
CSE 534 Autumn 2024: Set 2

Instructor: Chinmay Nirkhe
Due date: October 16th, 2024 10:00pm

Instructions: Solutions should be legibly handwritten or typset. Mathematically rigorous solutions are
expected for all problems unless explicitly stated.

You are encouraged to collaborate on problems in small teams but everyone must individually submit
solutions. Solutions for the problems may be found online or in textbooks – but do not use them.

For grading purposes, start each problem on a new page.

Problem 1 (Indistinguishable states).
No need to submit a solution. When can we distinguish quantum states?

1. (1 point) Let |𝜓⟩ and |𝜓′⟩ be orthogonal single qubit states. Show that

1√
2
|00⟩ + |11⟩ =

1√
2
|𝜓, 𝜓⋆⟩ + ||𝜓

′, 𝜓′⋆⟩ . (1)

2. (1 point). Let |𝜙⟩ ∈ (ℂ2)⊗𝑛. Show that the states |𝜙⟩ and 𝑐 |𝜙⟩ for 𝑐 ∈ ℂ cannot be distinguished by
any combination of our ‘axioms of quantum computation’.

Hint:Considerthecorrespondingdensitymatrices.

3. (1 point) Show that the following two distributions yield the same density matrix.

(a) Flip a fair coin and set the state to be |0⟩ or |1⟩ depending on the outcome.

(b) Flip a fair coin and set the state to be |+⟩ or |−⟩ depending on the outcome.

Only write solutions for two out of the next three problems. But solve all of them!

Problem 2 (Expectation of an operator). In practice, we care about the outcome of a quantum system
averaged over many trials. Consider a qubit |𝜓⟩ ∈ ℂ2 and associate the measurement |0⟩ with +1 and a
measurement of |1⟩ with −1.
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1. (2 points) Show the expectation of this experiment is ⟨𝜓|𝑍|𝜓⟩ where

𝑍 =
(
1 0
0 −1)

= |0⟩⟨0| − |1⟩⟨1| . (2)

2. (2 points) This gives rise to the notation, ⟨𝑍⟩𝜓 = ⟨𝜓|𝑍|𝜓⟩ (or ⟨𝑍⟩ when the state 𝜓 is clear from
context). Give an experiment with expectation ⟨𝑋⟩ where

𝑋 =
(
0 1
1 0)

. (3)

3. (1 point) What is the appropriate definition of ⟨𝑍⟩𝜌 for a density matrix 𝜌? (No explanation required).

Problem 3 (Partial trace).

1. (1 point) Consider a quantum state 𝜌𝐴𝐵𝐶 ∈ 𝐴 ⊗𝐵 ⊗𝐶 . Prove that

tr𝐵(tr𝐶(𝜌𝐴𝐵𝐶)) = tr𝐶(tr𝐵(𝜌𝐴𝐵𝐶)) = tr𝐵𝐶(𝜌𝐴𝐵𝐶). (4)

2. (2 points) Prove that for density matrix 𝜎𝐴𝐵 ∈ 𝐴 ⊗𝐵 that 𝜎𝐴
def= tr𝐵(𝜎𝐴𝐵) is a density matrix (i.e.

that it is a positive Hermitian matrix of trace 1).

3. (2 points) Assume 𝐴 = (ℂ2)⊗𝑛. Prove that any single-qubit standard basis measurement of 𝜎𝐴 has
the same distribution as that obtained by measuring the same qubit of 𝜎𝐴𝐵.

Problem 4 (Density matrices of the 𝑊 state). The 𝑊𝑛 state is an entangled state of 𝑛 qubits defined as:

|𝑊𝑛⟩ =
1
√
𝑛

𝑛
∑
𝑗=1

|0⟩ … |0⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑗−1 times

|1⟩ |0⟩… |0⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑛−𝑗 times

(5a)

=
1
√
𝑛

𝑛
∑
𝑗=1
𝑋𝑗 |0𝑛⟩ . (5b)

Here 𝑋𝑗 is the 𝑋 bit-flip operator applied to the 𝑗-th qubit.

