Homework 3 CSE 541: Interactive Learning Instructor: Kevin Jamieson

Due 11:59 PM on March 13, 2021 (late homework not accepted)

Contextual Bandits

1. Problem 18.8 of [SzepesvariLattimore].

2. In this exercise we will implement several contextual bandit algorithms. We will "fake" a contextual bandit problem with multi-class classification dataset where each example is context, and the learner chooses an "action" among the available class labels, and receives a reward of 1 if the guess was correct, and 0 otherwise. However, keeping with bandit feedback, we assume the learner only knows the reward of the action played, not all actions.

We will use the MNIST dataset¹. The MNIST dataset contains 28x28 images of handwritten digits from 0-9. Download this dataset and use the python-mnist library² to load it into Python. Rather than using the full images, you may run PCA on the data to come up with a lower dimensional representation of each image. You will have to experiment with what dimension, d, to use. Scale all images so that they are norm 1.

Let the *d* dimensional representation of the *t*th image in the dataset, c_t , be our "context." Our action set $\mathcal{A} = \{0, 1, \ldots, 9\}$ has 10 actions associated with each label. For each $i \in \mathcal{A} = \{0, 1, \ldots, 9\}$ define the feature map $\phi(c, i) = \operatorname{vec}(c\mathbf{e}_i^{\top}) \in \mathbb{R}^{10d}$. If v(c, a) is the expected reward of playing action $a \in \mathcal{A}$ in response to context *c*, then let us "model the world" with the simple linear model so that $v(c, a) \approx \langle \theta_*, \phi(c, a) \rangle$ for some unknown $\theta_* \in \mathbb{R}^{10d}$. Of course, when actually playing the game we will observe image features c_t as the context, choose an "action" $a_t \in \{0, \ldots, 9\}$, and receive reward $r_t = \mathbf{1}\{a_t = y_t\}$ where y_t is the true label of the image c_t and a_t is the action played.

Implement the Explore-Then-Commit algorithms, Follow-The-Leader, LinUCB, and Thompson Sampling algorithms for this problem. You can use just the training set of T = 50000 examples. The training set is class balanced meaning that there are 5000 examples of each digit. Important: randomly shuffle the dataset so the probability of any particular class showing up at any given time is 1/10. The algorithms work as follows:

- Explore-Then-Commit ("Model the world"): Fix $\tau \in [T]$. For the first τ steps, select each action $a \in \mathcal{A}$ uniformly at random. Compute $\hat{\theta} = \arg \min_{\theta} \sum_{t=1}^{\tau} (r_t \langle \phi(c_t, a_t), \theta \rangle)^2$. For $t > \tau$ play $a_t = \arg \max_{a \in \mathcal{A}} \langle \phi(c_t, a), \hat{\theta} \rangle$. Choose a value of τ and justify it.
- Explore-Then-Commit ("Model the bias"): Fix $\tau \in [T]$. For the first τ steps, select each action $a \in \mathcal{A}$ uniformly at random. Our goal is to identify a policy $\hat{\pi} : \mathcal{C} \to \mathcal{A}$ using the dataset $\{(c_t, a_t, p_t, r_t)\}_{t \leq \tau}$ such that

$$\widehat{\pi} = \arg \max_{\pi \in \Pi} \sum_{t=1}^{\tau} \frac{r_t \mathbf{1}\{\pi(c_t) = a_t\}}{p_t}$$
$$= \arg \min_{\pi \in \Pi} \sum_{t=1}^{\tau} \frac{r_t \mathbf{1}\{\pi(c_t) \neq a_t\}}{p_t}$$
$$= \arg \min_{\pi \in \Pi} \sum_{t \in [\tau]: r_t = 1} \mathbf{1}\{\pi(c_t) \neq a_t\}$$

where the last line uses the fact that $p_t = 1/10$ due to uniform exploration and the definition of r_t . Note that this is just a multi-class classification problem on dataset $\{(c_t, a_t)\}_{t \in [\tau]: r_t = 1}$ where one is trying to identify a classifier $\hat{\pi} : \mathcal{C} \to \mathcal{A}$ that predicts label a_t from features c_t . Train a 10-class linear logistic classifier³ $\hat{\pi}$ on the data up to time $[\tau]$ and then for $t > \tau$ play $a_t = \arg \max_{a \in \{0, \dots, 9\}} \hat{\pi}(c_t)$. Choose the same value of τ as "Model the world".

¹http://yann.lecun.com/exdb/mnist/

²https://pypi.org/project/python-mnist/

³Please feel free to use an off-the-shelf method to train logistic regression such as https://scikit-learn.org/stable/auto_ examples/linear_model/plot_iris_logistic.html#sphx-glr-auto-examples-linear-model-plot-iris-logistic-py

- Follow-The-Leader: Fix $\tau \in [T]$. For the first τ steps, select each action $a \in \mathcal{A}$ uniformly at random. For $t > \tau$ play $a_t = \arg \max_{a \in \mathcal{A}} \langle \phi(c_t, a), \hat{\theta}_{t-1} \rangle$ where $\hat{\theta}_t = \arg \min_{\theta} \sum_{s=1}^t (r_s - \langle \phi(c_s, a_s), \theta \rangle)^2$. Choose a value of τ and justify it.
- LinUCB Using Ridge regression with an appropriate $\gamma > 0$ ($\gamma = 1$ may be okay) construct the confidence set C_t derived in class (and in the book). At each time $t \in [T]$ play $a_t = \arg \max_{a \in \mathcal{A}} \max_{\theta \in C_t} \langle \theta, \phi(c_t, a) \rangle$.
- Thompson Sampling Fix $\gamma > 0$ ($\gamma = 1$ may be okay). At time $t \in [T]$ draw $\tilde{\theta}_t \sim \mathcal{N}(\hat{\theta}_{t-1}, V_{t-1}^{-1})$ and play $a_t = \arg \max_{a \in \mathcal{A}} \langle \tilde{\theta}_t, \phi(c_t, a) \rangle$ where $\hat{\theta}_t = \arg \min_{\theta} \sum_{s=1}^t (r_s - \langle \theta, \phi(c_s, a_s) \rangle)^2$ and $V_t = \gamma I + \sum_{s=1}^t \phi(c_s, a_s) \phi(c_s, a_s)^\top$.

Implement each of these algorithms and show a plot of the regret (all algorithms on one plot) when run on MNIST for good choices of τ, γ . Hint, for computing V_t^{-1} efficiently see https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula.