Today:
Proof of uniqueness for CHSH strategy.
Certifiable randomness generation

we showed that given $A_0^2 = A_1^2 = B_0^2 = B_1^2$ then $\|CHSH\|_{op} \leq 2\sqrt{2}$.

Today:

so then tr (CHSH PAB) = Z p. (4.1CHSH |4.).

Since [CHSH/ 6252 => for every r, 14r) is a 252 eigenvectors.

So, let's first consider pure stortegies PAB = |4X41AB and then come back to mixed stortegies.

CHSH |4> = 252 |4> => [A.A.] @ [B.B.] 14> = 414>.

Since $\|[A_0,A_1]\|_{p}$, $\|[B_0,B_1]\|_{p} \le 2$, then $\|[A_0,A_1]\|\Psi\rangle\| = 2$.

Note we are Ignoring
a & IIB term
everywhere as
14> & HA & HB.

Claim Ao, A, anti-commute w.r.t. 14).

meaning Ao A, 14) = -A, Ao 14) but Ao A, may not equal

-A, A o everywhere.

$$\underline{\mathcal{E}}_{X}$$
. $A = \begin{pmatrix} \boxed{2} \\ \boxed{1} \end{pmatrix} A' = \begin{pmatrix} \boxed{x} \\ \boxed{1} \end{pmatrix}$

then A, A' anticommutes write any vector (B) but

do not anticommute for all vectors.

The claim is the best we can hope for. We are using CHSH game to characterize the states of Alice's computers. However, we can only characterize the part of the computers corresponding to the game. How it behaves on the rest of the space we don't know.

If of claim Since $||A_0||$, $||A_1|| \le 1$ dur is order for $||A_0A_1 - A_1A_0||\Psi\rangle||$ = 2, we need $||A_0A_1||\Psi\rangle| = ||A_1A_0||\Psi\rangle|$ of norm 1.

Let S be the nullspace of { Ao, A, S.

Notice, IT) ES => Ao(T) ES.

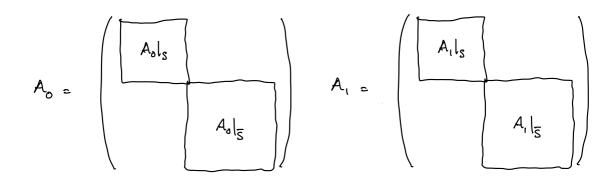
$$\frac{\mathcal{H}}{\mathcal{H}} \left(A_0 A_1 + A_1 A_0 \right) A_0 | \mathcal{T} \rangle = A_0 A_1 A_0 | \mathcal{T} \rangle + A_1 | \mathcal{T} \rangle$$

$$= -A_0 A_0 A_1 | \mathcal{T} \rangle + A_1 | \mathcal{T} \rangle$$

= (- A, + A,) TC> = O.

Similarly, A, lt) € S.

We've identified that A_0, A_1 are block diagonal wirt. $7L_A = S \oplus \overline{S}$,



Notice, by definition, Aols and Ails must articommute.

S is precisely the anticommutation subspace.

What's up with 5?

We know 14) must be supported only on S.

Having now proved A_0 , A_1 preserve S_1 ne can whole assume $\mathcal{H}_A = S_1$.

Why? 5 is the space of strategies when she isn't going to win with optimal probability.

Thun (On pret 2) For observables $O_0, O_1 \in \mathcal{X}(S)$,

For $O_0^2 = O_1^2 = 11$ and $O_0O_1 = -O_1O_0$, \exists unitary $U: S \rightarrow C^2 \otimes S'$ s.t. $U O_0 U^{\dagger} = Z \otimes 11_{S'}$ and $U O_1 U^{\dagger} = X \otimes 11_{S'}$ We can't apply this theorem to A_0 , A_1 but we can apply

So, $\exists u: S \rightarrow C' \otimes S', V: T \rightarrow C' \otimes T'$. $u(A_{ols})u^{\dagger} = Z \otimes I_{S'} | V(B_{olt})v^{\dagger} = H \otimes I_{T'}$ $u(A_{ols})u^{\dagger} = X \otimes I_{S'} | V(B_{olt})v^{\dagger} = \widetilde{H} \otimes I_{T'}$

it to Aols, Ails and to Bolf, Bilt & analogs.

