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Problems

Polar representation of complex numbers.

Consider a complex number z ∈ C such that z = reiθ for r ∈ R≥0 and θ ∈ [0, 2π).

1. Show that every complex number a+ bi for a, b ∈ R can be expressed with a polar representation. Show that the
polar representation is unique; that is z = r ′eiθ ′ if and only if r ′ = r and θ ′ = θ .
Proof:

When z = 0, any choice of θ ∈ [0, 2π) works since it must be that ρ = 0. Therefore, we restrict our consider-
ation to when z ̸= 0.

Given an arbitrary non-zero complex number z = a+ i b, where a, b ∈ R. Then z can be represented as a point
on the complex plane (a, b). By the Pythagorean Theorem, we have that

|z|=
p

a2 + b2

We can now find the angle between the positive x- axis, and the line segment from the origin (0, 0) to (a, b),
which we already showed is |z|. This gives us

cos(θ ) =
a
|z|

and sin(θ ) =
b
|z|

which necessarily implies that
a = |z| cos(θ ) and b = |z| sin(θ )

Given below is a visual representation of the right angled triangle with side lengths a and b, and an application
of the Pythagorean theorem to conclude the hypotenuse of this triangle is given by

p
a2 + b2, where for the

purposes of clarity, the triangle is more concretely defined as shown below

a

b

p
a2 + b2

θ

(Note that this visual diagram is not entirely accurate, since it depends on the angle θ is which can lead to
the number being in different quadrants.) Therefore, we have that substituting in the above expression

z = a+ i b

= |z| cos(θ ) + i|z| sin(θ )
= |z| (cos(θ ) + i · sin(θ ))

= |z|eiθ using Euler’s formula
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where by definition |z| ≥ 0. Setting ρ = |z| and θ = θ , this is exactly what we wanted to show!

Uniqueness: We now show that the polar representation of z is unique. Suppose z = a + i b has two polar
representations ρeiθ and ρ′eiθ ′ for some ρ,ρ′ ≥ 0 and θ ,θ ′ ∈ [0,2π]. Then we have that

ρeiθ = ρ (cos(θ ) + i · sin(θ )) using Euler’s formula

= ρ cos(θ ) + i ·ρ sin(θ )

and similarly,

ρ′eiθ ′ = ρ′
�

cos(θ ′) + i · sin(θ ′)
�

using Euler’s formula

= ρ′ cos(θ ′) + i ·ρ′ sin(θ ′)

We can equate the real and imaginary parts of these two expressions to get that

ρ cos(θ ) = ρ′ cos(θ ′) and ρ sin(θ ) = ρ′ sin(θ ′)

Squaring and adding up both of the equations, we have that

ρ2 cos2(θ ) +ρ2 sin2(θ ) = ρ′2 cos2(θ ′) +ρ′2 sin2(θ ′)

ρ2 = ρ′2 since cos2(θ ) + sin2(θ ) = 1 for all θ

This means that ρ = ρ
′

or ρ = −ρ
′
. (the opposite argument of ρ

′
= −ρ is symmetric) Since ρ,ρ

′
≥ 0, we

must have that ρ = ρ
′
. This gives us that

ρeiθ = ρ′eiθ ′ =⇒ eiθ = eiθ ′ ≡ ei(θ−θ ′) = 1

Expanding the left-hand side using Euler’s formula, we have that

cos(θ − θ
′
) + i · sin(θ − θ

′
) = 1

This means that the real part of the left-hand side must be equal to 1. For cos(θ −θ
′
) = 1, it must be the case

that θ − θ
′
is a multiple of 2π (since cos(2πk) = 1). This means that

θ − θ
′
= 2πk for some integer k ∈ Z

Now consider the possible values of θ − θ
′
. Since θ ,θ

′
∈ [0,2π], we have that 0 ≤ θ ,θ

′
< 2π. So then

−2π < θ − θ
′
< 2π. Since θ − θ

′
is a multiple of 2π, we have that k is either 0, or θ − θ

′
= 0. This implies

that θ = θ
′
. This means that these two polar representations are actually the same. ■

2. For z = reiθ and z′ = r ′eiθ ′ , what is the polar representation of the complex conjugate z∗? What is the polar
representaiton of z · z′?
Solution:

Complex conjugate: Given that z = ρeiθ , we have that

z = ρeiθ = ρ (cos(θ ) + i · sin(θ ))
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This necessarily implies the following

z∗ = ρ (cos(θ ) + i · sin(θ )) = ρ · (cos(θ ) + i · sin(θ )) since ρ ∈ R
= ρ · (cos(θ ) + i · sin(θ )) = ρ · (cos(θ )− i · sin(θ ))
= ρ · (cos(−θ ) + i · sin(−θ )) since cos(−θ ) = cos(θ ) and sin(−θ ) = − sin(θ )

= ρ · e−iθ using Euler’s formula

Therefore if the polar representation of z is ρeiθ , then the polar representation of its complex conjugate is
given by ρe−iθ . However, one small caveat, we want our angle θ to be in the prescribed range. If θ = −θ = 0,
we can leave it as is. However if θ > 0, then we simply add 2π to get 2π−θ to be in the range [0, 2π) which
means the formal polar representation is given by

z = ρei(2π−θ ) mod 2π

Product representation: Given that z = ρeiθ and z′ = ρ′eiθ ′ , we have that

z · z′ = ρeiθ ·ρ′eiθ ′ =
�

ρρ
′�

· eiθ eiθ ′ = ρρ
′
· eiθ+iθ ′ = ρρ

′
· ei(θ+θ ′)

3. The multiplicative inverse, denoted z−1, is the unique complex number such that z · z′ = 1. What is the multi-
plicative inverse of z = reiθ and what is the mulitplicative inverse of z = a+ bi?
Solution:

I claim that the multiplicative inverse of z = reiθ is given by z−1 = r−1e−iθ . Indeed note that

z · z−1 = reiθ · r−1e−iθ = r r−1 · eiθ e−iθ = 1

In cartesian coordinates; z = a+ bi, the multiplicative inverse is given by

z−1 =
1

a+ bi
=

1
a+ bi

·
a− bi
a− bi

=
a− bi
a2 + b2

4. For any natural number n ∈ N, calculate the n roots (including multiplicities) of reiθ and express them in terms
of ωn = e2πi/n.
Solution:

The n roots of reiθ are given by

npr
�

cos
�

θ + 2πk
n

�

+ i · sin
�

θ + 2πk
n

��

for k ∈ {0,1, . . . , n− 1}
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Bra-ket notation

Definition 1. Bra-ket notation is a quantum mechanics notation that is popularly used in quantum information
and computation. We use |v〉 to denote a (column)-vector in Cd . Recall that a vector is a matrix with only one
column. Equivalently |v〉 ∈ Cd×1. We use 〈v| ∈ C1×d to denote the row-vector with complex conjugate entries as
that of |v〉. So if

|v〉=









v0
v1
...

vd−1









, then 〈v|=
�

v∗0 v∗1 · · · v∗d−1

�

, (1)

in terms of the entry-wise values of |v〉.

1. What is the value of 〈v|v〉? What is this quantity in traditional mathematical terms? Show this value is always
real.
Solution:

Given the exposition provided in Definition 1, one can see that

〈v|v〉= 〈v| |v〉=
�

v∗0 v∗1 · · · v∗d−1

�









v0
v1
...

vd−1









= v∗0 v0 + v∗1 v1 + · · ·+ v∗d−1vd−1 = |v0|2 + |v1|2 + · · ·+ |vd−1|2 = ∥v∥2

This is the sum of the squares of the magnitudes of the entries of |v〉, which is always real since the magnitude
of a complex number is always real.

2. What is the matrix representation of |v〉〈v|? What is the trace of this matrix? How could you have calculated that
using cyclicality of trace?
Solution:

Matrix representation: Once again assuming the usual definition for |v〉, we have that

|v〉〈v|=









v0
v1
...

vd−1









�

v∗0 v∗1 · · · v∗d−1

�

=









v0v∗0 v0v∗1 · · · v0v∗d−1
v1v∗0 v1v∗1 · · · v1v∗d−1

...
...

. . .
...

vd−1v∗0 vd−1v∗1 · · · vd−1v∗d−1









Trace: Using the standard definition of the trace and observing the diagonal entries of the above matrix, one
sees

Tr(|v〉〈v|) = v0v∗0 + v1v∗1 + · · ·+ vd−1v∗d−1 =
d−1
∑

k=0

|vk|2 = ∥v∥2

However; as the question rather *subtly* suggests; we can compute this quantity without going through the
trouble of computing the matrix representation of |v〉〈v|. Indeed, making use of the cyclicity of the trace

Tr(|v〉〈v|) = Tr(|v〉 〈v|) = Tr(〈v|v〉) = 〈v|v〉= ∥v∥2

3. We use ∥|v〉∥ to denote
p

〈v|v〉. A vector is unit norm if this equals 1. Notationally, we use the following convention
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to describe the unit vectors pointing in each of the coordinate directions:

|0〉=













1
0
0
...
0













, |1〉=













0
1
0
...
0













, |2〉=













0
0
1
...
0













, . . . , |d − 1〉=













0
0
0
...
1













, (2)

These vectors form a basis for Cd which is known as the standard or canonical basis. How can we express the
vector |v〉 in terms of these basis vectors?
Solution:

Assuming the standard component-wise definition of |v〉, we can express |v〉 in terms of the standard basis
vectors as

|v〉= v0 |0〉+ v1 |1〉+ · · ·+ vd−1 |d − 1〉=
d−1
∑

k=0

vk |k〉

4. What is the matrix
d−1
∑

i=0

|i〉〈i| in traditional mathematical terms?

Solution:

I claim that the matrix M=
d−1
∑

i=0

|i〉〈i| is the identity matrix Id . Indeed, one can see this by recalling the operator

definition of the identity, which for all v ∈ Cd satisfies

Idv= v

Let |v〉 ∈ Cd be an arbitrary vector. Making use of the decomposition in terms of standard basis vectors; we
have

M |v〉=

�d−1
∑

i=0

|i〉〈i|

�

|v〉=
d−1
∑

i=0

|i〉〈i|

�d−1
∑

k=0

vk |k〉

�

=
d−1
∑

i=0

d−1
∑

k=0

vk |i〉 〈i|k〉=
d−1
∑

i=0

vi |i〉 〈i|i〉
︸︷︷︸

1

+
d−1
∑

i=0

∑

k ̸=i

vk |i〉 〈i|k〉
︸︷︷︸

0

=
d−1
∑

i=0

vi |i〉= |v〉

Remark: The really nice thing about this kind of argument is that it’s basis-invariant; and while this fact might
be easier to digest for the standard basis as asked in the question; it’s much less obvious for an arbitrary basis :)

5. For i ∈ {0, . . . , d − 1}, what is the value of 〈i|v〉 for |v〉 from before? Show that

|v〉=
d−1
∑

i=0

〈i|v〉 |i〉 . (3)

Proof:
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Given the decomposition of |v〉 in terms of the standard basis vectors, we have that

〈i|v〉= 〈i|

�d−1
∑

k=0

vk |k〉

�

=
d−1
∑

k=0

vk 〈i|k〉= vi

Therefore, we have that

|v〉=
d−1
∑

i=0

vi |i〉=
d−1
∑

i=0

〈i|v〉 |i〉

This completes the proof. ■

6. Let |v〉 and |w〉 be unit vectors. Let M = |w〉〈v|. What is the value of M |v〉? Let
�

�v⊥
�

be a vector such that



v
�

�v⊥
�

= 0. What is M
�

�v⊥
�

?
Solution:

Plugging in the definitions of M and |v〉

M |v〉= |w〉〈v| |v〉= |w〉 〈v|v〉= |w〉

M
�

�v⊥
�

= |w〉〈v|
�

�v⊥
�

= |w〉



v
�

�v⊥
�

= 0

7. Let M be a square matrix ∈ Cd×d with columns |v0〉 , |v1〉 , . . . , |vd−1〉. Show that

M =
d−1
∑

i=0

|vi〉〈i| . (4)

Proof:

By the definition of the matrix M, we have that

M=







...
...

...
|v0〉 |v1〉 · · · |vd−1〉

...
...

...







=







...
...

...
|v0〉 0 · · · 0

...
...

...






+







...
...

...
0 |v1〉 · · · 0
...

...
...






+ · · ·+







...
...

...
0 0 · · · |vd−1〉
...

...
...







= |v0〉〈0|+ |v1〉〈1|+ · · ·+ |vd−1〉〈d − 1|=
d−1
∑

i=0

|vi〉〈i|

This settles the proof. ■
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8. Let M be a matrix in Cd×d and |v〉 a vector in Cd . Argue that the 〈v|M† is the conjugate transpose of M |v〉.
Proof:

Let M be a matrix in Cd×d with columns |m0〉 , |m1〉 , . . . , |md−1〉. In the same vein; let |v〉 be a vector in Cd

with entries v0, v1, . . . , vd−1. Then we have that from the previous result,

M |v〉=

�d−1
∑

i=0

|mi〉〈i|

�

|v〉=
d−1
∑

i=0

|mi〉〈i| |v〉=
d−1
∑

i=0

|mi〉 〈i|v〉=
d−1
∑

i=0

vi |mi〉

Taking the conjugate transpose of this expression yields

(M |v〉)† =

�d−1
∑

i=0

vi |mi〉

�†

=
d−1
∑

i=0

v∗i 〈mi|=
d−1
∑

i=0

〈v|i〉 〈mi|= 〈v|

�d−1
∑

i=0

|i〉〈mi|

�

= 〈v|M†

This completes the proof. ■
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Bases for vector spaces:

Definition 2. A set V ⊂ Cd is a subspace if it is closed under scalar multiplication and addition. A basis B for a
vector space is a collection of vectors such that every vector can be expressed as a linear combination of vectors
from B and B is of minimal cardinality.

1. Show that all bases for a vector space V ⊂ Cd have the same cardinality which is an integer between 0 and d.
Proof:

Suppose U = {u0, . . . ,um} and V = {v0, . . . ,vn} are bases for V ⊂ Cd . Then the v’s span V and the u’s are
linearly indepedent. By Theorem 6 m≤ n. Reverse the roles; the u’s span V and v’s are linearly independent
and using Theorem 6 once again allows us to assert n≤ m. Therefore m= n. ■

2. Show that |v0〉=
1p
2

�

1
1

�

and |v1〉=
1p
2

�

1
−1

�

form a basis for C2. Express the vectors |0〉 and |1〉 (see definitions

above) in terms of this basis. The vectors |v0〉 and |v1〉 are used so much in quantum computation that they have
special names: |+〉 and |−〉.
Solution:

We can write down the vector

�

1
0

�

as a linear combination of the vectors 1p
2

�

1
1

�

and 1p
2

�

1
−1

�

as
p

2
2 times the

sum of the two vectors, i.e.
p

2
2 (v1 + v2).

p
2

2

�

1
p

2

�

1
1

��

+
p

2
2

�

1
p

2

�

1
−1

��

=

�

1
2

�

1
1

�

+
1
2

�

1
−1

��

=
1
2

��

1
1

�

+

�

1
−1

��

=
1
2

��

2
0

��

=

�

1
0

�

= |0〉

We can write down the vector

�

0
1

�

as a linear combination of the vectors 1p
2

�

1
1

�

and 1p
2

�

1
−1

�

with the coef-

ficients
p

2
2 and −

p
2

2 , i.e.
p

2
2 v1 −

p
2

2 v2.

p
2

2

�

1
p

2

�

1
1

��

+ (−
p

2
2
)

�

1
p

2

�

1
−1

��

=
1
2

��

1
1

�

−
�

1
−1

��

=
1
2

��

1
1

�

+

�

−1
1

��

=

�

0
1

�

= |1〉

3. Express the vectors |0〉 and |1〉 in terms of 1p
2

�

1
−i

�

and 1p
2

�

1
i

�

.

Solution:

We can write down the vector

�

1
0

�

as a linear combination of the vectors 1p
2

�

1
−i

�

and 1p
2

�

1
i

�

as
p

2
2 times the

sum of the two vectors, i.e.
p

2
2 (v1 + v2).

p
2

2

�

1
p

2

�

1
−i

��

+
p

2
2

�

1
p

2

�

1
i

��

=

�

1
2

�

1
−i

�

+
1
2

�

1
i

��

=
1
2

��

1
−i

�

+

�

1
i

��

=
1
2

��

2
0

��

=

�

1
0

�

= |0〉

We can write down the vector

�

0
1

�

as a linear combination of the vectors 1p
2

�

1
−i

�

and 1p
2

�

1
i

�

with the coeffi-
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cients
p

2
2 and −

p
2

2 , i.e.
p

2
2 v1 −

p
2

2 v2.

p
2

2

�

1
p

2

�

1
−i

��

+ (−
p

2
2
)

�

1
p

2

�

1
i

��

=
1
2

��

1
−i

�

−
�

1
i

��

=
1
2

��

1
−i

�

+

�

−1
i

��

=

�

0
1

�

= |1〉
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Inner product spaces

Definition 3. Consider a vector space V with a function f : V × V → C satisfying the following properties: For all
vectors u, v, w ∈ V ,

• (linearity) for all α,β ∈ C, f (u,αv + βw) = α f (u, v) + β f (u, w).

• (complex conjugate symmetry) f (u, v) = f (v, u)∗.