1. (2.5 points) What is the reduced density matrix of the 𝑊 state on 1 qubit?

2. (2.5 points) Consider the 𝑊 state for 𝑛 = 3. What is the reduced density matrix on any two of the
qubits out of three?

Problem 5 (Simultaneous change of basis). In this problem, we are going to prove the following statement
which is very useful in characterizing the behavior of quantum devices:
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For any two Hermitian operators 𝐴, 𝐵 acting on a Hilbert space  ≅ ℂ𝑑 such that 𝐴2 = 𝐵2 = 𝕀 and
𝐴𝐵 = −𝐵𝐴, there exists a change of basis 𝑈 on  such that

𝑈𝐴𝑈† = 𝑋 ⊗ 𝕀𝑑/2 = (
0 1
1 0)

⊗ 𝕀𝑑/2, 𝑈𝐵𝑈† = 𝑍 ⊗ 𝕀𝑑/2 = (
1 0
0 −1)

⊗ 𝕀𝑑/2 (6)

where the 𝕀 action is on the remaining 𝑑/2 dimensions. Therefore, 𝐴 and 𝐵 identify a decomposition of
 ≅ ℂ2 ⊗ ℂ𝑑/2.

This is a challenging theorem to prove. The following setup breaks it down into manageable parts.

1. First, solve the 𝑑 = 2 case. Meaning, you can assume that 𝐴 and 𝐵 are 2 × 2 matrices and you want to
explicitly show the existence of a 2 × 2 unitary 𝑈 such that 𝑈𝐴𝑈† = 𝑋 and 𝑈𝐵𝑈† = 𝑍 .

(a) (2 points) Calculate the eigenvalues of 𝐴 and 𝐵.

(b) (2 points) Write 𝐵 in its eigenbasis. What does 𝐴𝐵 = −𝐵𝐴 imply about 𝐴?

(c) (2 points) Show the existence of a 𝑈 satisfying eq. (6) in the case that 𝑑 = 2.

2. (2 points) Consider matrices 𝐴 and 𝐵 such that there exists a unitary 𝑉 such that 𝑉𝐴𝑉 † and 𝑉𝐵𝑉 †

are block-diagonal with each block being a 2 × 2 matrix – i.e.

𝑉𝐴𝑉 † =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐴1

𝐴2

⋱
𝐴𝑑/2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑉𝐵𝑉 † =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐵1
𝐵2

⋱
𝐵𝑑/2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (7)

Show that for such matrices, a simultaneous change of basis according to eq. (6) exists.

3. Show that eq. (7) is sufficiently general. Namely, that if general 𝑑 × 𝑑 Hermitian matrices exist
satisfying 𝐴2 = 𝐵2 = 𝕀 and 𝐴𝐵 = −𝐵𝐴, then there exists a unitary 𝑉 such that eq. (7) holds.

(a) (2 points) Consider any two Hermitian matrices such that 𝐴2 = 𝐵2 = 𝕀 and 𝐴𝐵 = −𝐵𝐴. Let |𝑣⟩
be any eigenvector of 𝐴 + 𝐵. Then show that both 𝐴 and 𝐵 preserve the eigenspace spanned by
|𝑣⟩ and 𝐴𝐵 |𝑣⟩.

(b) (2 points) Conclude that there exists a change of basis unitary 𝑉 such that in this basis, 𝐴 and 𝐵
are simultaneously block-diagonal with blocks of size 1 or 2.

(c) (2 points) Argue that blocks of size 1 cannot exist due to the anti-commutation condition. And
therefore, we have achieved the assumption of eq. (7).