These unitaries give us that Alice and Bob's strategies within S and T are equivalent to the canonical strategy. But the cononical strategy needs 14) to be a 4-eigenestre of (XZ-ZX) (HH-HH) which is uniquely LEPR). So, for 14) & SOT,

U · V | Y >= | EPR > @ | junk 2 s'T!

This let's us prove the following theorem

Thm (CHSH rigidity)

given IV> & HAOHB and observables Ao, A, & X(HA), B,B, & X(HD),

s.t. the strategy wins with $co^2 \frac{\pi}{8}$ prob. Then \exists local isometries $\mathcal{U}_A:\mathcal{H}_A \to \mathbb{C}^2\otimes\mathcal{H}_{A'}$, $\mathcal{V}_B:\mathcal{H}_B \to \mathbb{C}^2\otimes\mathcal{H}_{B'}$

such that

(UA & VB) | Y)AB = LEPR) & Junto A'B'.

and

(UA @ VB) (1 @ B,) (4) = (1 & H) (EPR) @ (junk)

This is the best ne can do! We can only completely characterize the actions of Alice and Bob on the subspaces S and T.

This is what is being expressed here.

What about mixed strategies PAB? We can prove something

But first ne are going to establish some necessary mathematics.

Thin (Schridt Decomposition)

Any pure state 147 & HA & HB can be expressed as $\sum_{i=1}^{n} \lambda_{i} |u_{i}\rangle|v_{i}\rangle$ Schnwitt coefficients

where $d \leq \min\left(\dim\mathcal{H}_{A}, \dim\mathcal{H}_{B}\right), \quad \lambda_{i} \geq 0, \quad \sum_{i} \lambda_{i}^{2} = \mathcal{I},$ $\{|u_{i}\rangle\}$ and $\{|v_{i}\rangle\}$ are orthonormal vectors within $\mathcal{H}_{A}, \mathcal{H}_{B}$, respt.

This is a special case of singular value decomposition.

M=UNV Recall SVD, for any matrix M: HB-3 HA,

 $U = \sum_{i} |u_{i} \times i|$, $\Lambda = \sum_{i} \lambda_{i} |i \times i|$ $V = \sum_{i} li \times v_{i} l$

orthonormal basis of HA. 1 1 ≥ 0

orthonormal loans of HB.

So $M = \sum_{i} \lambda_{i} |u_{i} \times v_{i}|_{B}$

Pf of Schnidt Decomposition:

Let T be the map (v/ + 1v) for any lv) & HB.

For any vector $|\Psi\rangle = \sum_{jk} |f_{jk}|_{j} |f_{k}\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ Consider $M = \sum_{jk} |f_{jk}|_{j} |f_{k}|$.

Then,
$$|\psi\rangle = T \circ M$$

$$= T \left(\sum_{i} \lambda_{i} |u_{i}\rangle \langle v_{i}| \right)$$

$$= \sum_{i} \lambda_{i} |u_{i}\rangle \langle v_{i}|.$$

Schmidt decompositions are very useful.

Given 14 = \(\frac{1}{28} = \frac{1}{2} \lambda; \lambda; \lambda \tau \rangle \rangle \rangle \tag{it is easy to check

$$\Psi_{A} := +r_{B}(|\psi \times \psi|) = \sum_{i} \lambda_{i}^{2} |u_{i} \times u_{i}|$$

$$\Psi_{B} := \frac{1}{2} \left(|\Psi \rangle \langle \Psi l \rangle \right) = \sum_{i} \lambda_{i}^{2} |\nu_{i} \rangle \langle \nu_{i} |$$

W

Def. (Purification)

given a density matrix $P_A \in \mathcal{H}_A$, a purification is any state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_{A'}$ s.t. $tr_{A'}(|\psi\rangle\psi|) = P_A$.

A purification is a pure state whose statistics when acting only on A mirror that of ρ_A .

