Lecture 4 Oct 8, 2024

(2) If me apply U tun each state updates to

$$U[Y_a]$$
. So
 $p' = \sum_{a} p_a U |Y_a \times Y_a| U^{\dagger}$
 $= U(\sum_{a} p_a |Y_a \times Y_a|) U^{\dagger}$
 $= Up U^{\dagger}$.
(3) Considering necessing $|Y_a\rangle$.
 $Pr(new = 0) = |\langle 0| \otimes 1 |Y_a \rangle|^2$
 $= || 10 \times 01 \otimes 1 |Y_a \rangle|^2$
 $= \langle Y_a| (10 \times 01 \otimes 1) (10 \times 01 \otimes 1) |Y_a \rangle$
 $= \langle Y_a| (10 \times 01 \otimes 1 |Y_a \rangle|^2$
 $= tr((10 \times 01 \otimes 1 |Y_a \times Y_a|)$
Post-measurement $= (10 \times 0(\otimes 1 |Y_a \times Y_a|)$
 $|| \langle 0| \otimes 1| |Y_a \rangle||^2 = \langle Y_a| (10 \times 01 \otimes 1) |Y_a \rangle = + (10 \times 01 \otimes 1|Y_a \times Y_a|)$.

$$p_{a}^{v+-neument} d.m.$$

$$p_{a}^{'} = (10 \times 010 \text{ L}) |\Psi_{a} \times \Psi_{a}| (10 \times 010 \text{ L})$$

$$tr(10 \times 010 \text{ L} |\Psi_{a} \times \Psi_{a}|)$$

$$p_{a}^{'} (10 \times 010 \text{ L} |\Psi_{a} \times \Psi_{a}|)$$

$$p_{a}^{'} there 2 together, we get measurement of ||\Psi_{a} \times \Psi_{a}|$$

$$result. So now$$

$$p_{a}^{'} \in post 0 \text{ measurement should is defined as}$$

$$p_{a}^{'} = \sum_{a} pr(a | \forall = 0) \cdot p_{a}^{'}$$

$$= \sum_{a} \frac{pr(a | \forall = 0)}{pr(\forall = 0|a)} (10 \times 010 \text{ L}) |\Psi_{a} \times \Psi_{a}| (10 \times 010 \text{ L})$$

$$= \frac{pr(a)}{pr(\forall = 0)} (10 \times 010 \text{ L}) |\Psi_{a} \times \Psi_{a}| (10 \times 010 \text{ L})$$

$$= \frac{(10 \times 010 \text{ L}) p (10 \times 010 \text{ L})}{\sum_{a} pr(\forall = 0|a)} p_{a}$$

$$= \frac{(10 \times 010 \text{ L}) p (10 \times 010 \text{ L})}{\sum_{a} p_{a} tr(10 \times 010 \text{ L} |\Psi_{a} \times \Psi_{a}|)}$$

Exercise Show that
$$tr(p^2) = 1$$
 iff p is pure (i.e.
 $p = 14)(41)$.

Pf. If
$$p = |\Psi \rangle \langle \Psi|$$
, then $p^2 = |\Psi \rangle \langle \Psi| \Psi \rangle \langle \Psi| = p$.
So $\forall r(p^2) = \forall r(p) = I$, proves \ll direction.

For =) direction, write
$$\rho$$
 is eigenbasis so $\rho = \sum \lambda_i |\Psi_i \times \Psi_i|$
with $\{|\Psi_i\rangle\}$ orthonormal and $\sum \lambda_i = 1$ since $tr(\rho) = I$.
 $tr(\rho^2) = tr\left(\sum_{ij} \lambda_i \lambda_j \Psi_i \times \Psi_i |\Psi_j \times \Psi_j|\right)$
 $= tr\left(\sum_i \lambda_i^2 |\Psi_i \times \Psi_i|\right) = \sum \lambda_i^2 \leq \sum \lambda_i = 1$

