
CSE 534 Autumn 2025: Set 2

Instructor: Chinmay Nirkhe
Due date: October 16th, 2025 11:59pm

Instructions: Solutions should be legibly handwritten or typset. Mathematically rigorous solutions are
expected for all problems unless explicitly stated.

You are encouraged to collaborate on problems in small teams; however, each team member must write
and submit their own individual solution. Read the AI tools policy on the course webpage. Furthermore,
solutions for the problems may be found online or in textbooks – but do not use them.

For grading purposes, start each problem on a new page.

Problem 1 (Indistinguishable states). When can we distinguish quantum states? This problem is not
graded. Do not submit a solution, but do solve the problem.

1. Let |𝜓⟩ and |𝜓′⟩ be orthogonal single qubit states. Show that

1√
2
|00⟩ + |11⟩ =

1√
2
|𝜓, 𝜓⋆⟩ + |𝜓′, 𝜓′⋆⟩ .

2. Let |𝜙⟩ ∈ (ℂ2)⊗𝑛. Show that the states |𝜙⟩ and 𝑐 |𝜙⟩ for 𝑐 ∈ ℂ cannot be distinguished by any
combination of our ‘axioms of quantum computation’.

Hint:Considerthecorrespondingdensitymatrices.

3. Show that the following two distributions yield the same density matrix.

(a) Flip a fair coin and set the state to be |0⟩ or |1⟩ depending on the outcome.

(b) Flip a fair coin and set the state to be |+⟩ or |−⟩ depending on the outcome.

Only write solutions for one out of the next three problems. But solve all of them!

Problem 2 (Expectation of an operator). In practice, we care about the outcome of a quantum system
averaged over many trials. Consider a qubit |𝜓⟩ ∈ ℂ2 and associate the measurement |0⟩ with +1 and a
measurement of |1⟩ with −1.
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1. (2 points) Show the expectation of this experiment is ⟨𝜓|𝑍|𝜓⟩ where

𝑍 =
(
1 0
0 −1)

= |0⟩⟨0| − |1⟩⟨1| .

2. (2 points) This gives rise to the notation, ⟨𝑍⟩𝜓 = ⟨𝜓|𝑍|𝜓⟩ (or ⟨𝑍⟩ when the state 𝜓 is clear from
context). Give an experiment with expectation ⟨𝑋⟩ where

𝑋 =
(
0 1
1 0)

.

3. (1 point) What is the appropriate definition of ⟨𝑍⟩𝜌 for a density matrix 𝜌? (No explanation required).

Problem 3 (Partial trace).

1. (1 point) Consider a quantum state 𝜌𝐴𝐵𝐶 ∈ 𝐴 ⊗𝐵 ⊗𝐶 . Prove that

tr𝐵(tr𝐶(𝜌𝐴𝐵𝐶)) = tr𝐶(tr𝐵(𝜌𝐴𝐵𝐶)) = tr𝐵𝐶(𝜌𝐴𝐵𝐶).

2. (2 points) Prove that for density matrix 𝜎𝐴𝐵 ∈ 𝐴 ⊗𝐵 that 𝜎𝐴
def= tr𝐵(𝜎𝐴𝐵) is a density matrix (i.e.

that it is a positive Hermitian matrix of trace 1).

3. (2 points) Assume 𝐴 = (ℂ2)⊗𝑛. Prove that any single-qubit standard basis measurement of 𝜎𝐴 has
the same distribution as that obtained by measuring the same qubit of 𝜎𝐴𝐵.

Problem 4 (Density matrices of the 𝑊 state). The 𝑊𝑛 state is an entangled state of 𝑛 qubits defined as:

|𝑊𝑛⟩ =
1
√
𝑛

𝑛
∑
𝑗=1

|0⟩ … |0⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑗−1 times

|1⟩ |0⟩… |0⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−𝑗 times

=
1
√
𝑛

𝑛
∑
𝑗=1
𝑋𝑗 |0𝑛⟩ .

Here 𝑋𝑗 is the 𝑋 bit-flip operator applied to the 𝑗-th qubit.

1. (2.5 points) What is the reduced density matrix of the 𝑊 state on 1 qubit?

2. (2.5 points) Consider the 𝑊 state for 𝑛 = 3. What is the reduced density matrix on any two of the
qubits out of three?

