$X_{\ell} = \text{the sum of the dive at time t}$ $Z_{\ell} = \sum_{s=1}^{\infty} X_{s}$ $P\left(Z_{\ell} > 16 \mid T_{0}\right) \qquad \text{"observed nothing yet"}$ $P\left(Z_{\ell} > 16 \mid T_{1}\right) \qquad \text{"observed trist roll only"}$ $P\left(Z_{\ell} > 16 \mid T_{\ell}\right) = \underline{M}\left\{Z_{\ell} > 16\right\}$ $T_{0} \subset T_{1} \subset T_{2} \subset T_{3} \subset \dots \qquad P(X \in A) = P(\omega: X^{-1}(A) \ni \omega)$

Let X_1, X_2, \ldots be a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ where $\mathbb{F} = \{\mathcal{F}_t\}_{t=1}^n$ is a filtration of \mathcal{F} . We say the sequence $\{X_t\}_{t=1}^n$ is \mathbb{F} -adapted if X_t is \mathcal{F}_t measurable for all $1 \leq t \leq n$.

Definition 2. An \mathbb{F} -adapted sequence of random variables is an \mathbb{F} -adapted martingale if $\mathbb{E}[X_{t+1}|\mathcal{F}_t] = X_t$ for all t and $\mathbb{E}[|X_t|] < \infty$. Furthermore, if $\mathbb{E}_{\mathbf{X}_t} \quad \bigvee_{\mathbf{t}} = \begin{cases} 1 & \dots, p. & \frac{1}{2} \\ -1 & \dots, p. & \frac{1}{2} \end{cases} \quad \bigvee_{\mathbf{t}} = \begin{cases} \frac{1}{2} & \dots, p. & \frac{1}{2} \\ \dots, p. & \frac{1}{2} \end{cases}$

- X_t is a super-martingale if $\mathbb{E}[X_{t+1}|\mathcal{F}_t] \leq X_t$
- X_t is a sub-martingale if $\mathbb{E}[X_{t+1}|\mathcal{F}_t] \ge X_t$ $\mathbb{E}[X_{\epsilon+1}|\mathcal{F}_t] = \mathbb{E}[\sum_{i=1}^{t} Y_i |\mathcal{F}_t] = \sum_{i=1}^{t} Y_i + \mathbb{E}[Y_{\epsilon+1}|\mathcal{F}_t]$

Definition 3. Let $\mathbb{F} = \{\mathcal{F}_t\}_{t \in \mathbb{N}}$ be a filtration. A random variable $\tau \in \mathbb{N}$ is a stopping time with respect to \mathbb{F} with values in $\mathbb{N} \cup \{\infty\}$ if $\mathbf{1}\{\tau \leq t\}$ is \mathcal{F}_t measurable for all $t \in \mathbb{N}$.

Example 1. Let Z_1, Z_2, \ldots be an \mathbb{F} adapted sequence and define $S_t = \sum_{i=1}^t \mathbb{E}_t \cdot A$ valid stopping time may be $\tau = \min\{t \in \mathbb{N} : S_t \ge \epsilon\}$ because τ is \mathcal{F}_t measurable: given S_t we can determine whether it is greater than or equal to ϵ or not. An example of a time that is not a stopping time is $\tau' = \max\{t \in \mathbb{N} : S_t \ge \epsilon\}$ because given only \mathcal{F}_t , the information up to time t, we do not know whether $S_{t'}$ will exceed ϵ again at some future time t' > t. Thus, $\mathbf{1}\{\tau' = t\}$ is not meaurable with respect to \mathcal{F}_t and thus, is not a stopping time.