with equality any if
$$\lambda_{1}^{i} = \lambda_{1}^{i}$$
 $\forall i$. so $\lambda_{1}^{i} = 1$
 $\lambda_{2...} = 0$.
so $p = |\Psi_{1} \times \Psi_{1}|$ pre.
Aside: $p = \sum \lambda_{1} |\Psi_{1} \times \Psi_{1}|$ means $|\Psi_{1} \rangle = \sum_{i} f(\lambda_{i}) |\Psi_{i} \rangle \langle \Psi_{i}|$.
Ande: For $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(p) := \sum_{i} f(\lambda_{i}) |\Psi_{i} \rangle \langle \Psi_{i}|$.
Why do me need to understand density matrices?
Density matrices help define the partial state of
a system which is entangled.
Tor instance, when Alice & Bob hold an EPR
prif, what is the state of Alice system by
itself?
Notation If P_{AB} is the state of the
system our $C_{A}^{AB} \otimes C_{B}^{AB}$,
Alice's guess Bab's qubib,

then call
$$p_A$$
 the state on Alice's system.
 p_{Θ} the state on Bob's system.
Easy cases: $p_{AB} = p_A \otimes p_B$.
Then p_A is obvious.
How about $p_{AB} = \sum_{i}^{I} p_i p_A^i \otimes p_B^i$ (p_i ?
 $p_{AB} = \sum_{i}^{I} p_i p_A^i \otimes p_B^i$ (p_i ?
 p_{AB} dist.
Then we expect $p_A = \sum_{i}^{I} p_i p_B^i$.

Alice's qubits of
$$\rho_{AB}$$
.
(2) Let $\sigma_{AB} = (\mathcal{U}_A \otimes \mathcal{I}_A) \rho_{AB} (\mathcal{U}_A^+ \otimes \mathcal{I}_A)$
Then $\sigma_A = \mathcal{U}_A \rho_A \mathcal{U}_A^+$. Meaning, united transform
by Alice can be calculated from just ρ_A .
(3) Any action on Bob's qubits council change the
state of Alie's qubits.
Def (Particl trace) Let $|b_1\rangle \dots |b_{AB}\rangle$ be a basis
for Bob's qubits/system, then for any maker ρ_{AB}
 $tr_B(\rho_{AB}) := \int_{i=1}^{d_B} (\mathcal{I}_A \otimes \langle b_i | \rho_{AB} (\mathcal{I}_A \otimes | b_i \rangle)$.
If ρ_{AB} is a density matrix, what is the operational
meaning of $tr_B(\rho_{AB})$?

$$\frac{\text{Def}(\text{Porticl trave}) \text{Let } |b_1\rangle \dots |b_{d_B}\rangle \text{ be a basis}}{\text{for Bob's qubits/system, then for any matrix } \rho_{AB}}$$
$$\frac{d_B}{\text{tr}_B(\rho_{AB})} := \sum_{i=1}^{d_B} (1 \otimes \langle b_i |) \rho_{AB} (1 \otimes |b_i\rangle).$$

If
$$P_{AB}$$
 is a density matrix, what is the operational meaning of $tr_{B}(P_{AB})$?

Ans: Bob measures his system according to basis { | b; > }

but does not tell Alice the ordeone.
Note it remains to show that this def does not depend on the choice of basis.

$$\frac{E_X}{AB} = |\underline{\Phi}_{11} \times \underline{\Phi}_{11}|_{AB} = \frac{1}{2} \left(101_{AD}^2 - |10\rangle_{AD} \right) \left(\langle 01|_{AD}^2 - \langle 10|_{AD}^2 \right) \right) \right)$$

$$= \frac{1}{2} \left(\left(1|_{AD}^2 - \langle 10|_{AD}^2 - \langle 10|_{AD}^2 - \langle 10|_{AD}^2 \right) \left(\langle 01|_{AD}^2 - \langle 10|_{AD}$$

Claim $P_A = tr_B(P_{AB})$. Why is this the correct definition?

First let us prove that the def of partial true down of
depend on choice of
$$21b_i>3$$
.
Ex. If $\langle \Psi | \rho | \Psi \rangle = \langle \Psi | \rho' | \Psi \rangle$ for all unit vectors $|\Psi \rangle$
then $\rho = \rho'$.
For any $|\Psi \rangle$, let $\rho_B^{\Psi} := (\langle \Psi_A | \otimes \mathbb{1}_B \rangle \rho_{AB}(|\Psi_A \rangle \otimes \mathbb{1}_B)$.
Now,

$$\langle \Psi | tr_{B}(\rho_{AB}) | \Psi \rangle$$

$$= \langle \Psi_{A} | \left(\sum_{i=1}^{d_{B}} (\mathbb{1}_{A} \otimes \langle b_{i} |) \rho_{AB} (\mathbb{1}_{A} \otimes | b_{i} \rangle) \right) | \Psi_{A} \rangle$$

$$= \sum_{i=1}^{d_{B}} \langle b_{i} | \rho_{B}^{\Psi} | b_{i} \rangle = \sum_{i=1}^{d_{B}} tr(\rho_{B}^{\Psi})$$

which is independent of { [|bi >] as truce is basis indep.

