

(Ph(s′|s, a)− P̂ kh (s′|s, a))V (s′)

∣∣∣∣∣
≤ H

√
log(2 · 2S/δ)

2nkh(s, a)

≤ H

√
S log(2/δ)

2nkh(s, a)

where the second-to-last line holds with probability at least 1−δ by applying Lemma 25 with a union
bound over all V ∈ {0, 1}S . The final result follows from a union bound over all S ×A× [H].

If Eoptimism ∩ Ecomplexity holds then

K∑
k=1

V π∗
0 − V πk

0 ≤
K∑
k=1

H∑
h=1

E

[
H

√
log(2KHSA/δ)

2nk1(sh, ah)
+
∑
s′

[P̂ kh (s′|sh, ah)− Ph(s′|sh, ah)]V̂ k
h (s′)

]

≤
K∑
k=1

H∑
h=1

E

[
H

√
2S log(2KHSA/δ)

nkh(skh, a
k
h)

]

= H
√

2S log(2KHSA/δ)
H∑
h=1

E

 K∑
k=1

1√
nkh(skh, a

k
h)

= H

√
2S log(2KHSA/δ)

H∑
h=1

E

∑
s,a

K∑
k=1

1{(s, a) = (skh, a
k
h)} 1√

nkh(skh, a
k
h)

= H

√
2S log(2KHSA/δ)

H∑
h=1

E

∑
s,a

nKh (s,a)∑
i=1

1√
i

≤ H

√
8S log(2KHSA/δ)

H∑
h=1

E

[∑
s,a

√
nKh (s, a)

]

≤ H
√

8S log(2KHSA/δ)

H∑
h=1

√
SAK

= H2S
√

8AK log(2KHSA/δ)

where the second-to-last inequality follows from
∑k

i=1 1/
√
i ≤ 2

√
k, and the last inequality is

Cauchy-Schwartz.

7.4.4 An improved regret bound for UCB-VI

With a more sophisticated argument, this section shows that the same algorithm achieves a regret

of Õ
(
H2
√
SAK +H2S2A log(K)

)
.

112

With probability at least 1− δ we have for any f : S → [−H,H] that∣∣∣∣∣∑
s′

(Ph(s′|s, a)− P̂ kh (s′|s, a))f(s′)

∣∣∣∣∣ ≤∑
s′

∣∣∣Ph(s′|s, a)− P̂ kh (s′|s, a))
∣∣∣ f(s′)

≤
∑
s′

f(s′)

(√
2Ph(s′|s, a) log(2S/δ)

nkh(s, a)
+

2 log(2S/δ)

3nkh(s, a)

)

≤ 2HS log(2S/δ)

3nkh(s, a)
+
∑
s′

√
f2(s′)Ph(s′|s, a) 2 log(2S/δ)

nkh(s, a)

≤ 2HS log(2S/δ)

3nkh(s, a)
+

√∑
s′ f

2(s′)Ph(s′|s, a) 2S log(2S/δ)

nkh(s, a)

≤ 2HS log(2S/δ)

3nkh(s, a)
+

√∑
s′ f(s′)Ph(s′|s, a) 2HS log(2S/δ)

nkh(s, a)

≤ 2HS log(2S/δ)

3nkh(s, a)
+

1

H

∑
s′

f(s′)Ph(s′|s, a) +
H2S log(2S/δ)

2nkh(s, a)

=
2HS log(2S/δ)

nkh(s, a)
+

1

H
Es′∼Ph(s′|s,a)[f(s′)]

where the second inequality applies Azume-Bernstein, the fourth inequality applies Cauchy-Schwartz,
and the last inequality follows from for positive a, b we have ab ≤ (a2 + b2)/2 since 0 ≤ (a− b)2/2.

Picking up where we left off above in the regret bound, we have

K∑
k=1

V π∗
0 − V πk

0

≤
K∑
k=1

Es1,a1∼πk

[
H

√
log(2KHSA/δ)

2nk1(s1, a1)
+
∑
s′

[P̂ k1 (s′|s1, a1)− P1(s′|s1, a1)]V̂ k
2 (s′)

]
+ Es2∼πk [V̂ k

2 (s2)− V πk
2 (s2)]

≤
K∑
k=1

Es1,a1∼πk

[
H

√
2 log(2KHSA/δ)

nk1(s1, a1)
+
∑
s′

[P̂ k1 (s′|s1, a1)− P1(s′|s1, a1)](V̂ k
2 (s′)− V π∗

2 (s′)

]
+ Es2∼πk [V̂ k

2 (s2)− V πk
2 (s2)]