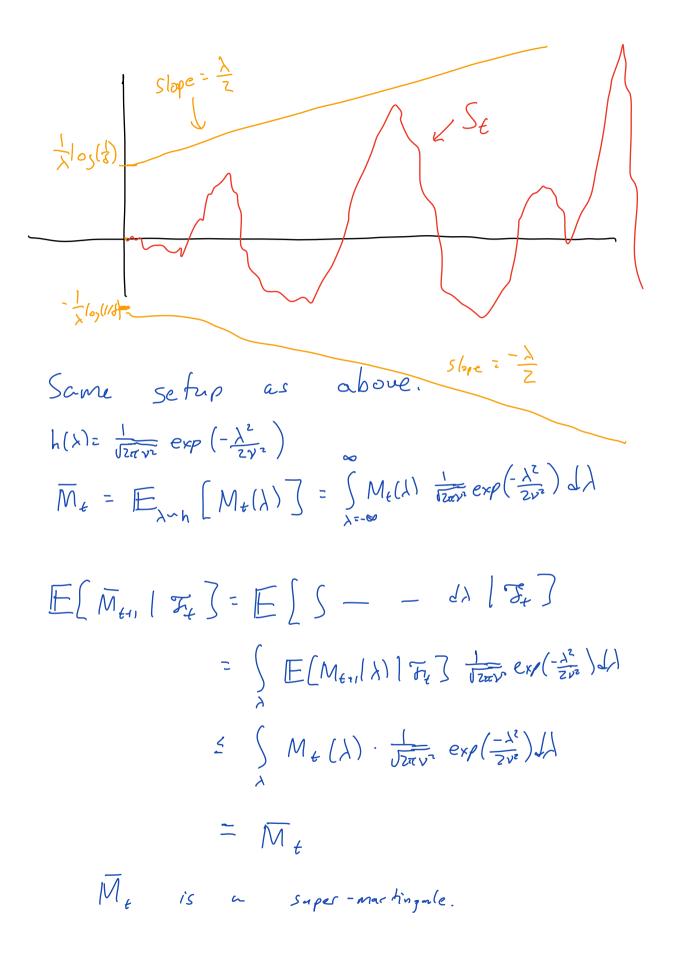
Lemma 7 (Doob's optional stopping). Let $\mathbb{F} = \{\mathcal{F}_t\}_{t \in \mathbb{N}}$ be a filtration and $\{X_t\}_t$ be an \mathbb{F} -adapted martingale and τ be an \mathbb{F} -stopping time. If either of the following two events holds

- $\exists N \in \mathbb{N}$ such that $\mathbb{P}(\tau \leq N) = 1$, or
- $\mathbb{E}[\tau] < \infty$ and $\mathbb{E}[|X_{t+1} X_t| | \mathcal{F}_t] < c$ for all $t < \tau$ for some c > 0,

then X_{τ} is well-defined and $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$. Furthermore, if

- X_t is a super-martingale then $\mathbb{E}[X_\tau] \leq \mathbb{E}[X_0]$
- X_t is a sub-martingale then $\mathbb{E}[X_\tau] \ge \mathbb{E}[X_0]$

Lemma 9 (Maximal inequality). Let $\{X_t\}_t$ be an \mathbb{F} -adapted sequence of random variables with $X_t \geq 0$ almost surely. Then for any $\epsilon > 0$, if ~= min {t: X1 ≥ ε} $P(X_3 \geq \varepsilon) \leq \frac{E[X_3]}{\varepsilon} \leq \frac{E[X_6]}{\varepsilon}$ • X_t is a super-martingale then $\mathbb{P}(\max_{t \in \mathbb{N}} X_t \ge \epsilon) \le \mathbb{E}[X_0]/\epsilon$ • X_t is a sub-martingale then $\mathbb{P}(\max_{t \in \{1,\dots,n\}} X_t \ge \epsilon) \le \mathbb{E}[X_n]/\epsilon$ Merkov Doub Optional stopping Fix 2 20 Let Z1, Z2, ... be id Bernoulli R.U.s in [-1,1] ul E[Z2]=0 $M_{t}(\lambda) := \exp(\lambda S_{t} - \lambda^{2} t/2) \qquad S_{t} = \sum_{s=1}^{t} Z_{s}$ $\mathbb{F}\left[M_{44}(\lambda) \mid \mathcal{F}_{4}\right] = \mathbb{E}\left[\exp(\lambda S_{44} \cdot \lambda^{2} (\ell+1)/2) \mid \mathcal{F}_{4}\right]$ = $\mathbb{E}\left[\exp(\lambda S_{4} - \lambda^{2} t/2) \exp(\lambda Z_{44} - \lambda^{2}/2) | \mathcal{F}_{4}\right]$ = $\exp(\lambda S_{t} - \lambda^{2} t/z) \mathbb{E}\left[\exp(\lambda Z_{t+1} - \lambda^{2}/z) / \mathcal{F}_{t}\right]$ $\leq \exp(\lambda S_{1} - \lambda^{2} + I_{2}) = M_{2}(\Lambda)$ E[exp(λZ_{4+1})] $\leq exp(\lambda^2/2)$ by Hoeffday $P(\exists t \in N: S_t \geq t \lambda / 2 + \log(1/s) / \lambda)$ = $P(\exists t \in \mathbb{N} : \lambda S_t - t \lambda^2/2 \ge \log U(J))$ = $IP(7EEIN: exp(\lambda S_{\ell} - E\lambda^{2}/2)^{2} + \frac{1}{5})$ $= \prod \left(\frac{1}{3} + \epsilon M + M_{\perp}(\lambda) \geq \frac{1}{5} \right)$ $\leq \frac{1}{1/c} = S$ $M_o(\lambda) = e_{xp}(\lambda \overline{2}, \overline{2}, -\sigma)$



