Lecture 4
Oct 6, 2025

٠

1) The apply U tun each state updates to U(Ye) So p' = = pa U 14a X4a 1 Ut 2 linearly = U (Z pa (YaXYal) Ut = Uput. (3) Considering neasing 14a. Pr (new = 0) = | <01 @ 11 | 42>|2 P-P proj. = | 10×01 @ IL | Ya> ||2 = <4a| (10×0101)(10×0101) 14a> = < 4a/ (10><01811 (4a) = tr ((10×010 1L) 14a×4al) d cyclicity. = (10×01@11)14a> Post-measurement 1 <01 8 1 1 42>11

| (0/0/1/40)| = (4al (10×010/1) | 4a) = + (10×010/1 | 4a×4al).

put - neument d.m.
$$\rho'_{a} = \frac{10\times0101}{11} |\Psi_{a}\times\Psi_{a}| (10\times01011)$$

$$tr(10\times01011 |\Psi_{a}\times\Psi_{a}|).$$

put there 2 together, we get measurement of $|\Psi_{a}\times\Psi_{a}|$

result. So now
$$\rho' \in \text{post O measurement should be defined as}$$

$$\rho' = \sum_{a} \text{pr}(a \mid \mathcal{V} = 0) \cdot \rho'_{a}$$

$$= \sum_{a} \frac{\text{pr}(a \mid \mathcal{V} = 0)}{\text{pr}(\mathcal{V} = 0 \mid a)} (10\times01011) |\Psi_{a}\times\Psi_{a}| (10\times01011)$$

$$= \frac{Z}{a} \frac{Pr(2 = 0 \mid a)}{Pr(2 = 0)}$$

$$= \frac{Z}{a} \frac{Pr(a)}{Pr(2 = 0)}$$

Exercise Show that
$$tr(p^2) = 1$$
 iff p is pure (i.e. $p = 14 > (41)$.

Pf. If
$$p = |\Psi\rangle\langle\Psi|$$
, then $p^2 = |\Psi\rangle\langle\Psi|\Psi\rangle\langle\Psi| = p$.
So $fr(p^2) = fr(p) = I$, proves \Leftarrow direction.

For =) direction, write
$$\rho$$
 in eigenbasis so $\rho = \sum \lambda_i | \Psi_i X \Psi_i |$
with $\{|\Psi_i\rangle\}$ orthonormal and $\sum \lambda_i = 1$ since $\{(\rho)\} = 1$.
 $\{(\rho^2)\} = \{(\sum_{i \in I} \lambda_i \lambda_i \Psi_i X \Psi_i | \Psi_i X \Psi_i \})$

$$= +r\left(\sum_{i} \lambda_{i}^{2} | \Psi_{i} \times \Psi_{i} | \right) = \sum_{i} \lambda_{i}^{2} \leq \sum_{i} \lambda_{i} = 1$$

with equality only if $\lambda_i^2 = \lambda_i$ $\forall i$. so $\lambda_i = 1$ $\lambda_{2...} = 0$. so ρ= 14, X4, 1 pore. Aside: p= \(\Side\); \(\text{Y}; \) means (4) w pr \(\lambda\). Aside: For fire TR = Tr f(x;) 14; X4;1. Why do ne need to understand density matrices? Density matrices help define the partial state of a system which is entangled. For instance, when Alice & Bob hold on EPR pair, what is the state of Alice system by itsef? Notation If PAB is the state of the system our CA & CB Alice's quels Bob's quelib,

then call PA the state on Alias system. Po the otato on Bob's system.

Easy cases: PAB = PA & PB.

Then PA is obvious.

How about PAB = I Pi PA & PB {Pi } prob. dist.

Then we expect $P_A = \sum_i P_i P_A^i$ $P_B = \sum_i P_i P_B^i.$

It becomes horder when the states are entangled and not just prob. mixtures.

What are the properties that PA should have?

1) The statistics of measuring Pa should be identical to that of measuring only

Alice's qubits of PAB.

2 Let JAB = (UA & 11) PAB (UA & 11)

Then $\sigma_A = \mathcal{U}_A \, \rho_A \, \mathcal{U}_A^{\dagger}$. Meaning, unitary transform by Alice can be calculated from just ρ_A .

3) Any action on Bob's qubits council change the state of Alie's qubits.

Def (Partial trace) Let $|b_1\rangle ... |b_{d_B}\rangle$ be a basis for Bob's qubits/system, then for any makex ρ_{AB} $tr_{B}(\rho_{AB}) := \sum_{i=1}^{d_B} (1 \otimes \langle b_i |) \rho_{AB} (1 \otimes |b_i \rangle)$.

If ρ_{AB} is a density matrix, what is the operational meaning of $tr_{B}(\rho_{AB})$?

Ans: Bob neasures his system according to basis { | bi > }

but does not tell Alice the outcome.

Ex.
$$P_{AB} = |\Phi_{II}| \times |\Phi_{II}| = \frac{1}{2} \left(|O|_{AB} - |IO|_{AB} \right) \left(|O|_{AB} - |IO|_{AB} \right)$$

$$X_{A} = \sum_{I} \left(1 - |A|_{AB} + |A|_{AB} \right) P_{AB} \left(1 - |A|_{AB} + |A|_{AB} \right)$$

A = Z (1/A & < i | B) PAB (1/A & | i) B)

$$= \frac{1}{2} \left((1 \otimes \langle 0|) (101) - |10\rangle) (\langle 01| - \langle 10|) (1 \otimes |0\rangle) \right) \\ + (1 \otimes \langle 1|) (101) - |10\rangle) (\langle 01| - \langle 10|) (1 \otimes |1\rangle) \right]$$

$$=\frac{1}{2}\left[\left(-11\right)\left(-\left\langle 11\right)+\left(10\right\rangle\right)\left(\left\langle 01\right\rangle\right)\right]$$

= - 1 1. Claim PA = tr_B (PAB).

Why is this the correct definition?

First let us prove that the def of partial true down not depend on choice of ? [bi>].

Ex. If
$$\langle \Psi | p | \Psi \rangle = \langle \Psi | p' | \Psi \rangle$$
 for all unit vectors $| \Psi \rangle$ then $p = p'$.

 $\rho_{B}^{\Psi} := (\langle \Psi_{A} | \otimes \mathbb{1}_{B}) \rho_{AB} (|\Psi_{A} \rangle \otimes \mathbb{1}_{B})$ For any 14), let

Now,

$$\langle \Psi | tr_{B}(\rho_{AB}) | \Psi \rangle$$

 $= \langle \Psi_{A} | \left(\sum_{i=1}^{a_{iB}} (1_{A} \otimes \langle b_{i} |) \rho_{AB} (1_{A} \otimes |b_{i} \rangle) \right) | \Psi_{A} \rangle$

$$= \sum_{i=1}^{d_B} \langle b_i | \rho_B^{\Psi} | b_i \rangle = \sum_{i=1}^{d_B} tr(\rho_B^{\Psi})$$
which is independent of $\{|b_i|\}$ as true is basis inde

which is independent of { |bi > } as true is basis indep.

= trB (PAB) = Bob's actions do not change PA.

2) Let Up be any unitary.

UA & IB trB (PAB) UA & IB

= [(UA & <i |) PAB (UA & li)

= [(1 & < 1 B) UA PABUA (1 A & (1) B)

= trB (UAPABUA).

Def. The maximally mixed state in d-dimensions is $\frac{1}{d}$ 11_d. For qubit, $\frac{1}{2^n}$ 11_{en}.

Def. A state ρ_{AB} between Alice and Bob even of nequities is maximally entangled if $\rho_A = \frac{1}{2^n} 1_{2^n}$.