• (positivity) f (u, u) ∈ R+ and f (u, u) = 0 iff u= 0.

Such a vector space is called an inner product space. When considering finite dimensional vector spaces, inner
product spaces are equivalent to Hilbert spaces.

1. Show that f (αu, v) = α∗ f (u, v).
Proof:

We proceed as expected;

f (αu, v) = f (v,αu) = α f (v, u) = α∗ f (u, v) using conjugate symmetry and then linearity

This completes the proof. ■

2. Show that the bilinear form given by f (|u〉 , |v〉) = 〈u|v〉 for |u〉 , |v〉 ∈ Cd makes Cd an inner product space.
Proof:

Let |u〉 , |v〉 , |w〉 ∈ Cd . We proceed by just doing because sometimes doing is easier than explaining.

• (linearity) For all α,β ∈ C, we have that

f (|u〉 ,α |v〉+ β |w〉) = 〈u|αv+ βw〉=
d−1
∑

i=0

ui(αvi + βwi)

= α
d−1
∑

i=0

ui vi + β
d−1
∑

i=0

uiwi = α 〈u|v〉+ β 〈u|w〉

• (complex conjugate symmetry) This follows from Theorem 2

• (positivity) Expanding the definition of the inner product, we have that

f (|u〉 , |u〉) = 〈u|u〉=
d−1
∑

i=0

uiui =
d−1
∑

i=0

|ui|2 ≥ 0

and f (|u〉 , |u〉) = 0 neccessitates ∥u∥2 = 0 which implies |u〉= 0.

This completes the proof. ■
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Definition 4. In a lot of mathematical notation, the function f is often expressed as a bilinear form: 〈·, ·〉 :=
f (·, ·). The bra-ket notation was adopted in part because it matches this. We previously defined the norm as
∥|v〉∥=
p

〈v|v〉.

3. Show that the function ∥·∥ : Cd → R+ defined from the inner product yields a metric which is a function satisfying
linearity, positivity, and the triangle inequality.
Proof:

Let |u〉 , |v〉 , |w〉 ∈ Cd and α ∈ C. We proceed as follows:

• (linearity) We have that

∥α |u〉∥=
Æ

〈αu|αu〉=

√

√

√

√

d−1
∑

i=0

αuiαui =

√

√

√

√

d−1
∑

i=0

|α|2|ui|2 = |α|

√

√

√

√

d−1
∑

i=0

|ui|2 = |α| · ∥|u〉∥

• (positivity) We have that

∥|u〉∥=
Æ

〈u|u〉=

√

√

√

√

d−1
∑

i=0

|ui|2 ≥ 0

• (triangle inequality) We have that

∥|u〉+ |v〉∥2 = 〈u+ v|u+ v〉= 〈u|u〉+ 〈u|v〉+ 〈v|u〉+ 〈v|v〉

= ∥ |u〉 ∥2 + 2ℜ(| 〈u|v〉 |) + ∥ |v〉 ∥2 Theorem 2 and Observation

≤ ∥|u〉 ∥2 + 2| 〈u|v〉 |+ ∥ |v〉 ∥2 Theorem 3

≤ |u〉 ∥2 + 2∥u∥2 · ∥ |v〉 ∥2 + ∥ |v〉 ∥2 Cauchy Schwarz

= (∥ |u〉 ∥2 + ∥ |v〉 ∥2)2 =⇒ ∥|u〉+ |v〉∥ ≤ ∥ |u〉 ∥2 + ∥ |v〉 ∥2

This completes the proof. ■

4. Is it true that in a complex metric space, two unit vectors |u〉 and |v〉 satisfy 〈u|v〉 = 0 iff ∥|u〉 − |v〉∥ =
p

2? Give
a proof or counterexample. If not, is there a restricted metric space in which this is true.
Proof:

This one reveals itself after sufficients amounts of meditation. Consider the vectors |u〉 =
�

i
0

�

and |v〉 =
�

1
0

�

,

we have that

〈u|v〉=
��

i
0

�

,

�

1
0

��

= −i ̸= 0

while simultaneously we have that

∥|u〉 − |v〉∥=








�

i
0

�

−
�

1
0

�







=









�

i − 1
0

�







=
Æ

|i − 1|2 + 02 =
p

2

While the Pythagorean theorem is not a bi-conditional in Cd , it is true in Rd . Indeed this is merely a conse-
quence of expanding the square of the Euclidean norm and using the fact that the inner product is completely
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symmetric in Rd .

∥ |u〉 − |v〉 ∥22 = 〈u|u〉 − 〈u|v〉 − 〈v|u〉+ 〈v|v〉

= 2− 2 〈u|v〉 and therefore ∥ |u〉 − |v〉 ∥22 = 2⇔〈u|v〉= 0

This completes the proof. ■

5. Generalize to show that if |〈u|v〉| ≤ ε, then

∥|u〉 − |v〉∥2 ≥ 2(1− ε). (5)

This says that when the inner product is small, then the two vectors are far from each other.
Proof:

From the definition of the Euclidean Norm and its relation to inner products we have that

∥u− v∥22 = 〈u|u〉 − 〈u|v〉 − 〈v|u〉+ 〈v|v〉 via linearity

= 2− 〈u|v〉 − 〈u|v〉= 2− 2ℜ (〈u|v〉) Theorem 2 and Observation

≥ 2− 2| 〈u|v〉 | ≥ 2− 2ε= 2(1− ε) Theorem 3

This completes the proof. ■

6. Show the converse is false. Find vectors such that |〈u|v〉|= 1 but they are maximally far apart.
Solution:

Consider the vectors |u〉=
�

1
0

�

and |v〉=
�

−1
0

�

, we have that

| 〈u|v〉 |=
�

�

�

�

��

1
0

��

�

�

�

�

−1
0

���

�

�

�

=

�

�

�

�

�

1
0

�

·
�

−1
0

��

�

�

�

= |1 · −1+ 0 · 0|= 1

We also have that the distance between the two vectors is given by

∥ |u〉 − |v〉 ∥2 =








�

1
0

�

−
�

−1
0

�







=









�

2
0

�







=
p

22 + 02 =
p

4= 2

However by the triangle inequality;

∥ |u〉 − |v〉 ∥2 ≤ ∥|u〉 ∥2 + ∥ |v〉 ∥2 = 1+ 1= 2

The desired result thus follows.