$$=) P(3t: M_{t} > 1/6) \leq \delta.$$

$$\overline{M}_{t} = \int_{\lambda} M_{t}(\lambda) \int_{\overline{M}} v_{x} exp(-\frac{\lambda^{2}}{2v^{2}}) d\lambda$$

$$= \int_{\lambda} exp(\lambda S_{t} - t\lambda^{2}/2) \cdot \frac{1}{\sqrt{2ay^{2}}} exp(-\frac{\lambda^{2}}{2v^{2}}) d\lambda$$

$$\vdots reath$$

$$= \sqrt{\frac{y^{-2}}{t + y^{-2}}} exp(S_{t}^{2}(t + y^{-2})^{-1}/2)$$

$$P(3t: |S_{t}| \geq \sqrt{2(t + v^{2})}(\log(1/t) + \frac{1}{2}\log(\frac{t + v^{-2}}{y^{-1}})))$$

$$= P(3t: \overline{M}_{t} \geq 1/5) \leq \delta.$$
Ex. At each time t Z people show up
and you give first person control of receive X_{ty},
w/ $\overline{E}[X_{ty}] = M_{t}$, and second person treatment
and review X_{ty2} w/ E[X_{ty2} = M_{t}. Assuming $\Delta > 0$ when
an I declar so? $(X_{ty2} \in S_{0}, B)$

$$Z_{\ell} = X_{6,2} - X_{\ell,1} \qquad E[Z_{\ell}] = \Lambda$$

$$E[\sum_{i=1}^{n} Z_{\ell}] = n\Lambda \qquad Z_{\ell} \in \{-1, 0, 1\}$$

$$S_{n} = \sum_{i=1}^{n} (Z_{\ell} - \Lambda) = -n\Lambda + \sum_{\ell=1}^{n} Z_{\ell}$$

$$T_{est} : Declare \quad control \quad arm \quad Z \quad es \quad good^{n}$$
when
$$T_{est}$$

$$\sum_{\ell=1}^{n} Z_{\ell} \geq \sqrt{2(n+v^{2})(\log(1/\ell) + \frac{1}{2}\log(\frac{n+v^{2}}{v^{2}}))}$$

$$If \quad \Lambda = 0 \quad then \quad this \quad never \quad occures \quad w.p. \geq 1-d.$$
When $does \quad if \quad hoppen?$

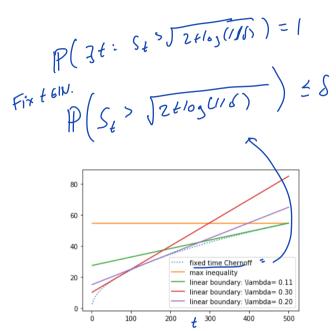
$$\sum_{\ell=1}^{n} Z_{\ell} = n\Lambda + S_{n}$$

$$\geq n\Lambda - \sqrt{2(n+v^{2})(\log(1/\ell) + \frac{1}{2}\log(\frac{n+v^{2}}{v^{2}}))}$$