In class exercise: Every maximally entangled state is $\sum_{i=1}^{22^n} P_i \left(1_A \otimes U_B^i \right) | \Phi \times \Phi | \left(1_A \otimes U_B^{i+1} \right)$

where $\left|\frac{1}{2}\right\rangle = \sum_{i=1}^{2^n} \frac{1}{\sqrt{z^n}} \left|i\right\rangle \left|i\right\rangle$

Today: The CHSH game and "spooly-action" at a distance.

Consider the following game:

Alice Ref Bob

Ref samples $x, y \in \{0, 1\}$ and sends x to Alice and y to Bob. He asks for answers $a, b \in \{0, 1\}$ from Alice and Bob, respectively.

Alice and Bob most answer in 2+ & light recs.

Thy win if $a \oplus b = x \cdot y$.

What is their opt. success prob.?

Space-seperation is just to force no communication.

If Alice and Bob employ classical strategies, the best strategy only wins $w pr = \frac{3}{4}$.

But if they we quantum strategies, they can nin with probabilities up to $\cos^2 \frac{\pi}{8} \sim 0.878$.

Next two lectures: understand the quantum strategy,

prove it is optimal, understand how it characterizes the
state of Alice and Bob's q.c.'s.

Classical Best deterministic strategy a=0, b=0 independent of input.

What if Alice & Bob share classical randomness?

Let Ar, Br: {0,13 -> {0,13 be the strategies for rand. r.

 $P_r[win] = P_r[A_r(x) \otimes B_r(y) = xy]$

Quantum What if Alice and Bob share an EPR pair?

Idea Depending on the input $x \in \{0,1\}$, Alice
makes a measurement of her half of the EPR pair.

Strategy: $\frac{3}{4} |\alpha_{x}^{a}\rangle \in \mathbb{C}^{2}$ for Alice where $\frac{3}{4} |\alpha_{x}^{a}\rangle = 0$.

likusie $\{\beta, \beta, \epsilon \in \mathbb{C}^2\}$ for Bob,

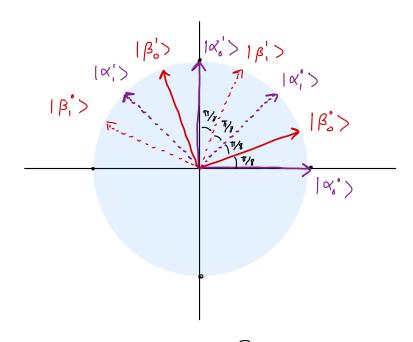
where $\langle \beta_x^0 | \beta_x^1 \rangle = 0$.

When Alice gets input x, she nearnes her half of the EPR pair with basis $|\alpha_x^o\rangle$, $|\alpha_x^i\rangle$ and answers accordingly. Lihenin for Bob. So,

 $P_r[a,b|x,y] = \left| \langle \alpha_x^a, \beta_y^b | EPR \rangle \right|^2$

Let us first write out the optimal strategy and then return to the more interesting part of proving it's optimality.

Easiest to draw a picture.



How do ne analyze this?

(1) Recall from earlier lectures our def 10> := cus 0 (0> + sin 0 (1)

and
$$\langle \Theta | \Theta + V \rangle = \omega_S V$$
.

(2) For any basis
$$|v\rangle, |w\rangle$$
 of \mathbb{C}^2 ,
$$|EPR\rangle = \frac{1}{\sqrt{2}} \left(|v\rangle|v^*\rangle + |w\rangle|w^*\rangle \right) \quad (on hw2)$$

rectors we can analyze the success of this game.

$$Pr[win] = \sum_{x,y} Pr[x,y] \cdot \sum_{a,b} Pr[a,b|x,y] \cdot \underbrace{1}_{2a \otimes b} = xy^{3}$$

$$= \frac{1}{4} \left[\left| \left\langle \alpha_{o}^{\circ}, \beta_{o}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \alpha_{o}^{\dagger}, \beta_{o}^{\dagger} \right| EPR \right\rangle \right|^{2} \quad (x,y) = (0,0)$$

