
CSE 534 Autumn 2024: Set 4

Instructor: Chinmay Nirkhe
Due date: November 20th, 2024 10:00pm

Instructions: Solutions should be legibly handwritten or typset. Mathematically rigorous solutions are
expected for all problems unless explicitly stated.

You are encouraged to collaborate on problems in small teams but everyone must individually submit
solutions. Solutions for the problems may be found online or in textbooks – but do not use them.

For grading purposes, start each problem on a new page.

Problem 1 (Runtime of Shor’s factoring algorithm). (6 points) To the best of your ability, give an expected
runtime of Shor’s algorithm discussed in class in terms of log(𝑁 ). It would be good, but not necessary for
credit, to separate out the runtime in terms of quantum and classical subroutines.

This problem is meant to be be graded liberally, so state whatever assumptions you are making about
parallelism, gate set, etc. as these may drastically change the runtime of the algorithm.

Problem 2 (Breaking Diffie-Helman). Shor’s factoring algorithm solves factoring which is the basis of
security for the RSA cryptosystem. The Diffie-Helman key-exchange is a cryptographic primitive with
which two parties Alice and Bob agree on a key 𝐾 over a public channel. Once they have a shared key that
no evesdropper Eve knows, they can encode and send each other messages with information-theoretic security.

Diffie-Helman protocol:

1. Alice and Bob publicly announce a prime 𝑝 and a generator 𝑔 ∈ ℤ×
𝑝.

2. Privately, Alice picks a random element 𝑎 ∈ ℤ×
𝑝 and computes 𝐴 = 𝑔𝑎. She announces 𝐴 publicly.

3. Privately, Bob picks a random element 𝑏 ∈ ℤ×
𝑝 and computes 𝐵 = 𝑔𝑏 . He announces 𝐵 publicly.

4. Privately, Alice computes 𝐾𝐴 = 𝐵𝑎 and privately, Bob computes 𝐾𝐵 = 𝐴𝑏 .

All computations are done within the group ℤ×
𝑝. If the protocol is executed honestly by Alice and Bob,

then 𝐾𝐴 = 𝐾𝐵 since (𝑔𝑎)𝑏 = (𝑔𝑏)𝑎. An evesdropper Eve listening to the public communication would hear
𝑝, 𝑔, 𝐴, and 𝐵.
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1. (2 points) Show that if Eve can compute 𝑥 such that ℎ = 𝑔𝑥 for any 𝑔, ℎ ∈ ℤ×
𝑝, then Eve can calculate

the key 𝐾 of the Diffie-Helman protocol from 𝑝, 𝑔, 𝐴 and 𝐵. Calculating 𝑥 given ℎ, 𝑔 ∈ ℤ×
𝑝 is the

discrete log(arithm) problem.

2. (8 points) Give a reduction from the discrete log problem to the order finding problem Abelian hidden
subgroup problem and argue that a quantum computer can efficiently break the Diffie-Helman protocol.

Hint:Considerthefunction𝑓(𝑥,𝑧)=𝑔
𝑥
ℎ
𝑧
.

Problem 3 (Clifford Circuits). In class, we saw how to simulate a 𝑛-qubit Clifford computation with 𝑚

gates in classical deterministic time poly(𝑛, 𝑚). In this problem, we will explore other properties of Clifford
circuits.

1. In fact, the computational power of Clifford computation is very weak – they are not capable of ex-
pressing even classical computation. We will end up showing that deciding if a Clifford computation
accepts or not is complete for the class ⊕L.

The language Clifford is the set of Clifford circuit descriptions ⟨𝐶⟩ such that measuring the first qubit
of 𝐶 |0𝑚⟩ accepts with probability 1.

(2 points) Argue that measuring the first qubit of 𝐶 |0𝑚⟩ either accepts with probability 1, 1
2

or 1 for
every Clifford circuit 𝐶.

2. (4 points) The language LINEQℤ2
is the set of matrices (𝐴, 𝑏) ∈ ℤ𝑚×𝑛

2 × ℤ𝑚×1
2 such that 𝐴𝑥 = 𝑏 has

a solution. This language happens to be complete for ⊕L. Construct a reduction from LINEQℤ2
to

Clifford (i.e. construct a Clifford circuit that is satisfiable iff 𝐴𝑥 = 𝑏 has a solution).

3. (6 points) Construct a reduction from Clifford to LINEQℤ2
. Hint: every Pauli matrix 𝑃 ∈ 𝑛 can be

expressed using 2𝑛 + 2 bits.

(In general, both reductions should be log-space for proving completeness for the class ⊕L, but this is
not required for full credit on this homework problem.)

Problem 4 (BQP is low). In complexity theory, a complexity class C is called low if CC = C. We will show
that BQP is low meaning BQPBQP = BQP – or equivalently, a BQP computation using BQP computations as
subroutines – even in superposition - can be rewritten as a single BQP computation. We will break this down
into steps.

1. (4 points) First show that if a measurement is nearly deterministic, then it is not too perturbative. I.e.
Consider a generic POVM on register 𝐴 of a state 𝜌𝐴𝐵 with the probability of outcome 0 is 1 − 𝜖. Let
𝜌′ be the post-measurement state. What is ‖𝜌 − 𝜌′‖1?
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2. (4 points) Show that the class BQP has error-amplification; meaning the 2/3 vs 1/3 definition can be
replaced with 1 − 2−Ω(𝑛) and 2−Ω(𝑛) as the bounds with only a polynomial increase in the size of the
circuit.

3. (8 points) Consider a generic BQP quantum circuit imbibed with poly(𝑛) many “oracle” gates to other
BQP problems. Recall an oracle gate for a computation 𝑓 is one that computes |𝑥⟩ ↦ (−1)𝑓 (𝑥) |𝑥⟩. In
the case of an oracle gate to a BQP problem (yes,no), we mean that a function family of functions
𝑓𝑛 ∶ {0, 1}𝑛 → {0, 1} such that 𝑓𝑛(𝑥) = 1 if 𝑥 ∈ yes, 𝑓𝑛(𝑥) = 0 if 𝑥 ∈ no, and 𝑓𝑛(𝑥) can take on either
value of 𝑥 ∉ yes ∪ no.

Using parts 1 and 2, that we can replace each oracle gate with a quantum circuit such that the output
success probability only changed negligibly with this replacement.

4. (Optional) Write a conclusion proving that BQP is low.
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