() Let
$$V_{B}$$
 be any unitary. Let $Ii > ..., Id_{B}$ be basis for B.
$$+r_{B}((1 | A \otimes V_{B}) | A \otimes (1 | V_{B}) | A \otimes (1 \otimes V_{B}^{+}))$$

$$= \int_{i=1}^{d_{B}} (1 | A \otimes (i | V_{B}) | A \otimes (1 \otimes V_{B}^{+}))$$

$$= guivalent to taking portial trace
unit. basis [V | i >].$$

$$= tr_{B}(P_{AB}) \leftarrow Bob's actions do not change PA.$$

(2) Let U_{A} be any unitary.
$$U_{A} \otimes 1 |_{B} + r_{B}(P_{AB}) | U_{A}^{+} \otimes 1 |_{B}$$

$$= \sum_{i} (1 |_{A} \otimes (i |_{B}) | P_{AB} (1 |_{A} \otimes |i |_{B}))$$

$$= \sum_{i} (1 |_{B} \otimes (i |_{B}) | U_{A} | P_{AB} | U_{A}^{+} (1 |_{A} \otimes |i |_{B}))$$

$$= tr_{B}(U_{A} | P_{AB} | U_{A}^{+}).$$

Def. The maximally mixed state in
$$d$$
 - dimensions
is $\frac{1}{d}$ II d . For qubits, $\frac{1}{2^n}$ II $\frac{1}{2^n}$.
Def. A state page between Alice and Bob each of n
qubits is maximally entengled if $p_A = \frac{1}{2^n}$ II $\frac{1}{2^n}$.

In class exercise: Every maximally entropled state
is
$$\sum_{i=1}^{2^{n}} P_{i} \left(\mathcal{U}_{A} \otimes \mathcal{U}_{B}^{i} \right) | \Phi \times \Phi | \left(\mathcal{U}_{A} \otimes \mathcal{U}_{B}^{i^{\dagger}} \right)$$

where $| \Phi \rangle = \sum_{i=1}^{2^{n}} \frac{1}{\sqrt{2^{n}}} |i\rangle |i\rangle$.

Today: The CHSH game and
"spooly-action" at a distance.
Consider the following game:
$$\underbrace{1 \text{ lightrac}}_{\text{Alice}} \underbrace{1 \text{ lightrac}}_{\text{Ref}} \underbrace{2 \text{ lightrac}}_{\text{Bob}}$$

Alice and Bub must answer in 2+ E lightracs.

They win if
$$a \oplus b = x \cdot y$$
.

What is their opt. success prob.?

Space-seperation is just to force no communication.

If Alice and Bob employ classical strategies, the best
strategy only wins w
$$pr = \frac{3}{4}$$
.
But if they we quantum strategies, they can min with
probabilities up to $\cos^2 T_8 \sim 0.878$.
Next two lectures: understand the quantum strategy,
prove it is optimal, understand how it characterizes the
state of Alice and Bob's q.c.'s.
Classical Best deterministic strategy $a=0$, $b=0$
independent of input.
What if Alice & Bob share classical randomness?
Let $A_{r_1}B_r : \{0,1\} \longrightarrow \{0,1\}$ be du strategies for rand. r_1
Then
 $Pr[win] = Pr[A_r(x) \otimes B_r(y) = xy]$
 $x_{iy}(r)$

$$\leq \max \Pr_{r} \left[A_{r}(x) \otimes B_{r}(y) = xy \right]$$

$$\leq \frac{3}{4}.$$

$$\frac{Quantum}{P} = What if Alice and Bob share an EPR pair?$$

$$\frac{1dea}{Papending} \text{ on the input } x \in \{0,1\}, Alice$$

$$\max a \text{ massurement of her half of the EPR pair.$$

$$Stretegy: \left\{ |\alpha_{x}^{a} \rangle \in \mathbb{C}^{2} \right\} \quad \text{for Alice }$$

$$\text{ where } \left\langle x \right| \left| x \right\rangle = 0.$$

$$\lim_{P} \exp \left\{ |\beta_{y}^{b} \rangle \in \mathbb{C}^{2} \right\} \quad \text{for Bob},$$

