
Homework 1
CSE 541: Interactive Learning
Instructor: Kevin Jamieson

Due 11:59 PM on April 15, 2024
Probability
Concentration inequalities are at the heart of most arguments in statistical learning theory and bandits.
Refer to [1] for more details.

1.1 (Markov’s Inequality) Let X be a positive random variable. Prove that P(X > λ) ≤ E[X]
λ .

1.2 (Jensen’s Inequalty) Let X be a random vector in Rd and let ϕ : Rd → R be convex. Then ϕ(E[X]) ≤
E[ϕ(X)]. Show this inequality for the special case when X has discrete support. That is, for pi ≥ 0 and∑n

i=1 pi = 1, and (x1, . . . , xn) ∈ Rn show that ϕ(
∑n

i=1 pixi) ≤
∑n

i=1 piϕ(xi).

1.3 (Sub-additivity of sub-Gaussian) For i = 1, . . . , n assume Xi is an independent random variable with
E[exp(λ(Xi − E[Xi])] ≤ exp(λ2σ2

i /2). If Z =
∑n

i=1 Xi find a ∈ R and b ≥ 0 such that E[exp(λ(Z − a))] ≤
exp(λ2b/2).

1.4 (Maximal inequality) For i = 1, . . . , n let each Xi be an independent, random variable that satisfies

E[exp(λXi)] ≤ exp(σ2
i λ

2/2) for all λ > 0. Show that E[ max
i=1,...,n

Xi] ≤
√

8 max
i=1,...,n

σ2
i log(n). Hint1. If

σ1 ≫ σ2 = · · · = σn how would you expect E[maxi=1,...,n Xi] to behave (intuitive justification is enough)?

The Upper Confidence Bound Algorithm.
Consider the following algorithm for the multi-armed bandit problem.

Algorithm 1: UCB

Input: Time horizon T , 1-subGaussian arm distributions P1, · · · , Pn

with unknown means µ1, · · · , µn such that EX∼Pi
[X] = µi

Initialize: Let Ti(t) denote the number of times arm i has been
pulled up to (inclusive) time t and let Ti = Ti(T ). Pull each arm
once.
for: t = n+ 1, · · · , T

Pull arm It = argmaxi=1,··· ,n µ̂i,Ti(t−1)
+

√
2 log(2nT 2)
Ti(t−1) and observe

draw from Pi

Let µ̂i,Ti(t) be the empirical mean of the first Ti(t) pulls.

In the following exercises, we will compute the regret of the UCB algorithm and show it matches the regret
bound from lecture. Without loss of generality, assume that the best arm is µ1. For any i ∈ [n], define the

sub-optimality gap ∆i = µ1 − µi. Define the regret at time T as RT = E[
∑T

t=1 µ
∗ − µIt ] =

∑n
i=1 ∆iE[Ti].

2.1 Consider the event

E =
⋂
i∈[n]

⋂
s≤T

{
|µ̂i,s − µi| ≤

√
2 log(2nT 2)

s

}
.

Show that P(E) ≥ 1− 1
T .

2.2 On event E , show that Ti ≤ 1 + 8 log(2nT 2)
∆2

i
for i ̸= 1.

2.3 Show that E[Ti] ≤ 8 log(2nT 2)
∆2

i
+2. When n ≤ T , conclude by showing that RT ≤

∑n
i=2

(
24 log(2T )

∆i
+ 2∆i

)
.

1Apply Jensen’s inequality to the identity E[maxi Xi] =
1
λ
log(exp(λE[maxi Xi])) for any λ > 0
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Thompson Sampling.
We consider the following Bayesian setting. Consider n arms and let p0 be an n-dimensional prior distribution
over [−1, 1]n such that θ∗ ∼ p0 is drawn before the start of the game (e.g., p0 is uniform over [−1, 1]n). At
any time t, when we pull arm i ∈ [n] we observe a random variable Xi,t ∈ [−1, 1] where E[Xi,t] = θ∗i .

