
Chapter 3

Sequential statistics and Martingales

3.1 Preliminaries, Optional stopping, Wald’s identity

Additional material on this section can be found in [Lattimore and Szepesvári, 2020] and [Howard et al., 2018].

Let X1, X2, . . . be a sequence of random variables on (⌦,F ,P) where F = {Ft}
n
t=1 is a filtration of

F . We say the sequence {Xt}
n
t=1 is F-adapted if Xt is Ft measurable for all 1  t  n.

Definition 2. An F-adapted sequence of random variables is an F-adapted martingale if E[Xt+1|Ft] =
Xt for all t and E[|Xt|] < 1. Furthermore, if

• Xt is a super-martingale if E[Xt+1|Ft]  Xt

• Xt is a sub-martingale if E[Xt+1|Ft] � Xt

Definition 3. Let F = {Ft}t2N be a filtration. A random variable ⌧ 2 N is a stopping time with
respect to F with values in N [ {1} if 1{⌧  t} is Ft measurable for all t 2 N.

Example 1. Let Z1, Z2, . . . be an F adapted sequence and define St =
Pt

i=1. A valid stopping
time may be ⌧ = min{t 2 N : St � ✏} because ⌧ is Ft measurable: given St we can determine
whether it is greater than or equal to ✏ or not. An example of a time that is not a stopping time
is ⌧ 0 = max{t 2 N : St � ✏} because given only Ft, the information up to time t, we do not know
whether St0 will exceed ✏ again at some future time t0 > t. Thus, 1{⌧ 0 = t} is not meaurable with
respect to Ft and thus, is not a stopping time.

Lemma 7 (Doob’s optional stopping). Let F = {Ft}t2N be a filtration and {Xt}t be an F-adapted
martingale and ⌧ be an F-stopping time. If either of the following two events holds

• 9N 2 N such that P(⌧  N) = 1, or

• E[⌧ ] < 1 and E[|Xt+1 �Xt| |Ft] < c for all t < ⌧ for some c > 0,

then X⌧ is well-defined and E[X⌧ ] = E[X0]. Furthermore, if

• Xt is a super-martingale then E[X⌧ ]  E[X0]

• Xt is a sub-martingale then E[X⌧ ] � E[X0]

Lemma 8 (Wald’s identity). Let Zt be IID random variables with E[Zt] = µ. If ⌧ is a stopping
time with E[⌧ ] < 1 then E[

P⌧
t=1 Zt] = µE[⌧ ].
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