$$+ \left| \left\langle \alpha_{o}^{\circ}, \beta_{1}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \alpha_{1}^{\dagger}, \beta_{1}^{\dagger} \right| EPR \right\rangle \right|^{2} \quad (x,y) = (0,1)$$

$$+ \left| \left\langle \alpha_{1}^{\circ}, \beta_{2}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \alpha_{1}^{\dagger}, \beta_{1}^{\circ} \right| EPR \right\rangle \right|^{2} \quad (x,y) = (1,0)$$

$$+ \left| \left\langle \alpha_{1}^{\circ}, \beta_{2}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \alpha_{1}^{\dagger}, \beta_{1}^{\circ} \right| EPR \right\rangle \right|^{2} \quad (x,y) = (1,0)$$

Recognize

$$\langle \alpha_{x}^{a}, \beta_{y}^{b} | EPR \rangle = \langle \alpha_{x}^{a}, \beta_{y}^{b} | \frac{|\beta_{y}^{a}\rangle|\beta_{y}^{a}\rangle}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \langle \alpha_{x}^{a} | \beta_{y}^{b} \rangle$$

$$= \frac{1}{\sqrt{2}} \cos \theta \leftarrow \text{argle between } |\alpha_{x}^{a}\rangle, |\beta_{y}^{b}\rangle$$

Notice by design, all terms in Pr (win) evaluate to + 1 cos T/8.

So
$$Pr\left[win\right] = \frac{1}{4} \left[8 \cdot \frac{1}{2} co^2 \frac{\pi}{8}\right] = co^2 \frac{\pi}{8}$$

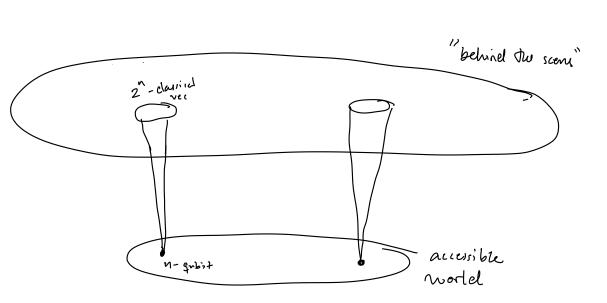
So Alice and Bob can vin game with quantum strategies with higher prob than classical.

aka Bell inequality experiment.

aka a non-local game.

We know that q. mechanics says that n-qubit states can be described by a 2"-dim vector. Meaning, that if nature is doing a lot of computation "behind the scenes"

But where is that info stored?



CHSH game proves that I picture is incorrect!

The information about the state of the system cannot be held locally assuming a speed limit on information.

This is because local info could not produce the statistics needed to min the game with prob. > 3/4.

To describe the state of the system, we need to have a global description.

Indeed $\rho = 1EPR \times EPR$ then $\rho_A = \rho_B = \frac{1}{2} 1_2$.

The key is that the coins are correlated!

Can ne experimentally verify CHSY?

Can actually conclut this and hers been done.

Does it prove that quantum mechanics is correct?

No. Since the q. adventage is only probabilistic it is evidence that our world isn't classical.

Suppose a ref observes Alice & Bob wining the game 80% of the time. How many gomen would they have to play before he is comined with 1-10-9 confidence that the world isn't classical?

$$\Pr\left\{\chi \geq (1+7)\mu\right\} \leq \exp\left(-\frac{5^2\mu}{2+\delta}\right)$$

here $\mu = 0.75 \text{n}$ $S = \frac{0.8}{0.75} < 1.07$

 $P_{r}[\chi \geq 0.8n] \leq \exp(-0.27n)$ want $\exp(-0.27n) \leq 10^{-9}$ $0.27n \geq 9 \ln 10$ $n \geq 77$

Does it prove de nord is quartin? No.

For all me lenero, there is a stronger deory consistent - with quantum nechanics.

Ex. Noisy telepatry! Alice and Bob are telepatric with a success rate of 80%. Perfect telepatry and try win with probability I.

Is cus 7/8, the optimal question strategy?

Can me do bother if Alice and Bob share multiple

EPR pair?