(i) A purification always exists when $\mathcal{H}_{a'}\cong\mathcal{H}_{A}$. $\rho = \sum_{i} p_{i} |u_{i} \times u_{i}| \quad \text{then} \quad |\Psi\rangle = \sum_{i} \sqrt{p_{i}} |u_{i} \geq |u_{i}|^{2}$ is a purification.
(Uhlmann's Thm)

2 Let 14 and 17 and 17 and the purifications of p. Thun

∃ V: Har → Har s.t. 11 a V 14> = 17>

(PA sketch) Consider the Schmidt decompositions of
$$|\Psi\rangle$$
 and $|\tau\rangle$

$$|\Psi\rangle = \sum_{i} \lambda_{i} |u_{i}\rangle |v_{i}\rangle$$

$$|\tau\rangle = \sum_{i} \mu_{i} |w_{i}\rangle |z_{i}\rangle$$

The Schmidt coefficients of both are the roots of the eigenvalues of ρ . So $\lambda_i = \mu_i$. |ui) and |wi> must be eigenvetures of p.

If distinct (cary case), then lui) = lwi) up to global phase.

Then it remains only to identify a mapping (vi) 122.

Why bother with all of this?

Necessary to observe a powerful quantum phenomenon:

Monogamy of entanglement.

Consider any state PABE in HA & HB @ HE,

such that PAB is pure: PAB = 14X4laB.

Then PABE = 14X4 LAB & PE.

Pf. PABE is a mixed state so consider a purification IP DABEE'.

But notice, $|\Psi\rangle_{AB} \otimes |0,0\rangle_{EE}$ is a purification of PAB.

Uhlmonn's theorem gives us that ∃ V € X (HE & HE')

s.t. IY) ABEE = IY) & VIQOZEE

so, A,B are unevtanged fan E,E!

This whole business with E' is tedious. In most cases, we deal with E represents the system of an (Eve)sdropper. We want to typically make arguments where the Eve is as poweful as possible, so we assume Eve has the purification E' as well.

So, ne usually assume a pure state 142 .

Let's considers the CHSH game but this time assume I Eve who may be entayled.

Alice Mase Bob

Ref

We nort show it, but our proof can be generalized to the following theorem:

Thm, (CHSH rigidity) given IV) & HAOHBOHE

and observables Ao, Al & X (HA), BiB, & X (HB),

S.t. the Strategy wins with $co^2 \frac{\pi}{8} - \epsilon$ prob. Then \exists local isometries $u_A: \mathcal{H}_A \rightarrow \mathbb{C}^2 \otimes \mathcal{H}_{A'}$, $v_B: \mathcal{H}_B \rightarrow \mathbb{C}^2 \otimes \mathcal{H}_{B'}$

such that

and

$$\begin{array}{l} (U_{A} \otimes V_{B}) \left(A_{o} \otimes I_{B}\right) |\Psi\rangle \approx_{E} (Z \otimes II) |EPR\rangle \otimes |j_{mh}\rangle_{A'B'E} \\ (U_{A} \otimes V_{B}) \left(A_{o} \otimes I_{B}\right) |\Psi\rangle \approx_{E} (X \otimes II) |EPR\rangle \otimes |j_{mh}\rangle_{A'B'E} \\ (U_{A} \otimes V_{B}) \left(I \otimes B_{o}\right) |\Psi\rangle \approx_{E} (I \otimes H) |EPR\rangle \otimes |j_{mh}\rangle_{A'B'E} \\ (U_{A} \otimes V_{B}) \left(I \otimes B_{o}\right) |\Psi\rangle \approx_{E} (I \otimes H) |EPR\rangle \otimes |j_{mh}\rangle_{A'B'E} \\ (U_{A} \otimes V_{B}) \left(I \otimes B_{o}\right) |\Psi\rangle \approx_{E} (I \otimes H) |EPR\rangle \otimes |j_{mh}\rangle_{A'B'E} \\ \end{array}$$

where |u) ≈ |v> if || lw>-lv>|| ≤ O(√E).

Observations

- 1) This substances mixed state strategies for Alice & Bob because that is captured by Eve holding the parificultion.
- 2) We consider what happens when he win nich nearly optimal prob. Then Ao, A, approximately articommute writ. 142.
- (3) Monogany of entanglement is in play here. Notice that this proves that the identified qubits for Alice & Bob used in the game can only be O(VE) entangled with Eve.