Algorithm 1: Thompson Sampling

Input: Time horizon T
Assume the prior distribution p0 over Rn is known and that
θ∗ ∼ p0 (so that θ∗ ∈ Rn). Assume each arm shares the
same conditional likelihood function such that an observation
X from arm i follows X ∼ f(·|θ∗i ) (e.g., X ∼ N (θ∗i , 1)). Let
pt(θ|I1, XI1,1, · · · , It, XIt,t) ∝

∏t
s=1 f(XIs,s|θIs)p0(θ) be the posterior

distribution on θ∗ at time t.
for: t = 1, · · · , T

Sample θ(t) ∼ pt−1 (Note: θ(t) ∈ Rn)

Pull arm It = argmaxi≤n θ
(t)
i to observe XIt,t

Compute exact posterior update pt

Denote the σ-algebra generated by the observations at time t by Ft = σ(I1, XI1,1, · · · , It, XIt,t) (if you are
unfamiliar with σ-algebras, don’t worry too much - conditioning on the σ-algebra just means conditioning
on the choices of arms and the rewards observed). For any event A ∈ Ft let Pt(A) denote the probability
under Ft. The Bayesian Regret of an algorithm is

BRT = Eθ∗∼p0

[
T∑

t=1

max
i=1,...,n

θ∗i − θ∗It

]

= Eθ∗∼p0

[
EIt

[
T∑

t=1

max
i=1,...,n

θi − θIt

∣∣∣θ∗ = θ

]]

= Eθ∗∼p0

[
EIt

[
T∑

t=1

EIt [ max
i=1,...,n

θi − θIt
∣∣Ft, θ]

∣∣∣θ]]
Assume that expectations, if not explicitly specified, are with respect to all randomness including θ∗ ∼ p0,
I1, . . . , IT , and observations that contribute to Ft.

3.1 On a given run of the algorithm, let θ̂i,s denote the empirical mean of the first s pulls from arm i, note

that E[θ̂i,s] = θ∗i . Let the good event be

E =
⋂
i∈[n]

⋂
t≤T

{
|θ̂i,t − θ∗i | ≤

√
2 log(2/δ)

t

}
.

Show that P(Ec) ≤ nTδ.

3.2 (Key idea.) Argue that for all i ∈ [n] that P(argmaxj=1,...,n θ
∗
j = i|Ft−1) = P(It = i|Ft−1). Note that the

probability on the right hand side is over the posterior distribution over θ∗ only, whereas the left-hand-side
is also over the randomness of It.

3.3 Define Ut(i) = min{1, θ̂i,Ti(t) +
√

2 log(2/δ)
Ti(t)

}. For any θ ∈ Rd define i∗(θ) = argmaxi θi. Show that

Eθ∗∼p0 [EIt [θ
∗
i∗(θ∗) − θ∗It |Ft−1]] = Eθ∗∼p0 [θ

∗
i∗(θ∗) − Ut(i

∗(θ∗))] + Eθ∗∼p0 [EIt [Ut(It)− θ∗It |Ft−1]]. Conclude that

BRT = Eθ∗∼p0
[
∑T

t=1 θ
∗
i∗(θ∗) − Ut(i

∗(θ∗)) +
∑T

t=1 EIt [Ut(It)− θ∗It |Ft−1]]. Hint2.

2Tower rule of expectation.

2



3.4 Show that BRT ≤ 4δnT 2 + E
[
E
[
1{E}

(∑T
t=1 Ut(It)− θ∗It

) ∣∣∣θ∗]] ≤ O(δnT 2 +
√

Tn log(1/δ)). Hint3

3.5 Make an appropriate choice of δ and state a final regret bound.

In general, giving frequentist bounds on the regret is significantly more difficult. We refer the interested
reader to [2] and the tutorial [3] for more details. This exercise is motivated by [4]

Algorithm 1: Explore-then-Commit

Input: Time horizon T , m ∈ N, 1-sub-Gaussian arm distributions
P1, · · · , Pn with unknown means µ1, · · · , µn

for: t = 1, · · · , T
If t ≤ mn, choose It = (t mod n) + 1
Else, It = argmaxi µ̂i,m

Empirical Experiments
Implement UCB, Thompson Sampling (TS), and Explore-then-Commit (ETC). Let Pi = N (µi, 1) for
i = 1, . . . , n. For Thompson sampling, define the prior for the ith arm as N (0, 1) and the likelihood function
as f(·|µi) = Pi.

4.1 Let n = 10 and µ1 = 0.1 and µi = 0 for i > 1. On a single plot, for an appropriately large T to see
expected effects, plot the regret for the UCB, TS, and ETC for several values of m.

4.2 Let n = 40 and µ1 = 1 and µi = 1 − 1/
√
i− 1 for i > 1. On a single plot, for an appropriately large T

to see expected effects, plot the regret for the UCB, TS, and ETC for several values of m.
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3Apply Jensen’s to
∑n

i=1

√
Ti.
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