4. (1 point) Read the following text about what is a bit and what is a qubit. No need to write anything:
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What is a bit? Given a finite vector space 𝑉 ⊆ 𝔽𝑛2 , we could say that 𝑉 can store 𝑘 = dim𝑉 = log2 |𝑉 | many bits of
information. This is because, we can come up with a bijection between {0, 1}𝑘 ⟷ 𝑉 . Ok, so there are 𝑘 bits, but what are
the individual bits of 𝑉 ?

Well, since 𝑉 is a vector space, we can find a basis 𝑣1, … , 𝑣𝑘 for 𝑉 and write the matrix

𝑀 =
⎛
⎜
⎜
⎜
⎝

| |
𝑣1 ⋯ 𝑣𝑘
| |

⎞
⎟
⎟
⎟
⎠

. (8)

This helps us make the bijection between {0, 1}𝑘 ⟷ 𝑉 with 𝑥 mapping to 𝑀𝑥. In which case, the set of strings with
the 1st bit equaling 0 would be 𝑉0

def= {𝑀𝑥 | 𝑥1 = 0} and, likewise, the set of strings with the 1st bit equaling 0 would be
𝑉1

def= {𝑀𝑥 | 𝑥1 = 1}.

This gives us the natural interpretation of the “bit-flip” of the first bit as adding the vector 𝑣1. Likewise, we can define each
of the bits by their corresponding “bit-flip” 𝑣𝑖. In a technical sense, it is precisely these 𝑘 bit-flips that define why and how
𝑉 encodes 𝑘 bits. A key property is that “flipping” the first bit does not change the value of the other encoded bits. In this
technical sense, the 𝑘 bits we have identified are truly independent.

But it important to note that we only “found” the bits because we chose 𝑣1, … , 𝑣𝑘 as a basis for 𝑉 . This is not the only basis
we could have chosen and each basis given a different interpretion of the bits of 𝑉 . This is why we might say that the “bits
are in the eye of the beholder” because the basis that 𝑉 is being interpreted in matters. A particularly important instance
of this phenomenon is when 𝑉 is the codespace of a binary linear code. In which case, the vectors 𝑣1, … , 𝑣𝑘 are the logical
bit-flips of the code.

What is a qubit? A similar phenomenon occurs when we study qubits. Intuitively, we want that our notion of separate
qubits has the property that single-qubit operators do not change the information expressed in the other qubits.

The theorem we proved showed that a single pair of anti-commuting observables1 give a decomposition of the Hilbert space
into a tensor product of a two-dimensional space where the operators act non-trivially and the remainder of the space where
the operators act trivially. Therefore, if we were to find a collection of observables 𝐴1, … , 𝐴𝑚 and 𝐵1, … , 𝐵𝑚 so that all of
them commuted except 𝐴𝑖 and 𝐵𝑖 anticommuted, then we could iteratively apply the theorem to decompose the Hilbert space
into a tensor product of two-dimensional spaces such that 𝐴𝑖 and 𝐵𝑖 act non-trivially on the 𝑖-th identified subspace and all
other matrices act trivially on the 𝑖-th subspace.

Therefore this is the “qubit is in the eye of the beholder” analog of the classical statement – namely that the qubit is
fundamentally defined by its bit (X) and phase (Z) flips. The state in the Hilbert space depends on the basis in which it is
being observed and the basis is precisely defined by the bit and phase flips we identify. We speak about this very loosely
here, but this can be made highly rigorous.

This perspective turns out to be incredibly useful for understanding quantum error correction, non-local games, and certain

cryptographic schemes. And the best part is that the mathematics of it, albeit daunting at first, is understandble by most!