So Alice's measurements of her qubit for an Opt-6 strategy will generate a random variable a s.t.

meaning Eve can only guess a with pr $5\frac{1}{2}+O(\sqrt{\epsilon})$.

A sketch of how to build certifiable randomness.

Suppose the ref has a small seed of uniform randomness independent from everyone else. He wants mere so he buys devices remed Alice and Bob from Eve (she brit the devices).

He separates Alice and Bob from each other and Eve and uses turn to play CHSH knowing that honest Alice produces wiform randomness.

Can he use Alice's outputs as new certified rendomness.

Issues:

- 1 bit of randomness.
- 2 Alive and Bob as devices may keep a

memory of past questions.

We will not handle the second which requires much more advanced techniques.

Meaning, we can assume Alice's action in the t'th round only depends on the the question asked of her and not her previous questions and onsuers.

For some p>0,

Algorithm Play CHSH game n total times.

For 6 = 1 n,

Widn probability 1-p, (Generation game)

ask $x_t = y_t = 0$.

and record answer at.

With probability p (Test game)

ask Xx, Yx uniformly randomly.

check if a to be = x + y +.

If ≥ 0.849 pn test games are non, then accept the stored $\{a_{ij}\}$ as randomness. Otherwise abort.

Since most quotiens are (0,0), why court Alice and Bob cheat? They will then fail the test games.

So, they have to play near optimally in order to not about.

Analysis

Let u be the prob of winning standard CHSH by these players.

Then passing the test certifies by Chamoff,

$$X_t = \{t \text{ is test round}\} \land \{CHSH \text{ passes in round }t\} \quad X = \sum_{t=1}^{t} X_t$$

$$\{CHSH \text{ passes in round }t\} \quad X = \sum_{t=1}^{t} X_t$$

$$\Pr\left[\mu \leq \omega^* - \frac{1}{100} \mid \text{not abort}\right]$$

=
$$\Pr\left\{\mu pn \leq \left(\omega^* - \frac{1}{100}\right)n \mid X \geq \left(\omega^* - \frac{1}{200}\right)pn\right\}$$

=
$$\Pr\left\{X \ge \mu pn\left(1 + \frac{1}{200\mu}\right)\right\} \le \exp\left(-\frac{\mu pn}{40000 \mu^2}\right)$$

$$\frac{3}{40000\mu}$$

$$\mu$$
 will end up being a constant $\geq \frac{1}{2}$ so (back of envelope)

$$\Rightarrow \Pr\left[\mu > \omega^* - \frac{1}{100} \mid \text{not aborting}\right] \ge 1 - 2^{-52(pn)}.$$

By rigidiay theorem, then Alice and Bob's stockey is 2VE close to ideal where $\varepsilon = \frac{1}{100}$, so Alice's outputs have Hmin (a, 1 E) 2 4/5.

Let 5 be the prob. of false certification. Then pick p s.t.

$$\mathcal{L}(pn) = \log \frac{1}{\delta}$$

Algorithm uses $O(pn \log(\frac{1}{p}))$ randomness.

$$= O\left(\log \frac{1}{\delta} \log \frac{n}{\log \frac{1}{\delta}}\right) \leq O\left(\log n \log \frac{1}{\delta}\right).$$

Roughly speaking an exponential increase in randomness.

See Vazirni & Vidick 2012 for full proof with full pour adverseries.

Thru (Schridt Decomposition)

Any pure state $|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ can be expressed as $\sum_{i=1}^{d} \lambda_i |u_i\rangle |v_i\rangle$

 $\sum_{i=1}^{\infty} \lambda_i |u_i\rangle |v_i\rangle$ Schmadt coefficients where $d \leq \min\left(\dim\mathcal{H}_A, \dim\mathcal{H}_B\right)$, $\lambda_i \geq 0$, $\sum_i \lambda_i^2 = \mathcal{I}_i$ $\{|u_i\rangle\}$ and $\{|v_i\rangle\}$ are orthonormal vectors within $\mathcal{H}_A, \mathcal{H}_B$, respt.

This is a special case of singular value decomposition.