7. Show that if |〈u|v〉| ≥ 1− ε, then there exists an angle θ ∈ [0, 2π) such that


|u〉 − eiθ |v〉


≤
p

2ε. (6)

This shows that a large inner product implies that the two vectors are close “up to phase”.
Proof:

We consider the square of the Euclidean norm as is convention. Let |u〉 , |v〉 be arbitrary unit vectors in Cn and
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ε > 0. Fix θ ∈ [0,2π) to be chosen later. We have that

∥ |u〉 − eiθ |v〉 ∥22 = 〈u|u〉 −



u
�

�eiθv
�

−



eiθv
�

�u
�

+



eiθv
�

�eiθv
�

= 1−



u
�

�eiθv
�

− 〈u|eiθv〉+ |eiθ |2
︸︷︷︸

=1

〈u|v〉= 2−



u
�

�eiθv
�

− 〈u|eiθv〉 Theorem 5

= 2− 2ℜ
�


u
�

�eiθv
��

= 2− 2ℜ
�

eiθ 〈u|v〉
�

Observation

Let z = 〈u|v〉 which has the polar representation z = |z|eiφ where |z| ≥ 0 and φ ∈ [0, 2π). The time has
arrived to pick θ . Define θ = 2π−φ. It is then clear that

ℜ
�

eiφ · 〈u|v〉
�

=ℜ
�

ei(2π−θ ) · |z|eiθ
�

=ℜ
�

ei(2π−θ+θ ) · |z|
�

=ℜ(|z|) = |z|= | 〈u|v〉 |

This gives us that

∥ |u〉 − eiθ |v〉 ∥22 = 2− 2| 〈u|v〉 | ≤ 2− 2(1− ε) = 2ε since | 〈u|v〉 | ≥ 1− ε =⇒ −2| 〈u|v〉 | ≤ −2(1− ε)

which therefore gives us that
∥ |u〉 − eiθ |v〉 ∥2 ≤

p
2ε

thereby settling the claim. ■
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Linear transformations

Theorem 1. Recall that over a vector space V ⊆ Cd , any linear transformation T : V → V has a matrix represen-
tation such that T (|v〉) = MT |v〉.

Proof:

⇐= : Let T : V → V be a transformation that has a matrix representation A such that T (|v〉) = A |v〉 for all |v〉 ∈ V .
It is now sufficient to argue that T is linear. Let |u〉 , |v〉 ∈ V and α,β ∈ C. We have that

T (α |u〉+ β |v〉) = A(α |u〉+ β |v〉) = αA |u〉+ βA |v〉= αT (|u〉) + βT (|v〉)

where we exploit the linearity of matrix-vector multiplication.
=⇒ : Let T : V → V be a linear transformation. It remains to show that T has a matrix representation. Let |v〉 ∈ V
be an arbitrary vector. The astute reader will recall that {|ei〉}d−1

i=0 is the standard basis for Cd . We can write |v〉 as a
linear combination of the standard basis vectors, i.e.

|v〉=
d−1
∑

i=0

vi |ei〉

where vi are the entries of |v〉. The result now follows since

T (|v〉) = T

�d−1
∑

i=0

vi |ei〉

�

=
d−1
∑

i=0

vi T (|ei〉) as per linearity of T

=







...
...

...
...

T (|e0〉) T (|e1〉) · · · T (|ed−1〉)
...

...
...

...







︸ ︷︷ ︸

A









v0
v1
...

vd−1









= A |v〉

which completes the proof. ■

Definition 5. For a bilinear form 〈·, ·〉 defining an inner product space, the adjoint of a linear transform T is the
transformation T † such that

〈T †u, v〉= 〈u, T v〉. (7)
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1. Show that the adjoint of a linear transform with matrix representation T for the bilinear form 〈·|·〉 is defined by
the conjugate transpose.
Proof:

Given the definition of A†, pick u = ei and v = e j for 0 ≤ i, j ≤ n where ei ,e j ∈ Cn are the standard basis
vectors of Cn. It then reveals itself that

〈A†ei ,e j〉= 〈A
†
;i ,e j〉= A†

j,i

where we denote A; i to be the ith column of A. To see this, consider an arbitrary matrix B ∈ Cn×n, defined
such that

B=









b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n









This therefore gives us that

Bei =









b1,1 b1,2 · · · b1,n
b2,1 b2,2 · · · b2,n

...
...

. . .
...

bn,1 bn,2 · · · bn,n









·















0
...
1
...
0















=









b1,i
b2,i
...

bn,i









= B; i

Using the definition of the conjugate transpose, we know that

〈A†ei ,e j〉= 〈ei ,Ae j〉

and simplifying the right hand side, we have that this is equal to

〈ei ,Ae j〉= 〈ei ,A; j〉= Ai, j

The result thus follows since
Ai, j = A†

j,i⇔ A† = A
⊤

which completes the proof. ■

2. A matrix H ∈ Cd×d is Hermitian if H† = H where H† is the conjugate transpose.

• Show that the diagonal coordinates of H must be real.
Proof:

This follows immediately since

H= H†⇔ Hi, j = H†
j,i =⇒ Hi,i = H†

i,i =⇒ Hi,i ∈ R

as desired. ■

• Show that the eigenvalues of H must be real.
Proof:
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Let |v〉 ∈ Cn be an eigenvector of H with eigenvalue λ. We have that

