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#(Schidt Decomposition)

Any pure state (4) EfexFly can be expressed as

I
↳
Schmidt coefficient

where =min (dim2 ,
dim 4) ,

Xizo
,
[xi = 1

,

Elui)] and Glv]] as othonomal rectors within Fa
.
His

, reept
.

This is a special case of singular value decomposition.

Recall SVD
, for any matrix M :Hel ,

M = HAV

= Glikil , 1 : Chilikil ,
V: likvil.

i4 ↑
· Orthonomal basis of He . 1

1120 , ortronomal basis of His

so M = [xiVis



Pf of Schmidt Decomposition:

-

Let T be l map <ivl(v) for any le His-

For
any

rector (4) = [Yin(j)] =HAH

consider M = [Yjnk).

Then
, 143 = To M

= T([lu :)vil)
(by SVD)

= 2x : (i)(vil
. #

Schmidt decompositions are very useful.

GivenI = [ii]i) ,
it is

easy
to check

↑:= tri(14)(PI) = [xi 14 :>il

Y :=a .(4)<P1) = [x (v)(vi)



Ref . (Purification (

given
a density matrix PeFla ,

a purification is
my

state

14) = Fety St
. tr (14) (41) = Pa.

A purification is a

pure
state whose statistics when acting only on A

mirror that of PA.

O A purification always exists whenFF-

P : [pila :)(i) then 147 = [Mi
is a purification.

(Uhlmann's This
② Let 14 andIts be two purifications of p. Then

- V :H +Hyst . 1OY 147: It)

(PAetch) Consider the Schmidt decompositions of 14) and It)

14) : [xi (i) (vi)

(2) = [Mi (wi)(zi)

The Schmidt coefficient of both are the roots of the eigewalme of P.
So Xi = Mi.



(i) and 1Wi] must be eigeneties of p.

If distinct (easy core) ,
then (i) = /Wi)

up
to global phose.

Then it remains only to identify a mapping (vi)
+PEit. D



Today :

- The circuit model

- A Paster search aloitum (Grover's

We need a
way

to describe a sequence of elementary
quantum operations.

Quantum gate
: a 1

,
2

,
3, ...

0 (1) qubit unitary.

Depicted as ItFIE
E.

-Et(ii) I (d) NO
-Eli -i)
-Et (e(" ,)
# (ii)

*. (ii
,
)



# (i)

- i)

Measurement :T measurement in the

standard basis
.

- ↳
-

- ·
CNOT gate between

i i and it qubits ,
I on rest.

The can allow gates between my

z
O(1) qubits .

Initialize a qubit :

- 10) or - It) ,
etc.



Ref .

A quantum circuit is a classical description

of a sequence of gates .

quantities of interest :
# of gates, of wires, of uninitialized qubits .

description complexity in torn of # op bits.

Recall
, from classical complexity theory :

Alanguage I is a subset L50 , 13.

A
pricelanguage is a pair Lys & Gro = 30, 13

*

sit.

Lyes & Las - &

* language L is in DTIME(+(n)) if I a turning machine

which decides if XEL and halts in time t (1x1).

Equivalently , forf(u) >n
,

a language I is in STIMECH)

ifG a logspace uniform turng machine M s .

t
.

① M(1) = (C) < Description of classical



revesible circuit on n-bits + f(u) ancilla.

② (n(x ,
0
+

) = Dxe23
.

This second def is helpfulPon defining BQTIME(t(n)] ·

For t(n) In
,

a promise language Lyes ,
Goo is in BQTIMECH

if G a logspace uniform Thing machine M s .

t.

① M(1) = (On) = Description of quantum circuit
on n-qubits + +(n) ancilla

,
with I measment gate.

② If xe Lyee , Pr[X = 1 on input (, 0t)] - Y

18x- kno
, Pr/4 = 1 on input (x, 00)] - Y

Common misconception : "Factoring e BQP"

① Factoring is not a decision problem.

② Primes is a decision problem : Decide if XG(0 . 13
"

representing

an int in binary is prime or not

PRIMES -P (Aganal-Kayat-Saxena)



2006 Godel & Fulkerson price

③ We can use PRIMES to generate factors for
composite numbers since factoring isn't slp-reducible

Today : 3-SAT onn variables
,

m classes

is in BQPTIME(O(m. )]

Precursor : classical computation as a revesible chet.

Pret I problem 8 had
you

show that
my

classical

bool
.

Clet. can be converted into one that was

revesible
,
used and reset ancillas

,

and not too much

langen .

* =
C : [0, 13 "- [0 , 13

V: [0 . 154
+ 14 +

1 30, 1344192)



where
every gate of Vis Jigaand (i . e

.

classical).

andHolgates in V = 2 · # of gates in C

~(x ,
0

, b) = (x ,
0!, b + C(x))

.

For
any

3-SAT formula Y ,
them G a reversible clat

V which computes ifa satisfies Y.

Notice :

a I "Competna
Use this transformation as a "black-box" transformation

Zuqubin



Ye3-SAT if DXst.
Of I

Y(x) = 1 i
. e.

Y3-SAT if Ex, O = 1

Y(x) = 0.

Claim - an any deciding if

· (e) 0 = 1 - 2 (x ,((x) - 2 (x)* )

- 2(xa)(Yu)

for X
...., X = 20 - 132

· (no) O - 1

with a runtime of O() calls to 0 -0 (

additional gates.

In class : he will only consider

0 : 1-2(x)(x) vs 0 : 1
.



This "oracular" version is also known as unconstrained

search
,

since O is basicallyon oracle identifying
1 marked string x or no marked strings.

Classically : Anyonly takes time o (22) even with

randomness (we will
prove).

Lets create a aly which when 0 : 1-21x(x)

finds of (which we can the check).

·



F = 1 -11 +)
*

<Hom is implementable.

If. HOF . * = 1-2102)o

This is a classical phase computation whether input = 0"

So to implement F ,
O implement Han

② run classical phose computation

③ implement Hou

Properties ; Bot O and R preserve identified Ludim

subspace spanned by1x)
and 14*

Observation :

Red &Blue Reflection :

I 10 No1 +-o

= (20 - 8)

- 10 -(2x - 0 -B))

= (0 + 2(p- ))

equals rotation by 2(p-a) .



In this cae < : Tye
, p = arasi (i)

rotation by 29-i

which is equivalent to rotation by 2B up
to phase.

14.3 = 0: F1 %)

·14. : 0 . F (4+ +)

= Mar 14
-
1)

· 120 + + U)

For T s .

t
. (20+ D To TYe

,
(4) has good overlap with 1x)

so measuring in standard basis outputs solution X

sinc sinU=
, Te

*in when 0 = 1
,
141) = ** 140) = 140) : 14

on

so

measuring produces uniformlyrandom basis vector.



Replacing O with veripation algorithm for 3-SAT formula gives
the BQTIME/O(m)] runtime.

Could we have done bettep?

Answer : E0(provably) in the case that me are deciding
0 = 1-21)(X) us 0 .

This is the Bemstein
,
Bannett

,
Brassed & Vazioni query

lowerbond

for unconstrained search.