Problem 6. Consider a device that ideally produces the state |𝜓0⟩ but due to manufacturing defects produces
the state |𝜓1⟩. We will show that if |𝜓0⟩ and |𝜓1⟩ have large overlap |⟨𝜓0|𝜓1⟩|, then no quantum process can
distinguish these two devices with high probability. For any process 𝑃 , quantify how well it distinguishes
|𝜓0⟩ and |𝜓1⟩ by:

Δ def= ||𝐏𝐫(𝑃(|𝜓⟩0) outputs 0) − 𝐏𝐫(𝑃(|𝜓⟩1) outputs 0)|| (9)
1An observable, for our context, will be any Hermitian operator that squares to identity.
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1. (2 points) Consider the simplest strategy: measure in a basis for which |𝜓0⟩ is a basis vector and guess
0 if the measurement is |𝜓0⟩ and 1 otherwise. Show that then

Δ = 1 − |⟨𝜓0|𝜓1⟩|2. (10)

2. (2 points) This strategy is not optimal. Find a better measurement for which

Δ =
√
1 − |⟨𝜓0|𝜓1⟩|2. (11)

(Hint: There is a 2-dimensional space containing |𝜓0⟩ and |𝜓1⟩. It may be useful to remember the
trignometric identities of 2 sin 𝑥 sin 𝑦 = cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦) and cos 2𝑥 = 2 cos2 𝑥 − 1.)

We will show that this second strategy is indeed optimal. To show the upper bound of eq. (11), we will first
introduce a generalized form of measurement called a positive-operator valued measurement (POVM). A
POVM is a set of Hermitian positive semidefinite operators {𝑀𝑖} on a Hilbert space  that sum up to identity

𝑛
∑
𝑖=1
𝑀𝑖 = 𝕀 . (12)

The probability of measuring outcome 𝑖 is given by 𝐏𝐫(𝑖) = ⟨𝜓|𝑀𝑖|𝜓⟩. This generalizes a basis measurement
as we can consider 𝑀𝑖 = |𝑏𝑖⟩⟨𝑏𝑖| for any basis {|𝑏𝑖⟩}. An important difference between basis measurements
and POVMs are that the element of a POVM are not necessarily orthogonal and, therefore, the number of
elements can be larger than the dimension of the Hilbert space .

Instead, POVMs are exactly as descriptive as as applying a unitary 𝑈 to the state and ancilla |𝜓⟩⊗ |0… 0⟩
followed by a measurement of some of the qubits.

3. (2 points) For any POVM {𝑀𝑖}, let 𝐴𝑖 =
√
𝑀𝑖, consider the following partial transformation:

𝑈 ∶ |𝜓⟩ |0⟩ancilla ↦
𝑛
∑
𝑖=1
𝐴𝑖 |𝜓⟩ |𝑖⟩ancilla . (13)

Conclude that 𝑈 followed by a measurement of the ancilla register gives the same statistics as the
POVM.

4. (2 points) Given a unitary 𝑈 acting on the state and some ancilla of dimension 𝑛 initialized to zero,
construct a POVM equivalent to applying 𝑈 and measuring the ancilla in the standard basis.

Returning to the problem at hand, we can generalize the distinguishing measurement as a POVM with
two elements𝑀 and 𝕀−𝑀 , with the two outcomes corresponding to answering 0 and 1, respectively. Attempt
the next four parts if you are able to – if not, you will get another chance to return to them when we will have
covered some more background material in class.
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5. (2 points) Show that then the optimal value of Δ is

Δopt = max
0≤𝑀≤𝕀

tr (𝑀𝜌) (14)

where 𝜌 = |𝜓0⟩⟨𝜓0| − |𝜓1⟩⟨𝜓1|.

6. (2 points) Conclude that

max
0≤𝑀≤𝕀

tr (𝑀𝜌) =
1
2
tr
√
𝜌2. (15)

(Hint: Consider an optimal 𝑀 in the basis where 𝜌 is diagonal).

7. (2 points) Finish by showing

tr
√
𝜌2 = 2

√
1 − |⟨𝜓0|𝜓1⟩|2. (16)

(Hint: 𝜌 is a rank 2 matrix; therefore it has only 2 non-zero eigenvalues. Now express tr(𝜌2) in two
ways.)

8. (1 point) Give a justification as to why the maximizing𝑀 and the measurement you gave in Part 2 are
the same.
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