Problem 5 (Simultaneous change of basis). In this problem, we are going to prove the following statement
which is very useful in characterizing the behavior of quantum devices:
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For any two Hermitian operators 𝐴, 𝐵 acting on a Hilbert space  ≅ ℂ𝑑 such that 𝐴2 = 𝐵2 = 𝕀 and
𝐴𝐵 = −𝐵𝐴, there exists a change of basis 𝑈 on  such that

𝑈𝐴𝑈† = 𝑋 ⊗ 𝕀𝑑/2 = (
0 1
1 0)

⊗ 𝕀𝑑/2, 𝑈𝐵𝑈† = 𝑍 ⊗ 𝕀𝑑/2 = (
1 0
0 −1)

⊗ 𝕀𝑑/2 (1)

where the 𝕀 action is on the remaining 𝑑/2 dimensions. Therefore, 𝐴 and 𝐵 identify a decomposition of
 ≅ ℂ2 ⊗ ℂ𝑑/2.

The following setup breaks down the proof into manageable parts.
However, you can prove it any which way you like!

1. First, solve the 𝑑 = 2 case. Meaning, you can assume that 𝐴 and 𝐵 are 2 × 2 matrices and you want to
explicitly show the existence of a 2 × 2 unitary 𝑈 such that 𝑈𝐴𝑈† = 𝑋 and 𝑈𝐵𝑈† = 𝑍 .

(a) (2 points) Calculate the eigenvalues of 𝐴 and 𝐵.

(b) (2 points) Write 𝐵 in its eigenbasis. What does 𝐴𝐵 = −𝐵𝐴 imply about 𝐴?

(c) (2 points) Show the existence of a 𝑈 satisfying eq. (1) in the case that 𝑑 = 2.

2. (2 points) Consider matrices 𝐴 and 𝐵 such that there exists a unitary 𝑉 such that 𝑉𝐴𝑉 † and 𝑉𝐵𝑉 †

are block-diagonal with each block being a 2 × 2 matrix – i.e.

𝑉𝐴𝑉 † =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐴1

𝐴2

⋱
𝐴𝑑/2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑉𝐵𝑉 † =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐵1
𝐵2

⋱
𝐵𝑑/2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Show that for such matrices, a simultaneous change of basis according to eq. (1) exists.

3. Show that eq. (2) is sufficiently general. Namely, that if general 𝑑 × 𝑑 Hermitian matrices exist
satisfying 𝐴2 = 𝐵2 = 𝕀 and 𝐴𝐵 = −𝐵𝐴, then there exists a unitary 𝑉 such that eq. (2) holds.

(a) (2 points) Consider any two Hermitian matrices such that 𝐴2 = 𝐵2 = 𝕀 and 𝐴𝐵 = −𝐵𝐴. Let |𝑣⟩
be any eigenvector of 𝐴 + 𝐵. Then show that both 𝐴 and 𝐵 preserve the vector space spanned by
|𝑣⟩ and 𝐴𝐵 |𝑣⟩.

(b) (2 points) Conclude that there exists a change of basis unitary 𝑉 such that in this basis, 𝐴 and 𝐵
are simultaneously block-diagonal with blocks of size 1 or 2.

(c) (2 points) Argue that blocks of size 1 cannot exist due to the anti-commutation condition. And
therefore, we have achieved the assumption of eq. (2).
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Problem 6. Consider a device that ideally produces the state |𝜓0⟩ but due to manufacturing defects produces
the state |𝜓1⟩. We will show that if |𝜓0⟩ and |𝜓1⟩ have large overlap |⟨𝜓0|𝜓1⟩|, then no quantum process can
distinguish these two devices with high probability. For any process 𝑃 , quantify how well it distinguishes
|𝜓0⟩ and |𝜓1⟩ by:

Δ def= |𝐏𝐫(𝑃(|𝜓0⟩) outputs 0) − 𝐏𝐫(𝑃(|𝜓1⟩) outputs 0)|.

Solve the first two parts of this problem individually.

1. (2 points) Consider the simplest strategy: measure in a basis for which |𝜓0⟩ is a basis vector and guess
0 if the measurement is |𝜓0⟩ and 1 otherwise. Show that then

Δ = 1 − |⟨𝜓0|𝜓1⟩|2.

2. (2 points) This strategy is not optimal. Find a better measurement for which

Δ =
√
1 − |⟨𝜓0|𝜓1⟩|2.

