Lecture 7 Oct 17, 2024

$$\frac{\operatorname{Thin}(\operatorname{Schnidt} \operatorname{Decomposition})}{\operatorname{Any} \operatorname{pure state} |\Psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \operatorname{can} \quad \operatorname{ke} \; \operatorname{expressed} \; \operatorname{as} \\ \sum_{i=1}^{a} \lambda_{i} |u_{i}\rangle|_{V_{i}}\rangle \\ \sum_{i=1}^{a} \lambda_{i} |u_{i}\rangle|_{V_{i}}\rangle \\ \operatorname{schniet} \; \operatorname{coefficients} \\ \operatorname{cohere} \; d \leq \min\left(\operatorname{din}\mathcal{H}_{A}, \operatorname{din}\mathcal{H}_{B}\right), \quad \lambda_{i} \geq 0, \quad \Sigma_{i} \lambda_{i}^{2} = \mathfrak{I}, \\ \widehat{\mathcal{I}}|u_{i}\rangle\right] \; \operatorname{and} \; \widehat{\mathcal{I}}|V_{i}\rangle^{2} \; \operatorname{ore} \; \operatorname{orthonormal} \; \operatorname{vectors} \; \operatorname{viduin} \; \mathcal{H}_{A}, \mathcal{H}_{B}, \operatorname{respt.} \\ \operatorname{This} \; \operatorname{is} \; a \; \operatorname{special} \; \operatorname{cose} \; \operatorname{of} \; \operatorname{striguter} \; \operatorname{vectors} \; \operatorname{uiduin} \; \mathcal{H}_{A}, \mathcal{H}_{B}, \operatorname{respt.} \\ \operatorname{This} \; \operatorname{is} \; a \; \operatorname{special} \; \operatorname{cose} \; \operatorname{of} \; \operatorname{striguter} \; \operatorname{vectors} \; \operatorname{udue} \; \operatorname{decomposition.} \\ \operatorname{Recall} \; \operatorname{SD}, \; \operatorname{for} \; \operatorname{arg} \; \operatorname{matrix} \; M: \; \mathcal{H}_{B} \rightarrow \mathcal{H}_{A}, \qquad M = \mathcal{U} \Lambda \mathcal{V} \\ \mathcal{U} = \sum_{i} |u_{i} \times i|, \qquad \Lambda = \sum_{i} \lambda_{i} \; \operatorname{li} \times i|, \qquad V = \sum_{i} \; |i \times v_{i}| \\ \operatorname{orthonormal} \; \operatorname{basis} \; \operatorname{of} \; \mathcal{H}_{A}, \quad I \rightarrow \geq 0, \qquad \operatorname{orthonormal} \; \operatorname{basis} \; \operatorname{of} \; \mathcal{H}_{B}. \\ \operatorname{So} \; \; M = \sum_{i} \; \lambda_{i} \; |u_{i} \times v_{i}|_{B}. \end{cases}$$

Pf of Schmidt Decomposition:
Let T be due map
$$\langle v | \mapsto | v \rangle$$
 for any $| v \rangle \in \mathcal{H}_{\mathcal{B}}$.
For any vector $| \Psi \rangle = \sum_{jk} \Psi_{jk} | j \rangle | k \rangle \in \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}$
Consider $M = \sum_{jk} \Psi_{jk} | j \rangle \langle k |$.
Then, $| \Psi \rangle = T \circ M$
 $= T \left(\sum_{i}^{T} \lambda_{i} | u_{i} \rangle \langle v_{i} | \right)$
 $u_{Y} \text{ svD} \right)$
 $= \sum_{i} \lambda_{i} | u_{i} \rangle \langle v_{i} |$.

Ø

Schmidt decompositions are very useful.
Griven
$$|\Psi_{AB} = \sum_{i} \lambda_{i} |u_{i}\rangle|v_{i}\rangle$$
, it is easy to check
 $\Psi_{A} := tr_{B}(|\Psi \times \Psi|) = \sum \lambda_{i}^{2} |u_{i} \times u_{i}|$
 $\Psi_{B} := tr_{A}(|\Psi \times \Psi|) = \sum \lambda_{i}^{2} |v_{i} \times v_{i}|$