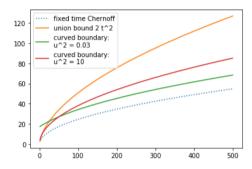
$$If \quad hoppens \quad Lefore \qquad \Lambda$$

is Signer than The value of n when this happens $\lesssim \left(\frac{A^{2} + \bar{V}^{2}}{V^{-2}} \right) \log \left(\left(\frac{A^{2} + \bar{V}^{2}}{V^{-2}} \right) / d \right)$ (about) Suppose $\Delta > 0 \sqrt{2(n+v^{-2})\left(\log(1/f) + \frac{1}{2}\log\left(\frac{n+v^{-2}}{v^{-2}}\right)\right)}$

20

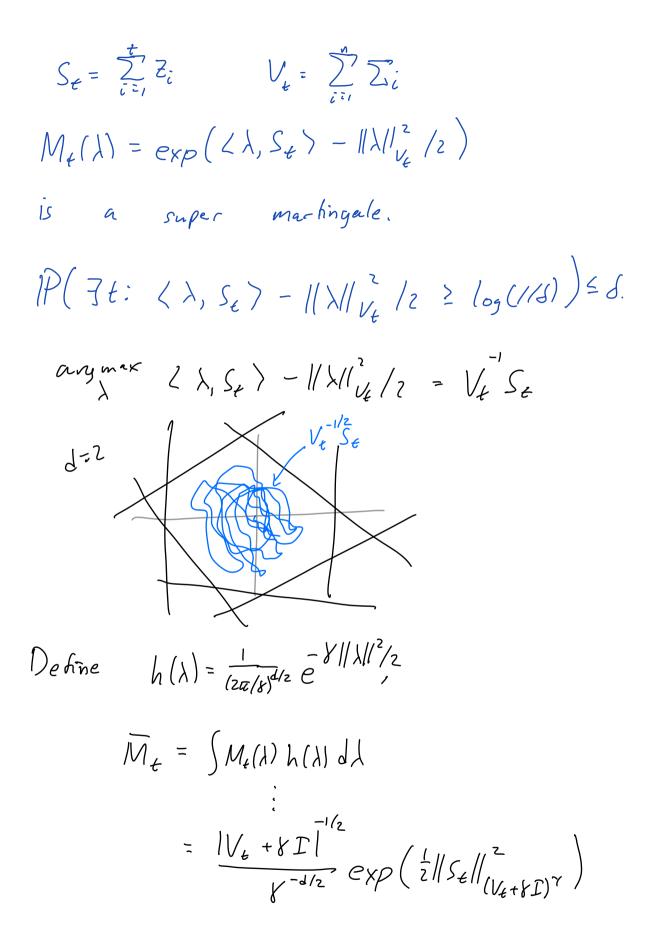


(a) Fix $\delta = 0.05$. The 'fixed time Chernoff' represents $\sqrt{2t \log(1/\delta)}$ which holds at each t but not all $t \leq 500$ simultaneously (which is why it is dotted). The 'max inequality' holds for all $t \leq 500$, and the linear boundaries hold for all $t \in \mathbb{N}$ simultaneously.



(b) Fix $\delta = 0.05$. The 'fixed time Chernoff' represents $\sqrt{2t \log(1/\delta)}$ which holds at each t but not all $t \in \mathbb{N}$ simultaneously (which is why it is dotted). All other curves do hold for all $t \in \mathbb{N}$ simultaneously. "union bound $2t^{2n}$ plots $\sqrt{2\log(2t^2/\delta)}$.

