Marken Decision Processes (MDP)
Decision Processes (MDP)
Driving a car
acrowned a "iver"
track.
Sort at time hel
Actions can more I with left, right, down with
For H threshop your would be called as much many as parisks
MDP is defined by tuple
$$(S, A, gR_k), gr_k), H, V$$

· S state space, $S = |S|$ is finite.
· A action space, $A = |A|$ is finite.
· A action space, $A = |A|$ is finite.
· Transition true ton $P_k : S \times A \rightarrow A_S$. All time helds?
if E play action a_k is state S_k then
 $P_k(S' | S_k, a_k)$ is the probability that $S_{kl} = S'$
· Reward function $T_k : S \times A \rightarrow [0,1]$ All time helds?
if E play action a_k is state S_k then I
receive reward $rik (S_k, a_k)$. Assumed known.
· Hor izon length $H \in M$

A policy determines active given state and time h.
• Deterministic policy
$$tt = \frac{1}{2} tt_{h} S_{h=1}^{H}$$
, $tt_{h} : S \to A$, $a_{h} = tt_{h} (s_{h})$
• Randomized policy $tt = \frac{1}{2} tt_{h} S_{h=1}^{H}$, $tt_{h} : S \to A_{A}$, $a_{h} \to tt_{h} (s_{h})$
To evaluate a policy we can 'roll it out''
- Draw $s_{1} = v$, $a_{h} \to tt_{h} (s_{h})$ for all $h \in [H]$
Shin $\sim P_{h} (\cdot | s_{h}, a_{h})$
Value of a policy, for any s_{h}
 $V_{h}^{tt}(s) = IE \left[\sum_{t=h}^{H} r_{t} (s_{t}, a_{t}) | tt_{h} : s_{h} = s\right]$

where expectation is taken with random trapsitions and potentially randomized policy.

$$V_{o}^{\pi} = E_{s_{1} \sim v} \left[V_{1}^{\pi}(s_{1}) \right]_{r} \text{ foal } \max_{t \in V_{o}} V_{o}^{\pi}$$
note: $V_{h}^{\pi}(s) \in [0, H]$ for all h since $r_{h}(s_{1}a) \in [0, I]$.

Define state-action value function of
$$T \in Ch$$

 $Q_{h}^{TT}(S, a) = \mathbb{E}\left[\sum_{t=h}^{H} T_{t}(St, a_{t}) | T, S_{h}=S, a_{h}=a\right]$
start a time h in state S, and play
action a, but $t > h$ play $TT_{t}(St) = a_{t}$.
Also note: $Q_{h}^{TT}(S,s) \in (O,H]$.
Theorem] (Bellown Optimoldy Equations) Define
 $Q_{h}^{T}(S,a) = \sup_{TT} Q_{h}^{TT}(S,a)$
where sup over all randomized polizies. For some
function $Q_{h}: S \times A \rightarrow R$, we have that $Q_{h} = Q_{h}^{TT}$
 $f_{h}: all h \in [H]$ if and only if for all h $E[H]$
 $Q_{h}(S,a) = T_{h}(S,a) + \frac{E}{S_{h}} \sum_{q \in T} Q_{h}^{TT}(S,a)$
where $Q_{H}(S,a) = 0$. Furthermore $T_{h}(S) = argmax Q_{h}(S,a)$
is an optimal polizy.
Creat, how do we that such a Q_{h} ?
Value iteration:

• Set
$$Q_H(S,a) = \Gamma_H(S,a)$$

• For $h = H - I, H - 2, ..., I$
 $Q_h(S,a) = \Gamma_h(S,a) + \mathbb{E}_{S' \sim P_h(\cdot | S, a)} \left[\begin{array}{c} \max \\ a' \end{array} Q_{h_{i_1}}(S', a') \right]$

Infinite hosizon MDP, w/ discourts. Fix & E (0,1) the discounted value $V^{\pi}(s) = \mathbb{E}\left[\sum_{i=1}^{\infty} g^{h} r(s_{i}, a_{i}) \mid tt, s_{i} = s\right]$ Optimality equation $Q(s, \alpha) \stackrel{(4)}{=} \Gamma(s, \alpha) + Y E_{s' - P(\cdot)s, \alpha} \left[\max_{\alpha'} Q(s', \alpha') \right]$ Value iteration: - Init Q° (S,a) arbitrarily · Q'(s,a) = r(s,a) + & E [max Qk(s',a')] =: T(Qk) By defn Q# satisfies (#) so $T(Q^*) = Q^*$ Can show $|T(Q^{k}) - Q^{k}| = |T(Q^{k}) - T(Q^{*})|$ < 8 |Qh - Q# |

< yk |Qo -Q4 |