Recall SVD, for any matrix M: HB-> HA, M=UALV

 $\mathcal{U} = \sum_{i} |u_{i} \times i| \quad , \quad \Lambda = \sum_{i} \lambda_{i} |i \times i| \quad , \quad \nabla = \sum_{i} |i \times \nabla_{i}| \quad .$

arthonormal basis of HA. 1 1 ≥ 0, orthonormal basis of HB.

So $M = \sum_{i} \lambda_{i} |u_{i} \times v_{i}|_{B}$

Pf of Schnidt Decomposition:

Let T be the map (v/ + 1v) for any 1v) & 7/B.

For any vector $|\Psi\rangle = \sum_{jk} |f_{jk}|_{j} |f_{k}\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ Consider $M = \sum_{jk} |f_{jk}|_{j} |f_{k}|$

Then,
$$|\psi\rangle = T \cdot M$$

$$= T \left(\sum_{i} \lambda_{i} |u_{i}\rangle \langle v_{i}| \right)$$

$$= \sum_{i} \lambda_{i} |u_{i}\rangle \langle v_{i}|.$$

Schmidt decompositions are very uxful.

Given 142 = [] iluis/vis , it is easy to check

$$\Psi_{A} := +r_{B}(|\psi \times \psi|) = \sum \lambda_{i}^{2} |u_{i} \times u_{i}|$$

$$\Psi_{B} := \frac{1}{2} \left(|\Psi \rangle \langle \Psi l \rangle \right) = \sum_{i} \lambda_{i}^{2} |\nu_{i} \rangle \langle \nu_{i} |$$

7

Def. (Purification)

given a density matrix $P_A \in \mathcal{H}_A$, a purification is any state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_{A'}$ s.t. $tr_{A'}(|\psi\rangle\psi|) = P_A$.

A purification is a pure state whose statistics when acting only on A mirror that of ρ_A .

(Uhlmann's Thm)

2 Let |4 > and | T > and | T > be two purifications of p. Thun

∃ V: Ha, → Ha, s.t. 11 × V |4> = |T>

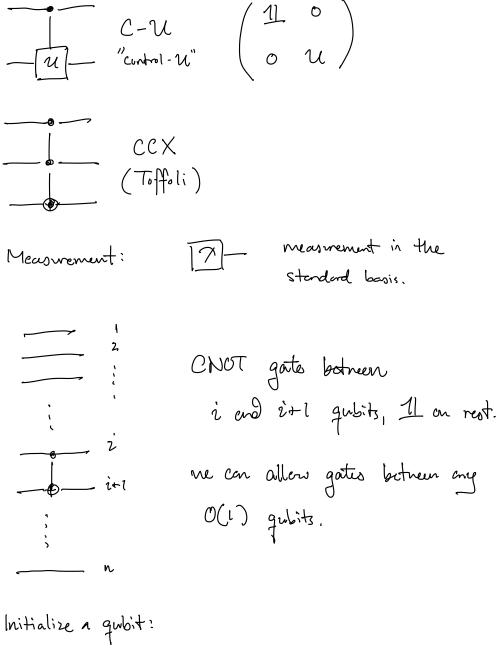
(PA sketch) Consider the Schmidt decompositions of $|\Psi\rangle$ and $|\tau\rangle$ $|\Psi\rangle = \sum_{i} \lambda_{i} |u_{i}\rangle|v_{i}\rangle$ $|\tau\rangle = \sum_{i} \mu_{i} |w_{i}\rangle|z_{i}\rangle$

The Schmidt coefficients of both are the roots of the eigenvalues of ρ . So $\lambda_i = \mu_i$. |ui) and |wi> must be eigenvetures of p.

If distinct (cary core), then lu; = |w; > up to global phase.

Then it remains only to identify a mapping (vi) 122.

Today: - The circuit model - A faster search algorithm (Grover's) We need a way to describe a sequence of chementery quantum operations. Quantum gate: a 1,2,3,... O(1) qubit unitarg. Depicted as -II-CNOT -[Z]- (°-1) - H - 1 (1 1) _____ CZ -[T] (v eith) -[X] (° 1)



 $-10\rangle$ or $-11\rangle$, etc

Def. A quantum circuit is a classical description of a sequence of gates.

quantities of interest:

of gates, # of wires, # of uninitialized qubits.

descriptions complexity in terms of # of bits.