(Hint: There is a 2-dimensional space containing |𝜓0⟩ and |𝜓1⟩. It may be useful to remember the
trignometric identities of 2 sin 𝑥 sin 𝑦 = cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦) and cos 2𝑥 = 2 cos2 𝑥 − 1.)

We will show that this second strategy is indeed optimal. To show the upper bound, we will first introduce
a generalized form of measurement called a positive-operator valued measurement (POVM). A POVM is a
set of Hermitian positive semidefinite operators {𝑀𝑖} on a Hilbert space  that sum up to identity

𝑛
∑
𝑖=1
𝑀𝑖 = 𝕀 .

The probability of measuring outcome 𝑖 is given by 𝐏𝐫(𝑖) = ⟨𝜓|𝑀𝑖|𝜓⟩. This generalizes a basis measurement
as we can consider 𝑀𝑖 = |𝑏𝑖⟩⟨𝑏𝑖| for any basis {|𝑏𝑖⟩}. An important difference between basis measurements
and POVMs are that the element of a POVM are not necessarily orthogonal and, therefore, the number of
elements can be larger than the dimension of the Hilbert space .

Instead, POVMs are exactly as descriptive as as applying a unitary 𝑈 to the state and ancilla |𝜓⟩⊗ |0… 0⟩
followed by a measurement of some of the qubits.

3. (2 points) For any POVM {𝑀𝑖}, let 𝐴𝑖 =
√
𝑀𝑖, consider the following partial transformation:

𝑈 ∶ |𝜓⟩ |0⟩ancilla ↦
𝑛
∑
𝑖=1
𝐴𝑖 |𝜓⟩ |𝑖⟩ancilla .

Conclude that 𝑈 is a unitary and that if 𝑈 is followed by a measurement of the ancilla register, this
produces the same statistics as the POVM.
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4. (2 points) Given a unitary 𝑈 acting on the state and some ancilla of dimension 𝑛 initialized to zero,
construct a POVM equivalent to applying 𝑈 and measuring the ancilla in the standard basis.

Returning to the problem at hand, we can generalize the distinguishing measurement as a POVM with
two elements𝑀 and 𝕀−𝑀 , with the two outcomes corresponding to answering 0 and 1, respectively. Attempt
the next four parts if you are able to – if not, you will get another chance to return to them when we will have
covered some more background material in class.

5. (2 points) Show that then the optimal value of Δ is

Δopt = max
0≤𝑀≤𝕀

tr (𝑀𝜌)

where 𝜌 = |𝜓0⟩⟨𝜓0| − |𝜓1⟩⟨𝜓1|.

6. (2 points) Conclude that

max
0≤𝑀≤𝕀

tr (𝑀𝜌) =
1
2
tr
√
𝜌2.

(Hint: Consider an optimal 𝑀 in the basis where 𝜌 is diagonal).

7. (2 points) Finish by showing

tr
√
𝜌2 = 2

√
1 − |⟨𝜓0|𝜓1⟩|2.

(Hint: 𝜌 is a rank 2 matrix; therefore it has only 2 non-zero eigenvalues. Now express tr(𝜌2) in two
ways.)

8. (optional) Give a justification as to why the maximizing 𝑀 and the measurement you gave in Part 2
are the same.

Problem 7 (Alice, Bob, and Bob play CHSH). The CHSH game is described as a game between non-
communicating Alice and Bob where Alice receives an input bit 𝑥, Bob receives an input bit 𝑦, and they
answer with bits 𝑎 and 𝑏 , respectively, such that 𝑎 ⊕ 𝑏 = 𝑥𝑦.

Consider the following game between non-communicating Alice, Bob1, and Bob2: The referee first flips a
coin 𝑖 ∈ {1, 2} and then sends Alice an input bit 𝑥, and sends Bob𝑖 the input bit 𝑦, and they answer with bits
𝑎, 𝑏 , respectively. The other Bob neither receives a question nor answers. The winning conditioning is still
𝑎 ⊕ 𝑏 = 𝑥𝑦.

(6 points) Prove that there exists a 𝛿 > 0, such that any quantum strategy succeeds with probability
≤ cos2(𝜋/8) − 𝛿. For half-credit, prove that no quantum strategy wins with probability = cos2(𝜋/8). If this
problem is challenging for you, relax and submit it with the next problem set.
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