≤
K∑
k=1

Es1,a1∼πk

[
H

√
2 log(2KHSA/δ)

nk1(s1, a1)
+

2H2S log(2KHS2A/δ)

nk1(s1, a1)

]
+ (1 + 1/H)Es2∼πk [V̂ k

2 (s2)− V πk
2 (s2)]

≤
K∑
k=1

H∑
h=1

(1 + 1/H)h−1E

[
H

√
2 log(2KHSA/δ)

nk1(sh, ah)
+

2H2S log(2KHS2A/δ)

nkh(sh, ah)

]

≤ e
K∑
k=1

H∑
h=1

E

[
H

√
2 log(2KHSA/δ)

nkh(sh, ah)
+

2H2S log(2KHS2A/δ)

nkh(sh, ah)

]
where the last line follows from (1 + 1/H)h−1 ≤ (1 + 1/H)H ≤ e. By the same sequence of steps
as above,

∑K
k=1

∑H
h=1

1√
nkh(sh,ah)

≤ 2H
√
SAK. Analogously, using the fact that

∑n
i=1

1
i ≤ 2 log(n)

we have

E

[
K∑
k=1

H∑
h=1

1

nkh(sh, ah)

]
≤ E

[
H∑
h=1

∑
s,a

log(nKh (s, a))

]
≤ 2SAH log(K).

7.4. FINITE HORIZON MARKOV DECISION PROCESSES 113

Putting it all together we have a final regret bound of

K∑
k=1

V π∗
0 − V πk

0 ≤e
K∑
k=1

H∑
h=1

E

[
H

√
2 log(2KHSA/δ)

nkh(sh, ah)
+

2HS log(2KHS2A/δ)

nkh(sh, ah)

]

=eH
√

2 log(2KHSA/δ)

K∑
k=1

H∑
h=1

E

 1√
nkh(sh, ah)

+ 2eH2S log(2KHS2A/δ)

K∑
k=1

H∑
h=1

E
[

1

nkh(sh, ah)

]
≤H2

√
8e2SAK log(2KHSA/δ) + 4eH3S2A log(K) log(2KHS2A/δ).

114

Chapter 8

Learning and Games

8.1 The sample complexity of two-player zero-sum matrix games

We begin with the simplest of all games: two-player zero-sum matrix games. In this problem
setting, there is an arbitrary input matrix A ∈ [−1, 1]n×m which is unknown to the learner. The
learner can sample an entry (i, j) of A and observe the random variable Xi,j = Ai,j + η where η is
a zero-mean 1-sub-Gaussian noise (typically we will assume Ai,j + η ∈ [−1, 1]).

The aim of this section to identify an ε-approximate Nash equilibria:

Definition 19 (Nash Equilibrium). We say a pair (x, y) ∈ 4m × 4n is an ε-approximate Nash
equilibria if both

〈x,Ay〉 ≥ 〈x′, Ay〉 − ε and 〈x,Ay′〉 ≥ 〈x,Ay〉 − ε (8.1)

hold for all (x′, y′) ∈ 4m ×4n. If a pair (x, y) satisfies this condition with ε = 0, we say it is a
Nash equilibria.

Note that if a pair (x, y) ∈ 4m ×4n satisfies

max
(x′,y′)∈4m×4n

〈x′, Ay〉 − 〈x,Ay′〉 ≤ ε (8.2)

then this assumption says that it is an ε-approximate Nash equilibria.

For example, for the rock-paper-scissors game given by

A =

 0 −1 1
1 0 −1
−1 1 0

one can verify that (x, y) is an ε-Nash equilibria if ‖x− 1

31‖1 + ‖y − 1
31‖1 ≤ ε using (8.2).

Nash proved that a Nash equilibria (and hence an ε-approximate Nash equilbria) always exists for
finite matrix games of this sort, but they need not be unique (consider the set of Nash equilibria
for the all zeros matrix). We now introduce an important sub-class of Nash equilibria.

Definition 20 (Pure Strategy Nash Equilibrium). An element (i∗, j∗) is a Pure Strategy Nash
Equilibrium (PSNE) of the game induced by the matrix A ∈ Rm×n if Ai∗j∗ = maxi∈[m]Ai,j∗ and
Ai∗,j∗ = minj∈[n]Ai∗,j. Moreover, a Nash equilibrium (x, y) ∈ 4m × 4n where support(x) = {i}
and support(y) = {j} corresponds to a PSNE (i, j).

115

116 CHAPTER 8. LEARNING AND GAMES

Not every game admits a PSNE, for example, the rock-paper-scissors game of above.