(i.e.
$$z_{k}$$
 is $T_{k-noner}$)
Let $\overline{z}_{1}, \overline{z}_{2}, \dots$ be an \overline{T}_{k} adopted regence.
We say \overline{z}_{k} is predictible if \overline{z}_{k} manufile.
Assume $\mathbb{E}\left[\exp(\lambda \overline{z}_{k}) \mid \overline{\sigma}_{k-1}\right] \leq \exp(\lambda \overline{d}_{k}^{2}/2)$
 $S_{\overline{e}} = \frac{1}{2} \overline{z}_{s}$ $V_{\underline{e}} = \frac{1}{2} \overline{\sigma}_{k}^{2}$
 $M_{\underline{e}}(\lambda) = \exp(\lambda \overline{z}_{\underline{e}} - \lambda^{2} V_{\underline{e}}/2)$
One can show $M_{\underline{e}}(\lambda)$ is a *machingale*
 $\mathbb{P}\left(\overline{z}_{\underline{e}}: S_{\underline{e}} \geq \lambda V_{\underline{e}}/2 + \log(H_{\underline{e}})/\lambda\right)$
 $= \mathbb{P}\left(\overline{z}_{\underline{e}}: M_{\underline{e}}(\lambda) > H_{\underline{e}}\right) \leq \delta$
Also define $\overline{M}_{\underline{e}}$ as above to get
 $\mathbb{P}\left(\overline{z}_{\underline{e}}: 1S_{\underline{e}}\right) \geq \sqrt{(V_{\underline{e}}+1)\log(\frac{V_{\underline{e}}(\underline{e})}{\delta})} \leq \delta$ (the $V=1$)
 $Veclor - valued martingales.$
 $\overline{z}, \overline{z}_{z}, \dots \in\mathbb{R}^{d}$ is $\overline{z}_{\underline{e}}$ adopted $w(\mathbb{E}[\overline{z}_{\underline{e}}|\overline{z}_{\underline{e}}]\overline{z}_{\underline{e}})$
 $u \in \overline{z} \in \mathbb{R}^{d \times d}$ be predictable sequence
 $s.(\overline{z}) = ang \lambda \in\mathbb{R}^{d}$
 $\mathbb{E}\left[\exp(\langle\lambda, \overline{z}_{\underline{e}}\rangle)|\overline{z}_{\underline{e}}|\right] \leq exp(||\lambda|||_{\overline{z}_{\underline{e}}}^{2}/2)$



$$\frac{\left|\left|\left(\frac{1}{V_{\ell}+YI}\right)^{-1}\right|^{2}}{\left(\frac{1}{V_{\ell}+YI}\right)^{-1}}\right|^{2}}\sqrt{2\log\left(\frac{1}{V_{\ell}}\right)^{2}}\left(\frac{1}{V_{\ell}+YI}\right)^{2}\right)^{2}}$$

$$=\frac{\left|\left(\frac{1}{V_{\ell}+YI}\right)^{1/2}}{\left(\frac{1}{V_{\ell}+YI}\right)^{1/2}}\left(\frac{1}{V_{\ell}}\right)^{2}\right|^{2}}$$

Application: Online linear regression het X1, X2, ER be predictable sequence (Xt is Fry measurable) and let Yt ER be Ft adapted (yt is Ft meas.) And assume ye= (xe, 0+ > + 3e where Zt is Frenens and $\mathbb{E}\left[\exp(s_{t}^{2}) \mid \mathcal{F}_{t-1}\right] \leq \exp(s^{2}/2).$ In prev example, let

 $Z_t = \chi_t Z_t$ $S_t = \sum_{i=1}^t \chi_i Z_i$

 $E(e_{xp}(\lambda, z_{t})) = \langle \langle x, z_{t} \rangle \rangle$ = $E\left(exp((\lambda, \chi_{\epsilon}, \chi_{\epsilon}))\right)$ $= \mathbb{E}\left(\exp\left(\langle\lambda,\chi_{t}\rangle,\chi_{t}\rangle,\chi_{t}\rangle\right) | \mathcal{J}_{t-1}|$ $\leq \exp(\langle \lambda, x_t \rangle^2 / 2)$ = $e_{XP}(\lambda^T \chi_e \chi_e^T)/2)$ $= e_{XP}(\left\|\lambda\right\|_{\Sigma_{+}}^{2}/2)$ $\sum_{t=1}^{T} = \chi_{t}\chi_{t}^{T}$ $V_{t} = \sum \chi_{i} \chi_{i}^{T}$ Consider estimator (Ridge regrassion) $\hat{\theta}_{t} = \underset{Q}{\operatorname{crymin}} \sum_{i=1}^{t} (y_{i} - (Q, \chi_{i}))^{2} + \gamma \|Q\|_{2}^{2}$ $= \left(\sum_{i=1}^{t} x_i \chi_i^T + V I \right)^{-1} \sum_{i=1}^{t} \chi_i y_i^{-1}$ $= \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i} Z_{i} + \left(\sum_{i=1}^{t} \chi_{i}\chi_{i}^{T} + \gamma I\right) \sum_{i=1}^{t} \chi_{i} Z_{i} Z_{i$