H |v〉= λ |v〉 =⇒ 〈v|H† = λ 〈v| taking the conjugate transpose of both sides

=⇒ 〈v|H |v〉
︸︷︷︸

λ|v〉

= λ 〈v|v〉= λ∥v∥22 taking an inner product with |v〉

=⇒ λ∥v∥22 = λ∥v∥
2
2 =⇒ λ= λ =⇒ λ ∈ R since ∥v∥2 ̸= 0

This completes the proof. ■

• Let |v〉 be a unit eigenvector of eigenvalue λ ∈ R. Let H′ = H−λ |v〉〈v|. Show that H′ |v〉 = 0. Next, let |w〉
be a vector orthogonal to |v〉. Show that H′ |w〉= H |w〉.
Proof:

Let |v〉 be a unit eigenvector of H with eigenvalue λ ∈ R. We have that

H′ |v〉= (H−λ |v〉〈v|) |v〉= H |v〉 −λ |v〉 〈v|v〉
︸︷︷︸

1

= λ |v〉 −λ |v〉= 0

as desired. Let |w〉 be a vector orthogonal to |v〉. We have that

H′ |w〉= (H−λ |v〉〈v|) |w〉= H |w〉 −λ |w〉 〈v|w〉
︸ ︷︷ ︸

0

= H |w〉

as desired. This completes the proof. ■

NOTE: I believe initially it said Π = I− |λ〉〈λ|; let me know if this modification makes sense and the defini-
tions I assumed are correct - Luksh

• Let Π = I− |v〉〈v|. Recall that a matrix is a projection if it equals its square; or equivalently its eigenvalues
are either 1 or 0. Show that Π is a projection i.e. Π2 = Π. Show that H′ = ΠHΠ.
Proof:

Π is a projection: We have that

Π2 = (I− |v〉〈v|)2 = (I− |v〉〈v|)(I− |v〉〈v|) = I− |v〉〈v| − |v〉〈v|+ |v〉 〈v|v〉
︸︷︷︸

=1

〈v|

= I− |v〉〈v| − |v〉〈v|+ |v〉〈v|= I− |v〉〈v|= Π

H′ = ΠHΠ: We have that

ΠHΠ= (I− |v〉〈v|)H(I− |v〉〈v|) = (H− |v〉〈v|)(H−H |v〉
︸︷︷︸

λ|v〉

〈v|)

= (I− |v〉〈v|)(H−λ |v〉〈v|) = H−λ |v〉〈v| − |v〉〈v|H+λ |v〉〈v|= H− |v〉 〈v|H

= H− |v〉 (H |v〉)† = H− |v〉〈v|λ† = H−λ |v〉〈v|= H′

as desired. This completes the proof. ■

• Use this and the Gram-Schmidt process to show that there exist eigenvalues λ0, . . . ,λd−1 ∈ R and an or-
thonormal set of eigenvectors |v0〉 , . . . , |vd−1〉 such that

H=
d−1
∑

i=0

λi |vi〉〈vi| . (8)
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Proof:

Let H ∈ Cd×d be an arbitrary Hermitian matrix. We argue by induction on d.
Base Case: For d = 1, H= H† =⇒ H ∈ R and therefore the trivial decomposition of H= 1 ·H · 1 holds.
Inductive Hypothesis: Assume that the claim holds for d = k, i.e. any hermitian H ∈ Ck×k can be
decomposed as

H=
k−1
∑

i=0

λi |vi〉〈vi|

where λi ∈ R and {|vi〉}k−1
i=0 is an orthonormal set of eigenvectors or as matrices

H= UΛU† where U is unitary and Λ is diagonal

Inductive Step: Let H= H† ∈ C(k+1)×(k+1) be an arbitrary Hermitian matrix. Let |v〉 be a unit eigenvector
with corresponding eigenvalue λ. Now define

P := |v〉〈v| =⇒ P⊥ = I− |v〉〈v|

Making use that the projector onto the span of |v〉 and its orthogonal complement sum to the identity,
we have that

H= I ·H · I= (P+ P⊥)H(P+ P⊥) = PHP+ PHP⊥ + P⊥HP+ P⊥HP⊥

We now simplify the individual terms in the sum above. We have that

– Let |x〉 ∈ Ck+1 be an arbitrary vector. Then

P⊥HP |x〉= (I− |v〉〈v|)H |v〉 〈v|x〉

= 〈v|x〉
�

H |v〉 − |v〉 〈v|H |v〉〉
�

= 〈v|x〉
�

λ |v〉 −λ |v〉 〈v|v〉
�

= 0

where we have used the fact that H |v〉= λ |v〉. Since |x〉 was arbitrary, we have that P⊥HP= 0.
– Let |x〉 ∈ Ck+1 be an arbitrary vector. Then

PHP⊥ |x〉= |v〉〈v|H(I− |v〉〈v|) |x〉= |v〉〈v|
�

H |x〉 − 〈v|x〉H |v〉
�

= |v〉 〈v|H|x〉 − 〈v|x〉 · 〈v|H|v〉
︸ ︷︷ ︸

λ

· |v〉

= λ 〈v|x〉 · |v〉 −λ 〈v|x〉 |v〉= 0

where we have used the fact that H |v〉= λ |v〉. Since |x〉 was arbitrary, we have that PHP⊥ = 0.
– Since P= |v〉〈v|;

PHP= |v〉〈v|H |v〉〈v|= |v〉〈v|λ |v〉〈v|= λ |v〉〈v|

– Finally we move to compute P⊥HP⊥. Observe that for any orthonormal basis {|vi〉}ki=0, we have that

I =
∑k

i=0 |vi〉〈vi|. By Theorem 7 the normalized eigenvectors of H form an orthonormal basis for
Ck+1 and therefore satisfy the above completeness relation. Therefore

P⊥ = I− |v〉〈v|=
k
∑

i=1

|vi〉〈vi|= VV† where V=
�

|v1〉 · · · |vk〉
�

∈ C(k+1)×k
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Therefore plugging this into the expression for P⊥HP⊥, one yields

P⊥AP⊥ = VV†HVV† = VV†HV
︸ ︷︷ ︸

Λ

V† = VΛV† where Λ ∈ Ck×k

H= H† =⇒ Λ† = V†H†V= V†HV= Λ

Therefore applying the inductive hypothesis, we have that

Λ= UΛ′U† where Λ′ is diagonal and U is unitary

We are nearing the end of the proof. It can be easily verified that the product of two matrices with
orthonormal columns is another resultant matrix with orthonormal columns. Additionally making
use of the column-representation of the matrix product, we can assert that the columns of VU are
orthonormal to V. We then obtain

P†HP† = VU
︸︷︷︸

S∈C(k+1)×k

Λ′U†V† = SΛ′S† where S†S= I

S=







...
...