How do we find an approximate Nash equilibria? Given the true matrix A, one observes that a
Nash equilibria is a solution to a linear program. However, if we only have access to A through
noisy bandit feedback, what can we do?

Theorem 21. Initialize two independent versions of EXP3(γ) defined above, one for the max/x
player and the other for the min/y player where they are trying to maximize or minimize their
cumulative observations, respectively. When the max player plays It ∈ [m] and the min player
plays Jt ∈ [n], both players observe the outcomes AIt,Jt + ηt ∈ [−1, 1] where E[ηt] = 0. If x̂ =
1
T

∑T
t=1 eIt and ŷ = 1

T

∑T
t=1 eJt then x̂, ŷ is an ε-approximate Nash equilibria, in expectation, if

T ≥ 24(m+ n)ε−2 log(n).

Proof. At each time t = 1, 2, . . . , T the min player chooses Jt ∈ [n] and observes loss yt,Jt for the
loss vector yt := A>eIt + ηt ∈ [−1, 1]n. Applying Proposition 9 we have that for any q ∈ 4n

E[
T∑
t=1

eItA(eJt − q)] = E[

T∑
t=1

y>t (eJt − q)]

≤ max
j∈[m]

E[
T∑
t=1

yt,Jt − yt,j] ≤
√

12nT log(n).

so that

E[
T∑
t=1

e>ItAeJt] = E[
T∑
t=1

e>ItAq] + E[
T∑
t=1

e>ItA(eJt − q)]

= E[x̂>Aq] + E[
T∑
t=1

e>ItA(eJt − q)]

≤ E[x̂>Aq] +
√

12nT log(n)

By the same logic, we have for any p ∈ 4m that

E[

T∑
t=1

e>ItAeJt] ≥ E[p>Aŷ]−
√

12nT log(n).

Rearranging these inequalities, we conclude that

max
(p,q)∈4m×4n

E[p>Aŷ] + E[x̂>Aq] ≤
√

12nT log(n) +
√

12mT log(n) ≤
√

24(m+ n)T log(n).

Bibliography

[Agarwal et al., 2014] Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and Schapire, R. (2014). Taming
the monster: A fast and simple algorithm for contextual bandits. In International Conference on Machine
Learning, pages 1638–1646. PMLR.

[Agarwal et al., 2019] Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. (2019). Reinforcement learning:
Theory and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep.

[Audibert and Bubeck, 2009] Audibert, J.-Y. and Bubeck, S. (2009). Minimax policies for adversarial and
stochastic bandits.

[Auer et al., 2002] Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256.

[Azar et al., 2017] Azar, M. G., Osband, I., and Munos, R. (2017). Minimax regret bounds for reinforcement
learning. In International Conference on Machine Learning, pages 263–272. PMLR.

[Bartlett et al., 2006] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, classification,
and risk bounds. Journal of the American Statistical Association, 101(473):138–156.

[Beygelzimer et al., 2009] Beygelzimer, A., Dasgupta, S., and Langford, J. (2009). Importance weighted
active learning. In Proceedings of the 26th annual international conference on machine learning, pages
49–56.

[Beygelzimer et al., 2010] Beygelzimer, A., Hsu, D., Langford, J., and Zhang, T. (2010). Agnostic active
learning without constraints. In Proceedings of the 23rd International Conference on Neural Information
Processing Systems-Volume 1, pages 199–207.

[Boucheron, 2005] Boucheron, Stéphane, B. O. L. G. (2005). Theory of classification : a survey of some
recent advances. ESAIM: Probability and Statistics, 9:323–375.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press.

[Bubeck et al., 2012] Bubeck, S., Cesa-Bianchi, N., et al. (2012). Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122.

[Cappé et al., 2013] Cappé, O., Garivier, A., Maillard, O.-A., Munos, R., Stoltz, G., et al. (2013). Kullback–
leibler upper confidence bounds for optimal sequential allocation. The Annals of Statistics, 41(3):1516–
1541.

[Castro and Nowak, 2008] Castro, R. M. and Nowak, R. D. (2008). Minimax bounds for active learning.
IEEE Transactions on Information Theory, 54(5):2339–2353.

[Cohn et al., 1994] Cohn, D., Atlas, L., and Ladner, R. (1994). Improving generalization with active learning.
Mach. Learn., 15(2):201–221.

[Dasgupta, 2005a] Dasgupta, S. (2005a). Analysis of a greedy active learning strategy. Advances in neural
information processing systems, 17:337–344.