Def. (Purification)
given a density matrix
$$\rho_A \in \mathcal{H}_A$$
, a purification is any state
 $I\psi > \in \mathcal{H}_A \otimes \mathcal{H}_{A'}$ st. $tr_{A'}(IY \times (v_1)) = \rho_A$.
A purification is a pure state volume statistics when acting only on A
mirror that of ρ_A .
(D A purification always exists when $\mathcal{H}_A \cong \mathcal{H}_A$.
 $\rho = \sum_i \rho_i |u_i \times u_i|$ then $|\Psi > = \sum_i \sqrt{\rho_i} |u_i| \geq |u_i| \geq u_i$
is a purification.
(Unknown's Then)
(Unknown's Then)
(2) Let $|\Psi|_{A'} = \mathcal{H}_A$ s.t. $II_A \otimes V |\Psi > = |T >$
 $(\mathcal{H} = Skdeh)$ Consider the Schmidt decompositions of $|\Psi|$ and $|T >$
 $|\Psi > = \sum_i \lambda_i |u_i| N_i >$
 $|T > \sum_i \lambda_i |u_i| N_i >$

The Schmidt coefficients of both one du roots of the eigenvalues of ρ . So $\lambda_i = \mu_i$.

Today: - The circuit model - A faster search algorithm (Grover's)

Initialize a gubit: — 10> or — 1+>, etc.

Def. A quantum circuit is a classical description
of a sequence of gates.
quartities of interest:
of gates, # of wires, # of uninitialized qubits.
description complexity in torm of # of bits.
Recall, from classical complexity theory:
A language % is a subset
$$% \leq 20,13^{*}$$
.
A promise language is a pair Lyes & Low $\leq 20,13^{*}$ s.t.
Zyes $\cap % m = \emptyset$.

A language
$$\chi$$
 is in DTIME(+(n)) if \Im a turing machine
which decides if $\pi \in \chi$ and halts in time $f_{(|\chi|)}$.

Equivalently, for $t(n) \ge n$, a longuage Z is in $\operatorname{OTIME}(+)$ if \exists a logspace uniform turing machine M s.t. (i) $M(1^n) = \langle C_n \rangle \leftarrow \operatorname{Description} \circ f$ classical

reversible crewit on n-bits + t(n) ancilla.
(2)
$$C_n(x, 0^{t(n)}) = 1 \{ x \in X \}$$
.
This second def is helpful for defining BQTIME[t(n)].
For $t(n) \ge n$, a promise language Zyen, Zm is in BQTIME(t)
If $\ni a$ legspace uniforma Turing machine M s.t.
(1) $M(1^n) = \langle C_n \rangle \leftarrow$ Descliption of quantum circuit
on n-qubits + t(n) ancillar with I measurement gate.
(2) If $x \in Zyen$, $Pr[7 = 1$ on hput $(x, 0^+)] \ge 3$.
If $x \in Z_{M}$, $Pr[7 = 1$ on hput $(x, 0^+)] \le 3$.
Comman misconception: "Factoring $\in BQP^{M}$
(1) Pactoring is not a decision problem.
(2) Primes is a decision problem: Decide IP $x \in boris^n$ representing
on int is binery n prime or not.
PRIMES $\in P(Agrawal - Kayak - Sarcena)$

where every gates of V is Diagonal (i.e. classical).
and # of gates in
$$V = 2 \cdot \#$$
 of gates in C
 $V(x, 0^{1C1}, b) = (x, 0^{1C1}, b + C(x)).$

$$Y \in 3-SAT \quad if \exists x st.$$

 $Y(x) = 1 \quad i.e.$ $O \neq 1$

$$\Psi \notin 3-SAT$$
 ip $\Psi \kappa$, $\Theta = 11$.
 $\Psi(x) = 0.$

Claim \exists an algo deciding if • (yes) $\mathcal{O} = II - 2|x_1 \times x_1| - 2|x_2 \times x_2|$ $- 2|x_2 \times x_2|$ for $x_{1,1}, \dots, x_k \in \{0, 1\}^n$

· (no) 0 - 11

with a runtime of $O(\sqrt{2^n})$ calls to $O + O(\sqrt{2^n})$ additional gates.

In class: ne will only consider O = II - 2 [x] (x) = II.

Classically: Any alg takes time
$$\mathcal{N}(2^n)$$
 even with rendomness (ne will prove).

$$F = IL - 2I + 3^{\otimes n} < +1^{\otimes n}$$
 is implementable.

$$PP. \quad H^{\otimes n} F \quad H^{\otimes n} = IL - 2 |0^{n} \times (0^{n})|$$
This is a classical phase computation whether input = 0^{n} .
So to implement F_{1} (i) implement $H^{\otimes n}$
(i) no classical phase completion
(ii) implement $H^{\otimes n}$.

Observation:

$$Red + Blue Reflection:$$

$$|0\rangle \mapsto |\alpha + (\alpha - \theta) \rangle$$

$$= |2\alpha - \theta \rangle$$

$$\mapsto |\beta - (2\alpha - \theta - \beta) \rangle$$

$$= |\theta + 2(\beta - \alpha) \rangle$$
equals rotation by $2(\beta - \alpha)$.

