
CSE 534 Autumn 2024: Set 1

Instructor: Chinmay Nirkhe
Due date: October 2nd, 2024 10:00pm

Instructions: Solutions should be legibly handwritten or typset. Mathematically rigorous solutions are
expected for all problems unless explicitly stated.

You are encouraged to collaborate on problems in small teams but everyone must individually submit
solutions. Solutions for the problems may be found online or in textbooks – but do not use them.

For grading purposes, start each problem on a new page.

Problem 1 (Validity of Born’s rule). (2 points) For any given quantum state |𝜓⟩ ∈ (ℂ2)⊗𝑛, show that 𝑛-qubit
Born’s rule yields a valid probability distribution.

Problem 2 (Tensor Products and Bra-ket notation). Let 𝐴, 𝐶 be matrices in ℂ𝑑1×𝑑1 and 𝐵,𝐷 be matrices in
ℂ𝑑2×𝑑2 . Prove the following identities for 1/2 a point each. (Assume 𝐴 and 𝐵 are invertible for the last
identity).

𝐴𝑖𝑗 = ⟨𝑖| 𝐴 |𝑗⟩ (1a)

tr(𝐴) = ∑
𝑖
⟨𝑖| 𝐴 |𝑖⟩ (1b)

⟨𝑖| 𝐴𝐶 |𝑗⟩ = ∑
𝑘
⟨𝑖| 𝐴 |𝑘⟩ ⋅ ⟨𝑘| 𝐶 |𝑗⟩ . (1c)

(𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷) (1d)

⟨𝑖, 𝑘| 𝐴 ⊗ 𝐵 |𝑗, 𝓁⟩ = ⟨𝑖| 𝐴 |𝑗⟩ ⋅ ⟨𝑘| 𝐵 |𝓁⟩ . (1e)

(𝐴 ⊗ 𝐵)† = 𝐴† ⊗ 𝐵† (1f)

(𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1. (1g)

Problem 3. (2 points) Show that if |𝑎1⟩ , … , |𝑎𝑑−1⟩ are an orthonormal basis for ℂ𝑑1 and |𝑏1⟩ , … , ||𝑏𝑑2⟩ are
an orthonormal basis for ℂ𝑑2 , then the set of tensor product terms |𝑎𝑖⟩ ⊗ |𝑏𝑗 ⟩ form an orthonormal basis for
ℂ𝑑1𝑑2 .

Problem 4 (Swap unitary). the swap unitary 𝐒𝐖𝐀𝐏 is defined as the unique transformation such that for
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any |𝜓⟩ ∈ (ℂ2)⊗𝑛 and |𝜙⟩ ∈ (ℂ2)⊗𝑛,

𝐒𝐖𝐀𝐏(|𝜓⟩ ⊗ |𝜙⟩) = |𝜙⟩ ⊗ |𝜓⟩ . (2)

The CNOT12 unitary can be defined as the unique unitary such that for 𝑎, 𝑏 ∈ {0, 1},

CNOT12 |𝑎⟩1 ⊗ |𝑏⟩2 = |𝑎⟩1 ⊗ |𝑎 ⊕ 𝑏⟩2 . (3)

(2 points) Prove that the swap unitary for single qubits can be defined as

𝐒𝐖𝐀𝐏 = CNOT12 ⋅ CNOT21 ⋅ CNOT12. (4)

Problem 5 (Partial measurements). In the second lecture, we saw/will see an axiom for a partial measurement
of only the 1st qubit of a 𝑛-qubit quantum state |𝜓⟩. Namely that the probability of measuring 𝑖 ∈ {0, 1} is
‖|𝜓𝑖⟩‖2 and the resulting state is |𝑖⟩ ⊗ |𝜓𝑖⟩ /‖|𝜓𝑖⟩‖ where

|𝜓𝑖⟩
def= (⟨𝑖| ⊗ 𝕀2𝑛−1) |𝜓⟩ ; equivalently, |𝜓⟩ = |0⟩ |𝜓0⟩ + |1⟩ |𝜓1⟩ . (5)

1. (1 point) How can measurement of the first qubit be used to emulate measurement of any other single
qubit?

2. (2 points) Notice that after measurement, the first qubit it unentangled from the remaining 𝑛−1. What
is the state of the system after measuring out the first 𝑘 qubits (sequentially) and getting outcomes
𝑦1, … , 𝑦𝑘? What is the probability of this event?

3. (2 points) Argue that the order of measurement of the 𝑘 qubits did not matter.