[Dasgupta, 2005b] Dasgupta, S. (2005b). Coarse sample complexity bounds for active learning. In NIPS,
volume 18, pages 235–242.

1

2 BIBLIOGRAPHY

[Dasgupta et al., 2008] Dasgupta, S., Hsu, D. J., and Monteleoni, C. (2008). A general agnostic active
learning algorithm. In Advances in neural information processing systems, pages 353–360.

[Dudik et al., 2011] Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., and Zhang,
T. (2011). Efficient optimal learning for contextual bandits. In Proceedings of the Twenty-Seventh Con-
ference on Uncertainty in Artificial Intelligence, pages 169–178.

[Dud́ık et al., 2011] Dud́ık, M., Langford, J., and Li, L. (2011). Doubly robust policy evaluation and learning.
In Proceedings of the 28th International Conference on International Conference on Machine Learning,
pages 1097–1104.

[Fiez et al., 2019] Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L. (2019). Sequential experimental design
for transductive linear bandits. In Advances in Neural Information Processing Systems, pages 10666–10676.

[Freund et al., 1997] Freund, Y., Seung, H. S., Shamir, E., and Tishby, N. (1997). Selective sampling using
the query by committee algorithm. Machine learning, 28(2):133–168.

[Golovin and Krause, 2011] Golovin, D. and Krause, A. (2011). Adaptive submodularity: Theory and appli-
cations in active learning and stochastic optimization. Journal of Artificial Intelligence Research, 42:427–
486.

[Hanneke et al., 2014] Hanneke, S. et al. (2014). Theory of disagreement-based active learning. Foundations
and Trends® in Machine Learning, 7(2-3):131–309.

[Hanneke and Yang, 2015] Hanneke, S. and Yang, L. (2015). Minimax analysis of active learning. Journal
of Machine Learning Research, 16(109):3487–3602.

[Hegedus, 1995] Hegedus, T. (1995). Generalized teaching dimensions and the query complexity of learning.
In Proceedings of the eighth annual conference on Computational learning theory, pages 108–117.

[Howard et al., 2018] Howard, S. R., Ramdas, A., McAuliffe, J., and Sekhon, J. (2018). Time-uniform,
nonparametric, nonasymptotic confidence sequences. arXiv preprint arXiv:1810.08240.

[Huang et al., 2015] Huang, T.-K., Agarwal, A., Hsu, D. J., Langford, J., and Schapire, R. E. (2015). Effi-
cient and parsimonious agnostic active learning. In Advances in Neural Information Processing Systems,
pages 2755–2763.

[Kääriäinen, 2006] Kääriäinen, M. (2006). Active learning in the non-realizable case. In International
Conference on Algorithmic Learning Theory, pages 63–77. Springer.

[Kaufmann et al., 2016] Kaufmann, E., Cappé, O., and Garivier, A. (2016). On the complexity of best-arm
identification in multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42.

[Kulkarni et al., 1993] Kulkarni, S. R., Mitter, S. K., and Tsitsiklis, J. N. (1993). Active learning using
arbitrary binary valued queries. Machine Learning, 11(1):23–35.

[Lattimore, 2018] Lattimore, T. (2018). Refining the confidence level for optimistic bandit strategies. The
Journal of Machine Learning Research, 19(1):765–796.

[Lattimore and Szepesvari, 2016] Lattimore, T. and Szepesvari, C. (2016). The end of optimism? an asymp-
totic analysis of finite-armed linear bandits. arXiv preprint arXiv:1610.04491.

[Lattimore and Szepesvari, 2017] Lattimore, T. and Szepesvari, C. (2017). The end of optimism? an asymp-
totic analysis of finite-armed linear bandits. In Artificial Intelligence and Statistics, pages 728–737.

[Lattimore and Szepesvári, 2020] Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. https:

// tor-lattimore. com/ downloads/ book/ book. pdf .

[Lawler, 2006] Lawler, G. F. (2006). Introduction to stochastic processes. CRC Press.

[Mannor and Tsitsiklis, 2004] Mannor, S. and Tsitsiklis, J. N. (2004). The sample complexity of exploration
in the multi-armed bandit problem. Journal of Machine Learning Research, 5(Jun):623–648.

[Maurer and Pontil, 2009] Maurer, A. and Pontil, M. (2009). Empirical bernstein bounds and sample vari-
ance penalization. arXiv preprint arXiv:0907.3740.

https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf

BIBLIOGRAPHY 3

[Nowak, 2011] Nowak, R. D. (2011). The geometry of generalized binary search. IEEE Transactions on
Information Theory, 57(12):7893–7906.

