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Recap :

BOTME(H) = "the class of all decision problems solvable

in time Hul"

BQP

=U BOTIME (n

= "all problems efficiently solvable on a

g. computer"

We started showing that 3-SAT can be solved in

BQTIME(0(m)] where m = # of clauses

n = # of bits in formula Y .

We actually showed g algorithm for finding the solution

(search problem).

Key ideas :

① OIx
,OM
(IoT

Built using
classical reversible circuit for Y(x).



② F = 1 -21+*you

Oand F are reflections ,
with

- O reflecting about 1x)
- F reflecting about 1

F: O = (-F) : (-0) = rotation by 20

where sinU

= C. (
within the plane defined by(x),

1+*

Starting angle is O since state is 1)*

(F - O)
+

( +)
*

= (0(2+ + 1))

Pick T st
. U(T+1)
T==

Resulting state has good overlap with (x).

Measuring in standard basis outputs "x"-



·
-

un

"Grover operator"

The full circuit requires decomposing Fand O into individual

gates . Yields O(m) gales and (v) time-

What happens ifme run it on a 4 st . Y(x) = 0 everywhere
?

& = # then so (FO)
·

ou = F+on = 1)

Measuring gives a random output.

Note : This solves the search problem. To solve decision

problem ,
check if output passes

Y.



Aside : On
your

homework
, you prove that if I has K solutions

,

there is an algorithm running in time O(YK) .

Today
,

we show that Grover's search is optimal in some sense.

If me are only allowed to
query

O and not Y
,

how
may

queries does it take to decide if
0 = 0x := 1-21x*) for some =20 , 13" or

if 0- ?

Notion of "unconstrained search" as we assume no additional

knowledge of the structure of O.
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* picture of a generic decision 9 algorithm making T

queries to 0.

Assume a T
query algorithm exists for deciding if 0 : Ox or I.

If O=1 ,
state right before measurement is

It) = C ... Colom)
.

Otherine defin () = CQGyOx ... CQColony

notice if accepting Ox with pr
= 1 - E,

1*) = Fo 11)* + E10)()

and rejectingI,

1) : N 10)(F) + E11)/)



The difference in behavior of Ox and 1 :

For a random rector
,
0x(4) = 1147

But for a specific rector
,
O(x) : - (x)

#(x) = (x)
.

Querying Ox only helps when state being quried has

a lot of support on x-

Pf of lower band : Bennett
,
Bernstein

,
Brassand

,
Vazirani

Fix an x (for now) · In+) = 1)

(h) = G1C-12 .... GIColOn

Ih= GC-11G .... GIColOM

What is 1/14+>-In+-1) · / ?

1 Ih+)- In+](/G(1 -0x)G-11 .... GIClOYI

2(G1C .... GIClOY /



because C
+

is unitary (distance preserving) and

1 - 0x = H - (H-2(x)(x)) = 2(x)(x)
.

Let 14
+
) = G-1HIC+z

.... GlColony independent
a

3
= state before Th query

Then 11147)-In +-) = 2()(x14+ ]/) =: 2 T
↑

prob . measuring ↓ on 14
+>

Next,

Ih= GC-11G .... GIColOM

In+) =

GGO
1) Ih+-1) - Inr-c)/l = /C+Ex G- (1 - Q)(4-1)/l

= 2/1% 17/l =2
I think we see the pattern, ..



Keeping the pattern going...

Ino) = GG-OxGc .... GOClOn = IM) .

Triangle Inequality,

1) I) - IN = // lur)- whol

= /Ine-Ihe-i/l
-

Assume accept Ox w
. pr .

3 % and accept I pr. Ye.

So
,

there exists a distinguishing measurement w= between

(4) and 1)
·

So /I)-IM : 5

=>



Notice this calculation was done for some fixed x

Using that it holds for all xe50 , 13".

=
-Intell , -e,

norm of the rector

Crit, ..... Firt)

I I l
-

1 since prob ,

dist
.

- Tr .

=>Ta . #

Intuition : Only queries with "mass" on X are aided by a

query
But since X is unknown

,
we can't have mass on all X.

Grover's algorithm starts with uniform mass and then incrementally
increases the mass until Px ,

T
= 1.

.



Implications for BQPINP.

①This proves
that BQD cannot have an exponential

speedup for unconstrained search - only quadratic.

② Proves that
g computers cannot efficiently solve 3-SAT

in a black-box manner . If there was to be aq algorithm for
Solving 3-SAT ,

it would have to look "under the hood"

of the 3-SAT formula to get the specclup.

1
. e .

"no lower bound known for structured search
"

In general , g. speedups come from interference patterns.

While we are running
O in superposition ,

we aren't

reducing the amplitude on "incorrect"y very quickly while

increasing the amplitude on "correct" x.

Future lectures
,
will show structured speccups exploiting

this advantage.



Lastly ,
he proved lower bands for queries

to

0 = 1-2(x(x) .

Or in general for any function G : E0,1"-50 ,
13

0 : [1
*
(x()

·

Wouldn't a more reasonable model be access to

&: (x) (b) + (x)(bof()) ?

Any query to O' can be simulated with a

quiry
to C-0.

So
, query lower

bounds for O yield query
lower bonds for O :

I .

Claim :

1bf() -E

F
State before C-O gate :

(



After C-O gate :

#G (1)
0 (x) "phase kichbaca

Final state :

(b f(x)) (x)
.

So usingThase" form of the oracle for query
lower

bands is sufficient.