...
s1 · · · sk
...

...
...






=⇒ PHP⊥ = SΛ′S† =

k
∑

i=1

λi |si〉〈si|

Collecting non-zero contributions to the sum, we have that

H= PHP+ PHP⊥ + P⊥HP+ P⊥HP⊥

= λ |v〉〈v|+ 0+ 0+
k
∑

i=1

λi |si〉〈si|= ŨΛ̃Ũ† where Ũ=
�

|v〉 S
�

and Λ̃=

�

λ 0
0 Λ′

�

Finally it can be seen that Ũ has orthonormal columns and Λ̃ is diagonal. This completes the proof. ■

3. A matrix U ∈ Cd×d is unitary if U†U= I. Show the following are equivalent by proving that each implies the next
and the last implies the first.

• U is unitary.

• U maps an orthonormal basis to an orthonormal basis.

• U maps any unit vector to another unit vector.

Proof:

• Let U ∈ Cd×d be an arbitrary unitary matrix. Given some B = {|bi〉}d−1
i=0 , an orthonormal basis for Cd , we

have that




Ubi

�

�Ubj

�

=



bi

�

�b j

�

=

¨

1 i = j

0 i ̸= j
Theorem 4

=⇒ {U |bi〉}d−1
i=0 = UB is an orthonormal basis

• Let U ∈ Cd×d be a matrix that maps an orthonormal basis to another orthonormal basis. Let |u〉 ∈ Cd be an
arbitrary unit vector and B = {|bi〉}d−1

i=0 be an orthonormal basis. Let |u〉 =
∑d−1

i=0 ui |bi〉 be the expansion of

19



|u〉 in terms of the basis vectors. We have that

∥U |u〉 ∥2 =











U

�d−1
∑

i=0

ui |bi〉

�











2

=

�

�

�

�

�

d−1
∑

i=0

uiU |bi〉

�

�

�

�

�

2

=

*

d−1
∑

i=0

uiU |bi〉

�

�

�

�

�

d−1
∑

j=0

u jU
�

�b j

�

+

=
d−1
∑

i=0

d−1
∑

j=0

uiu j




Ubi

�

�Ub j

�

=
d−1
∑

i=0

d−1
∑

j=0

uiu j

¬

b′i

�

�

�b′j
¶

=
d−1
∑

i=0

|ui|2



b′i
�

�b′i
�

︸ ︷︷ ︸

1

+
∑

i ̸= j

uiu j

¬

b′i

�

�

�b′j
¶

︸ ︷︷ ︸

0

=
d−1
∑

i=0

|ui|2 = ∥ |u〉 ∥2 = 1

• Since U : Cn → Cn maps any unit vector to another unit vector, Theorem 5 tells us that for an arbitrary
vector v ∈ Cn, ∥Uv∥2 = ∥v∥2. Let x,y ∈ Cn; then this preservation gives us

∥U(x+ y)∥2 = ∥x+ y∥2

The left hand side is

∥U(x+ y)∥22 = 〈U(x+ y)|U(x+ y)〉= 〈Ux+Uy|Ux+Uy〉
= 〈Ux|Ux〉+ 〈Ux|Uy〉+ 〈Uy|Ux〉+ 〈Uy|Uy〉

= 2+ 〈Ux|Uy〉+ 〈Ux|Uy〉= 2+ 2ℜ(〈Ux|Uy〉) Theorem 2 and Observation

The right hand side is

∥x+ y∥22 = 〈x+ y|x+ y〉= 〈x|x〉+ 〈x|y〉+ 〈y|x〉+ 〈y|y〉

= 2+ 〈x|y〉+ 〈x|y〉= 2+ 2ℜ(〈x|y〉) Theorem 2 and Observation

Equality and cancellation gives us that

〈Ux|Uy〉+ 〈Ux|Uy〉= 〈x|y〉+ 〈x|y〉⇔ 2ℜ(〈Ux|Uy〉) = 2ℜ(〈x|y〉)⇔ℜ(〈Ux|Uy〉) =ℜ(〈x|y〉)

Let us call the equation above Equation 1. The only hurdle in demonstrating equality of inner products is
illustrating that ℑ(〈Ux|Uy〉) = ℑ(〈x|y〉). With that intent, substitute ix for x into Equation 1 to get

〈iUx|Uy〉+ 〈iUx|Uy〉= −i 〈Ux|Uy〉+ i〈Ux|Uy〉= −i(〈Ux|Uy〉 − 〈Ux|Uy〉)
= −i · 2ℑ(〈Ux|Uy〉) by Observation

〈ix|y〉+ 〈ix|y〉= −i 〈x|y〉+ i〈x|y〉= −i(〈x|y〉 − 〈x|y〉)
= −i · 2ℑ(〈x|y〉) by Observation

Equation 1 =⇒ −i · 2ℑ(〈Ux|Uy〉) = −i · 2ℑ(〈x|y〉) =⇒ ℑ(〈Ux|Uy〉) = ℑ(〈x|y〉)

Therefore 〈Ux|Uy〉= 〈x|y〉 for all x,y ∈ Cn and by Theorem 4, U is unitary. This completes the proof. ■
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Theorems and references

Fact 1. For an arbitrary vector u ∈ Cn and some constant c, we have that

∥c · u∥2 = |c| · ∥u∥2

Theorem 2. For complex vectors u,v ∈ Cn, we have that

〈u,v〉= 〈v,u〉

Proof:

Let u=





u1
...

un



 and v=





v1
...

vn



. Then we have that

〈u,v〉=
n
∑

i=1

ui vi =
n
∑

i=1

ui v i =
n
∑

i=1

v iui = 〈v,u〉

This completes the proof. ■

Observation. For any complex number z ∈ C, we denote the real part of z by ℜ(z), and we have that z+z = 2ℜ(z), where
z denotes the complex conjugate of z.