[Pollard, 2002] Pollard, D. (2002). A user’s guide to measure theoretic probability. Number 8. Cambridge
University Press.

[Pukelsheim, 2006] Pukelsheim, F. (2006). Optimal design of experiments. SIAM.

[Raginsky and Rakhlin, 2011] Raginsky, M. and Rakhlin, A. (2011). Lower bounds for passive and active
learning.

[Roch,] Roch, S.

[Soare, 2015] Soare, M. (2015). Sequential resource allocation in linear stochastic bandits. PhD thesis,
Université Lille 1-Sciences et Technologies.

[Soare et al., 2014] Soare, M., Lazaric, A., and Munos, R. (2014). Best-arm identification in linear bandits.
In Advances in Neural Information Processing Systems, pages 828–836.

[Tosh and Dasgupta, 2017] Tosh, C. and Dasgupta, S. (2017). Diameter-based active learning. In Interna-
tional Conference on Machine Learning, pages 3444–3452. PMLR.

[Yu et al., 2006] Yu, K., Bi, J., and Tresp, V. (2006). Active learning via transductive experimental design.
In Proceedings of the 23rd international conference on Machine learning, pages 1081–1088. ACM.

	I Stochastic Bandits
	Multi-armed Bandits
	Introduction
	Regret Minimization
	Best-arm identification
	Warm-up: A/B testing
	Finite-sample confidence intervals
	A/B testing solution

	Elimination Algorithm for Pure exploration
	Elimination Algorithm for Regret minimization
	Lower bounds for Multi-armed Bandits
	Preliminaries
	Lower bounds for estimating the mean of a Gaussian
	Indentification
	Regret, minimax
	Gap-dependent regret
	Revisiting MAB with Optimism

	Linear bandits
	Problem statement
	Review of least squares
	Experimental design and Kiefer-Wolfowitz
	Frank-Wolfe for D/G-optimal design

	Elimination algortihm for Regret Minimization
	Elimination algorithm for Pure exploration
	Regret minimization revisited

	Sequential statistics and Martingales
	Probability theory review
	Basic definitions
	Conditional Expectation
	Filtrations

	Martingales, Optional stopping, Maximal inequalities
	Anytime concentration inequalities
	Linear boundaries
	Curved boundaries with a mixing distribution
	Predictable sequences, Azuma-style inequalities
	Vector-valued martingales
	Application: Online linear regression

	Wald's identity, Hypothesis testing, Likelihood ratios

	Contextual Bandits
	Introduction
	Finite contexts
	Policy Regret

	Policy evaluation
	Logging policy
	Model the bias
	Model the world
	Doubly robust estimators

	Stochastic Linear model
	Stochastic Contextual Bandits for General policy classes
	-greedy
	Reduction to cost-sensitive classification
	Elimination algorithm
	A T computationally efficient algorithm
	Frank-Wolfe

	Other topics in bandits
	Non-parametric bandits
	Bandits in an RKHS, Gaussian Process Bandits, Bayesian Optimization
	Bandit Convex Optimization
	Lipschitz Bandits

	Infinite-armed bandits
	Alternative kinds of feedback
	Dueling bandits
	Slates

	Active Learning for Classification
	Separable, pool-based setting
	Extended teaching dimension and the Halving algorithm
	Generalized binary search
	Open problems

	Separable, streaming setting
	Review of passive learning
	CAL, Disagreement-based learning
	Splitting index
	Lower bounds
	Open problems

	Agnostic, sampling-oracle setting
	Passive learning
	Robust CAL
	Computationally efficient algorithms
	Minimax lower bounds

	Agnostic, pool-based setting
	Reduction to linear bandits
	Regularized empirical risk minimization
	A Version-space Elimination Algorithm
	A Computationally efficient Algorithm
	Instance-dependent Lower bounds

	Heuristics of note
	Uncertainty sampling
	Covering algorithms
	Hypothesis-class agnostic algorithms

	II Adversarial bandits
	Stochastic online mirror descent
	Preliminaries
	Simplex games with unnormalized negative entropy
	Full information game, simplex action set
	Full information game, finite action set
	Bandit feedback, finite action set

	Other action sets
	Bandit feedback, unit ball action set
	Bandit feedback, finite action sets; Linear bandits
	Reduction

	Contextual bandits, EXP4

	III Markov Decision Processes
	Finite Horizon Markov Decision Processes
	Value iteration
	Reinforcement learning
	UCB Value Iteration Algorithm
	An improved regret bound for UCB-VI

	Learning and Games
	The sample complexity of two-player zero-sum matrix games

