Lecture 9 Oct 24, 2024

Today: Quantum speedups when structure exists.

i.e. f is a linear function for some slope s.

They should three is a quantum algorithm for extracting s
using 1 query (query in superposition)!
Classically, it takes in queries at least since each query
learns 1 bit of s.
"Query ej and learn bit sj
$$\in 20_{11}$$
".
The q algorithm:
Thirst note $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \sum_{\substack{x \mid y \in b_{11} \\ x \mid y$

So,
$$H^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{\substack{\chi_1 \dots \chi_n \\ \chi_1 \dots \chi_n}} (-1)^{\chi_1 \chi_1 + \dots + \chi_n \chi_n} |\gamma_1 \dots \gamma_n \rangle \langle \chi_1 \dots \chi_n |$$

$$= \frac{1}{\sqrt{2^n}} \sum_{x_i y \in i_0, i_s^n} (-1)^{x_i y} |y\rangle \langle x|.$$

This is the finite-dimensional Fourier Transform over H2.

Bernstein-Vazironi (1994):

$$H^{\otimes n} \bigoplus_{\gamma} H^{\otimes n} [0^{n}] \xrightarrow{1}_{\chi_{2^{n}}} \sum_{\chi} 1_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi_{2^{n}}} (-1)^{\chi_{2^{n}}} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} \xrightarrow{1}_{\chi_{2^{n}}} 1_{\chi_{2^{n}}} 1_{\chi_{2^{n}$$

$$= |s\rangle$$

The information about s is being hidden in the Fornier basis. By rotating to the Fourier basis, no can access the information faster!

We can also convert this to a decision problem of whether
a fn f is a linear fn or far from it.
This is a n vs. 1 query separation.
We can actually find a
$$\sqrt{2^n}$$
 vs O(n) separation due
to Daniel Simon 1994.

Simon's separation and a key component of Shor's algorithm are special cases of a general phenomenon called Abelian Hiddlen Subgroup Problem which we will explore today.

Simon's problem:
Let
$$f: \{0,13^n \rightarrow \{0,13^n\}$$
 be a fin s.t. $\forall x, y \in \{0,13^n\}$ with
 $x \neq y_1$ $f(x) = f(y_1)$ iff $x = y \otimes s$
for some hiddlen secret $s \neq 0^n$. Find s. \leftarrow "hiddlen shift"

Classical lover bound:
Consider the problem of distinguishing such functions
$$f$$
 from
permutations $TT: \{0,1\}^n \rightarrow \{0,1\}^n$. This is an easier problem
than finding s.

But until queries find a collision
$$(x, y \text{ s.t. } f(x) = f(y))$$
, f
is indistinguishable from some TT. Birtholay paradox tells us that
we find a collision after $O(\sqrt{2^n})$ random queries.

Before
$$O_{f}$$
 given : $\frac{1}{\sqrt{2^{n}}} \sum_{x \in \{0,1\}^{n}} |x\rangle |0^{n} \rangle$

After Of query:
$$\frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle |f(x)\rangle$$

Let the neasurement collapse to
$$z \in \{0, i\}^n$$
. Each z occurs
uniformly rendomly, and the resulting state will be
$$\frac{1}{\sqrt{2}} \sum_{\substack{X: \{0, i\}=z}}^{1} |x\rangle = \frac{1}{\sqrt{2}} (|x\rangle + |x \oplus s\rangle)$$
for some $x \in \{0, i\}^n$.

Apply
$$H^{\otimes n}$$
 to this state gives,
 $\frac{1}{\sqrt{2}} \left(H^{\otimes n} | x \rangle + H^{\otimes n} | x \otimes s \right)$

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2^{n}}} \sum_{y}^{1} (-1)^{x \cdot y} 1_{y}^{y} + \frac{1}{\sqrt{2^{n}}} \sum_{y}^{1} (-1)^{(x \circ s) \cdot y} 1_{y}^{y} \right)$$

$$= \frac{1}{\sqrt{2^{n+1}}} \sum_{y}^{1} (-1)^{x \cdot y} \left(1 + (-1)^{s \cdot y} \right) 1_{y}^{y}$$

$$= \frac{1}{\sqrt{2^{n+1}}} \sum_{y}^{1} (-1)^{x \cdot y} \left(1 + (-1)^{s \cdot y} \right) 1_{y}^{y}$$
So measurement yields a uniformly readom y amongst s.y = 0.
Also, note measurement of z not needed.
Repeating O(n) times will yield n linearly indep eqs. w pr 99°2.

$$\Rightarrow s \text{ can be extracted.}$$
Given a s, we can also check if it is correct by testing if $f(x) = f(x \circ s)$ for a random s.
Decision problem: Decide if f is a hielden shift or a parameteritar lift or expression if just outputs random y each time leading to $s = 0^{n}$.

•

 $\overline{}$

For a subgroup
$$H \stackrel{<}{=} G_1 \left\{ \begin{array}{c} h_1 & \dots & h_k \end{array} \right\}$$
 is a generating set
for $H \quad if \quad H = \langle h_1, \dots, h_k \rangle$.

For
$$h_1, \dots, h_k \in G$$
, let $\langle h_1, \dots, h_k \rangle$ be the subgroup of elements
expressible by combining h_1, \dots, h_k and $h_1^{-1}, \dots, h_k^{-1}$.
For a subgroup $H \leq G_1$ $\{h_1, \dots, h_k\}$ is a generating set
for H if $H = \langle h_1, \dots, h_k \rangle$.
Think of a generating set as a basis in the case of abelian groups.
Def. Griven an abelian group G_1 and a subgroup $H \leq G_1$
a fin f: $G_1 \longrightarrow \{0, 1\}^m$ hides H if $\forall x_1 \gamma \in G_1$
 $f(x) = f(y)$ iff $x - \gamma \in H$.

equiv. I is constant on every coset and varies across cosets.

In Simon's problem,
$$G = \{0, 1\}^n$$
 and $H = \{0, s\}$.
and the fn f hides H .