$$= (V_{t} + KT)'S_{t} + (V_{e} + KT)'V_{e} \partial_{x}$$

$$= (V_{e} + KT)'S_{t} + (U_{e} + KT)'(V_{e} + KT)\partial_{x} + (V_{e} + KT)'(-YD)Q_{t}$$

$$= (V_{t} + KT)'S_{t} + \partial_{x} - K(V_{e} + KT)'\partial_{x}$$

$$||\hat{\partial}_{t} - \partial_{x}||_{(V_{t} + KT)'} = ||S_{t} - K\partial_{x}||_{(V_{e} + KT)'}$$

$$\leq ||S_{t}||_{(V_{e} + KT)'} + K||\partial_{x}||_{(V_{e} + KT)'}$$

$$\leq ||S_{t}||_{(V_{e} + KT)'} + K||\partial_{x}||_{(V_{e} + KT)'}$$

$$= ||S_{t}||_{(V_{e} + KT)'} + K||\partial_{x}||_{(V_{e} + KT)'}$$

$$= ||S_{t}||_{(V_{e} + KT)'} + K||\partial_{x}||_{(V_{e} + KT)'}$$

 $\leq ||S_{\ell}||_{(V_{\ell}+YI)^{-1}} + \sqrt{8} ||O_{\star}||_{2}$

 $IP(3t: 11\hat{\theta}_{t} - \theta_{A})|_{(V_{e}+SI)^{T}} \stackrel{2}{=} \sqrt{S} ||\theta_{A}|| + \sqrt{2l_{eq}(16)} + l_{eq}(\frac{|V_{e}+SI|}{S^{4}})$ =: |3_t

Charnest: If Z_t were indep and we define $d = \widetilde{\Theta}_t = V_t^{-1} S_t$ Fix any $Z \in IR^d$. $IP\left(\langle Z, \widetilde{\Theta} - \Theta_t \rangle \ge ||Z||_{V_t^{-1}} \cdot \sqrt{2\log(I/d)}\right) \le \delta$. Now fix $Z \in IR^d$ $P\left(\bigcup_{z \in Z} \langle \overline{Z}, \widetilde{\Theta} - \Theta_t \rangle \ge ||Z||_{V_t^{-1}} \cdot \sqrt{2\log(I/d)}\right) \le \delta$

Above we showed a bound on
$$\|\hat{\theta}_t - \theta_t\|_{L^{t+\delta I}}$$

For any Z
 $\langle Z, \hat{\theta}_t - \theta_t \rangle \leq \|Z\|_{(V_t + KI)^{-1}} = \|\hat{\theta}_t - \theta_t\|_{(V_t + KI)}$

 $\leq \| 2 \|_{(V_{\ell} + \gamma I)^{-1}} - \sqrt{2 \log(1/\delta)} + d \log(\frac{t}{\delta})$

Lemma Wald's identity. Let
$$Z_1, Z_2, \dots$$
 be IDD
 $R.U.s$ WI $E[Z_i] = \mu$. If J is a
stopping time $W/$ $E[J] < \infty$
then $E[\sum_{i=1}^{T} Z_i] = \mu E[S].$

Hypothesis testing.

$$Y_1 X_2, \dots, R.U.s$$
 IID
 $H_0: X_t \sim P_0$
 $H_1: X_t \sim P_1$
Define $L_t = \prod_{i=1}^t \frac{P_i(X_i)}{P_0(X_i)}$
 $\int = \min\{t: L_t > 1/s\}$

 $log(\frac{1}{5}) \simeq lE[log(L_3)] = E[\sum_{i=1}^{7} \frac{1}{2}log(\frac{P_i(x_i)}{P_o(x_i)})] = E[3]E[log(\frac{P_i(x_i)}{P_o(x_i)})]$ $= E[3]KL(P_i|P_o)$

 $\mathbb{E}, [3] \approx \frac{\log(1/d)}{\operatorname{KL}(P, |P_{\circ})}.$