CSE 534 Autumn 2025: Set 4

Instructor: Chinmay Nirkhe
Due date: November 20th, 2025 11:59pm

Instructions: Solutions should be legibly handwritten or typset. Mathematically rigorous solutions are

expected for all problems unless explicitly stated.

You are encouraged to collaborate on problems in small teams; however, each team member must write
and submit their own individual solution. Read the Al tools policy on the course webpage. Furthermore,

solutions for the problems may be found online or in textbooks — but do not use them.

For grading purposes, start each problem on a new page.

Problem 1 (Runtime of Shor’s factoring algorithm). (6 points) To the best of your ability, give an expected
runtime of Shor’s algorithm discussed in class in terms of log(N). It would be good, but not necessary for

credit, to separate out the runtime in terms of quantum and classical subroutines.

This problem is meant to be be graded liberally, so state whatever assumptions you are making about

parallelism, gate set, etc. as these may drastically change the runtime of the algorithm.

Problem 2 (Breaking Diffie-Helman). Shor’s factoring algorithm solves factoring which is the basis of
security for the RSA cryptosystem. The Diffie-Helman key-exchange is a cryptographic primitive with
which two parties Alice and Bob agree on a key K over a public channel. Once they have a shared key that

no evesdropper Eve knows, they can encode and send each other messages with information-theoretic security.

Diffie-Helman protocol:

1. Alice and Bob publicly announce a prime p and a generator g € Z;.
2. Privately, Alice picks a random element a € Z}, and computes A = g“. She announces A publicly.
3. Privately, Bob picks a random element b € Z7 and computes B = g°. He announces B publicly.

4. Privately, Alice computes K4, = B? and privately, Bob computes Kz = A”.




All computations are done within the group Z7. If the protocol is executed honestly by Alice and Bob,
then K4 = Kp since (%) = (g?)% An evesdropper Eve listening to the public communication would hear
p, g, A, and B.

1. (2 points) Show that if Eve can compute x such that h = g* for any g, h € Z7, then Eve can calculate
the key K of the Diffie-Helman protocol from p, g, A and B. Calculating x given h, g € ZJ is the

discrete log(arithm) problem.

2. (8 points) Give a reduction from the discrete log problem to the order finding or abelian hidden sub-

group problems and argue that a quantum computer can efficiently break the Diffie-Helman protocol.
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Problem 3 (BQP is low). In complexity theory, a complexity class C is called low if C¢ = C. We will show
that BQP is low meaning BQPE?F = BQP — or equivalently, a BQP computation using BQP computations as
subroutines — even in superposition - can be rewritten as a single BQP computation. We will break this down

into steps.

1. (4 points) First show that if a measurement is nearly deterministic, then it is not too perturbative. IL.e.
Consider a generic POVM on register A of a state psp with the probability of outcome 0 is 1 — €. Let
p’ be the post-measurement state. What is |p — p’[;?

2. (4 points) Show that the class BQP has error-amplification; meaning the 2 /3 vs 1/3 definition can be re-
placed with 1—27%" and 27" a5 the bounds with only a polynomial increase in the size of the circuit.

3. (8 points) Consider a generic BQP quantum circuit imbibed with poly(n) many “oracle” gates to other
BQP problems. Recall an oracle gate for acomputation f is one that computes |x) — (—1)f®) |x). In the
case of an oracle gate to a BQP problem (Lyes, L10), Wwe mean a family of functions f, : {0, 1}" — {0,1}
such that f,(x) = 1if x € Lye, fu(x) = 0if x € Lo, and f,(x) can take on either value of x ¢ LyeULo.

Using parts 1 and 2, that we can replace each oracle gate with a quantum circuit such that the output

success probability only changed negligibly with this replacement.

4. (Optional) Write a conclusion proving that BQP is low.

Problem 4 (Magic States and the Cost of Non-Clifford Gates). Universal quantum computation requires

supplementing the Clifford group with a non-Clifford resource such as the 7' gate or its associated magic



state. In this problem, you will analyze both the operational use of the magic state and its implications for

computational complexity.

Important: The implementation of the T gate from a magic state is described in the Nielsen—Chuang

textbook (Sec. 10.6). Please do not read that section until after you have completed part (a) of this problem.

1. (2 points) Implementing a T gate using the magic state.

Let
IT) = 5(10) + ¢™41)), T = diag(1, ¢™/*).

Show that if one can prepare copies of |T) and perform only Clifford gates and measurements in the
computational basis, then a single-qubit T gate can be realized using a single copy of |T) together
with one measurement and a classically-controlled Clifford correction determined by the measurement
outcome. Construct an explicit circuit implementing this procedure, and verify that the data qubit

undergoes T up to a known Pauli correction.
2. (4 points) Bounding the runtime via stabilizer decompositions.
Suppose a quantum circuit C acts on n qubits, consists of Clifford operations, and contains ¢ applications

of the T gate. Assume that the joint magic-state resource can be written as

J
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where each [¢;) is a stabilizer state and the c; are complex coefficients. Prove that the total runtime of

simulating C (or equivalently, executing it on a stabilizer-based architecture) is upper-bounded by

O(] - poly(n, t))

That is, argue that each stabilizer component contributes one stabilizer-circuit evaluation, and the

amplitudes combine linearly with the coefficients c;.

3. (2 points) When does magic-state decomposition make quantum computing easy?

Let the stabilizer rank y(t) denote the minimal J for which the above decomposition exists. Determine
what asymptotic scaling of y(¢) with respect to ¢t would imply that every BQP computation could be
efficiently simulated classically (that is, P = BQP). Briefly justify your answer.