Proof:

Let z = a+ bi for some a, b ∈ R. Then we have that

z + z = (a+ bi) + (a− bi) = 2a = 2ℜ(z)

as desired. ■

Theorem 3. For a complex number z ∈ C where z = a+ i b for some a, b ∈ R,

ℜ(z)≤ |z|

Proof:

The modulus for a complex number z = a + i b is defined as |z| =
p

a2 + b2 and the real part of z is defined as
ℜ(z) = a. Note that since a, b ∈ R, we have that b2 ≥ 0 and therefore

|z|=
p

a2 + b2 ≥
p

a2 + 0=
p

a2 = |a| ≥ a =ℜ(z)

thereby settling the proof. ■
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Theorem 4. Let U ∈ Cn×n. Then U is unitary if and only if U preserves inner products, i.e. for all u,v ∈ Cn, we
have that

〈Uu,Uv〉= 〈u,v〉

Proof:

=⇒ : Let U be unitary. Given some arbitrary vectors u,v ∈ Cn, using the definition of the adjoint yields

〈Uu,Uv〉= 〈U†Uu,v〉= 〈Iu,v〉= 〈u,v〉

⇐= : Let U be such that it preserves inner products. Then for all u,v ∈ Cn, we have that

〈U†Uu,v〉= 〈Uu,Uv〉= 〈u,v〉

Pick u= ei and v= e j for i, j ∈ {1, . . . , n}. Then we have that

U†Ui, j = 〈U†Uei ,e j〉= 〈Uei ,Ue j〉= 〈ei ,e j〉=

¨

1 i = j

0 i ̸= j
=⇒ U†U= I

This completes the proof. ■

Theorem 5. If a linear transformation T : Cn→ Cn maps any unit vector v to another unit vector w, then T more
generally preserves norms.

Proof:

Let x ∈ Cn be an arbitrary vector and T : Cn → Cn be a linear transformation such that T (v) = Av for all v ∈ Cn

where A is the matrix representation of the transformation. Define c = ∥x∥2 ∈ R+. Then we have that

∥Ax∥2 =








Ax
c
· c








= c ·




A
�x

c

�




= c · ∥x/c∥2 = c · c−1∥x∥2 = ∥x∥2 via Fact 1

where we made use of the fact that x/∥x∥2 is a unit vector for all x ∈ Cn and therefore ∥A(x/∥x∥)∥2 = ∥x/∥x∥∥2.
This completes the proof. ■

Observation. For a complex number z ∈ C, we have that

z − z = 2i · ℑ(z).

Proof:

For a complex number z = a+ i b, its complex conjugate is denoted by z = a− i b.

z − z = (a+ i b)− (a− i b) = (a+ i b)− a+ i b = 2i · ℑ(z)

as desired. ■
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Theorem 6. Let V ⊂ Cd be a vector space over C that is spanned by the set B = {b1, . . . ,bk}. If U = {u0, . . . ,um}
is any linearly independent subset of C, then m≤ k.

Proof:

Since B is a spanning set for Cn; we can write down u0 (and in fact any of the ui ’s) as a linear combination of the
vectors in B. Therefore the set Ũ= {u0,b1, . . . ,bk} is linearly dependent. Since Ũ is linearly dependent; there exist
α0,α1, . . . ,αk ∈ C not all zero such that

α0u0 +α1b1 + · · ·+αkbk = 0

Let ℓ be the largest index such that αℓ ̸= 0. Then αt = 0 for all t > ℓ and therefore

α0u0 +α1b1 + · · ·+αℓbℓ = 0 =⇒ αℓuℓ = −α0u0 −α1b1 − · · · −αℓ−1bℓ−1

Since C is a field, α0 admits an inverse and therefore

uℓ = −α−1
0 α1u0 − · · · −α−1

0 αℓ−1bℓ−1

Therefore there exists an element that is a linear combination of the preceding elements in Ũ, say bi . If bi is deleted
from Ũ, then the remaining set still spansCn. In particular the element u1 can be expressed as a linear combination of
the elements in the new set Ũ1 = Ũ\{bi}. Therefore the set {u0,u1,b1, . . . ,bi−1,bi+1, . . .bk} is linearly independent.
Once again one of the elements in Ũ1 can be expressed as a linear combination of the preceding elements. This
element can’t be one of the ui ’s since this contradicts the linear independence of U . Therefore the element must
be one of the bi ’s. We can continue this process where we add a ui and remove a bi at each step. If m > k, then
we will run out of bi ’s to remove before all the ui ’s are added which would result in a set of the form {u0, . . . ,uk}
which spans Cn and is linearly independent. This implies that um is a linear combination of the preceding elements
thereby contradicting the linear independence of U . Therefore m≤ k. ■

Theorem 7. For eigenvectors v1 and v2 of a Hermitian matrix H with distinct eigenvalues λ1 and λ2, we have that
〈v1|v2〉= 0.

Proof:

This one is a classic. Let us assume the usual exposition one incurs with an eigenvalue problem. We have that

Hv1 = λ1v1 =⇒ 〈v2|H|v1〉= λ1 〈v2|v1〉

λ2 〈v2|v1〉= λ1 〈v2|v1〉 =⇒ (λ2 −λ1) 〈v2|v1〉= 0 since λ2 = λ2

Since λ1 ̸= λ2, the desired result follows. ■
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