Hint:Usethat𝐴⊗𝕀and𝕀⊗𝐵asmatricesalwayscommute.

Problem 6 (A very large Hilbert space). High-dimensional geometry is weird. We will show that in a
𝑛-qubit Hilbert space  = (ℂ2)⊗𝑛, we can find a doubly-exponential sized set of normal vectors that are all
pairwise 𝜖-orthogonal for any constant 𝜖 > 0.

1. (1 point) What is the maximal number of pairwise perfectly orthogonal states in ?

2. (2 points) For every function 𝑓 ∶ {0, 1}𝑛 → {0, 1} define the phase state

|𝜓𝑓 ⟩
def=

1√
2𝑛

∑
𝑥∈{0,1}𝑛

(−1)𝑓 (𝑥) |𝑥⟩ . (6)

For a fixed 𝑓 and uniformly random 𝑔 , calculate an upper bound on the probability that |𝜓𝑓 ⟩ and |𝜓𝑔⟩
are not 𝜖-orthogonal – i.e. || ⟨𝜓𝑓 |𝜓𝑔⟩|| > 𝜖.

3. (2 points) Using a greedy strategy, generate (for constant 𝜖) a doubly-exponentially large set of phase
states that are pairwise 𝜖-orthogonal. What is the dependence on the set size in terms of 𝜖 and 𝑛?
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It is interesting to note that there does not exist any asymptotically larger set of 𝜖-orthogonal vectors within
. This can be proven by showing that the problem we are considering is a special case of the Johnson-
Lindenstrauss lemma. The optimality of which was shown by Green Larsen and Nelson.

Problem 7 (Higher dimensional shenanigans). Place 4 circles of radius 1 inside a square box of side length
4 such that the circles don’t overlap and only touch each other (as shown). Now place another circle centered
at the center of the box that is tangent to all 4 circles.

1. (1 point) What is the radius of the center circle?

2. (1 point) The three-dimensional analog is 8 spheres of radius 1 inside a cube of side length 4. A center
sphere is placed tangent to the 8 spheres. What is the radius of the center sphere?

3. (2 points) The 𝑛-dimensional analog consists of placing 2𝑛 many (𝑛 − 1)-spheres of radius 1 inside a
𝑛-cube of side length 4. A center sphere is placed tangent to the 2𝑛 spheres. What is the radius of the
center sphere?

Calculate the 𝑛0 ∈ ℕ such that for all 𝑛 ≥ 𝑛0, the center (𝑛 − 1)-sphere still only touches the other
spheres but bleeds outside the 𝑛-cube.

Problem 8 (Reversible classical computation).
This problem is optional and not graded. However, I expect you know how to solve it.

You probably know that every boolean function 𝑓 ∶ {0, 1}𝑛 → {0, 1}𝑚 can be computed by a classical boolean
circuit consisting of a few basic operators: NOT, AND, COPY, and initializing extra bits as zeroes. The
function 𝑓 , in general, will not be reversible – meaning that given 𝑦 ∈ Im 𝑓 , there may not be a way to
compute 𝑥 such that 𝑓 (𝑥) = 𝑦, as the 𝑥 may not be unique.

However, the function 𝑓 ′ ∶ {0, 1}𝑛 → {0, 1}𝑛+𝑚 defined by

𝑓 ′(𝑥, 𝑦) def= (𝑥, 𝑓 (𝑥) ⊕ 𝑦) (7)

is a reversible function. A boolean gate on 𝑘 bits is reversible if it can be represented by a 2𝑘-sized permutation
matrix.
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1. The reversible version of the AND gate is the 3-bit gate defined by

(𝑥, 𝑦, 𝑧) ↦ (𝑥, 𝑦, 𝑥 ⋅ 𝑦 ⊕ 𝑧) for 𝑥, 𝑦, 𝑧 ∈ {0, 1}. (8)

What is the 8 × 8 matrix representation of this gate?

2. Construct a circuit using only reversible 1-,2-, or 3-bit reversible gates that computes 𝑓 ′. Your circuit
will likely need additional bits initialized as zeroes. First construct a function 𝑔 that generates output
(𝑥, 𝑓 (𝑥) ⊕ 𝑦, junk) from input (𝑥, 𝑦, 0… 0). Then show how you can run the circuit in reverse and
“uncompute” the junk so that your final output is (𝑥, 𝑓 (𝑥) ⊕ 𝑦, 0… 0).

3. How many gates were required to compute 𝑓 ′ with respect to the number of gates required to compute
𝑓 ?
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