$$\min \left\{ |\beta_{y}^{b} \rangle \in \mathbb{C}^{2} \right\} \quad \text{for Bob},$$

$$\min \left\{ |\beta_{x}^{a} \rangle |\beta_{x}^{b} \rangle = 0.$$

$$\text{Mun Alice geb input } x, \text{ she measures her half }$$

$$\text{of the EPR pair mide basis } |\alpha_{x}^{a} \rangle, |\alpha_{x}^{b} \rangle \text{ ord answers }$$

$$\operatorname{accordingly. Liberine for Bob. So,$$

$$P_{r}[a, b|x, y] = \left| \left\langle \alpha_{x}^{a}, \beta_{y}^{b} \right| EPR > \right|^{2}.$$

Easiest to draw a picture.

and
$$\langle \Theta | \Theta + \gamma \rangle = \cos \gamma$$
.

(2) For any basis
$$|v\rangle, |w\rangle = \int \mathbb{C}^{2},$$

 $|EPR\rangle = \frac{1}{\sqrt{2}} \left(|v\rangle|v^{*}\rangle + |w\rangle|w^{*}\rangle \right) \quad (an hw2)$

$$Pr[win] = \sum_{x,y} Pr[x,y] \cdot \sum_{a,b} Pr[a,b|x,y] \cdot 4 ja \otimes b = xy j$$
win condition

$$= \frac{1}{4} \left[\left| \left\langle \propto_{o}^{\circ}, \beta_{o}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \propto_{o}^{\circ}, \beta_{o}^{\circ} \right| EPR \right\rangle \right|^{2} \qquad (x, y) = (u, o)$$

$$+ \left| \left\langle \propto_{o}^{\circ}, \beta_{1}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \propto_{o}^{\circ}, \beta_{1}^{\circ} \right| EPR \right\rangle \right|^{2} \qquad (x, y) = (o, 1)$$

$$+ \left| \left\langle \propto_{1}^{\circ}, \beta_{o}^{\circ} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \propto_{1}^{\circ}, \beta_{o}^{\circ} \right| EPR \right\rangle \right|^{2} \qquad (x, y) = (1, 0)$$

$$+ \left| \left\langle \propto_{1}^{\circ}, \beta_{1}^{d} \right| EPR \right\rangle \right|^{2} + \left| \left\langle \propto_{1}^{\circ}, \beta_{1}^{\circ} \right| EPR \right\rangle \right|^{2} \qquad (x, y) = (1, 1)$$

Recognize

$$\langle \alpha_{x}^{a}, \beta_{y}^{b} | EPR \rangle = \langle \alpha_{x}^{a}, \beta_{y}^{b} | \cdot \frac{|\beta_{y}^{a} \rangle |\beta_{y}^{a} \rangle + \frac{|\beta_{y}^{a} \rangle |\beta_{y}^{b} \rangle}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \langle \alpha_{x}^{a} | \beta_{y}^{b} \rangle$$

$$= \frac{1}{\sqrt{2}} \cos \theta \leftarrow \text{argle between } |\alpha_{x}^{a} \rangle, |\beta_{y}^{b} \rangle$$

$$Notice by design, all terms in $\Pr[\text{uin}] \text{ evaluate } to$

$$= \frac{1}{\sqrt{2}} \cos \frac{\pi}{8}.$$

$$So \quad \Pr[\text{uin}] = \frac{1}{4} \left(8 \cdot \frac{1}{2} \cos^{2} \frac{\pi}{8} \right) = \cos^{2} \frac{\pi}{8}$$$$

= 0.854.

So Alice and Bob can win gave with quantum strategies with higher prob than classical.

"Clauser, Hauser, Shimony, Holt" (CHSH) experiment.

aka a non-local game.

CHSH gave proves that
$$\uparrow$$
 picture is incorrect!
The information about the state of the system cannot
be hold locally assuming a speed limit on information.
This is because local info could not produce the
statistics needed to win the game with probe > $\frac{9}{4}$.
To describe the state of the system, we need to
have a global description.
Indeed $\rho = IEPR \times EPR_{10}$ then $\rho_A = \rho_B = \frac{1}{2} I_{12}$.
The key is that the coins are correlated!
Can we experimentally verify CHSH?

$$\mathbb{P}_{r}\left[\chi \geq (1+5)\mu\right] \leq \exp\left(-\frac{5^{2}\mu}{2+\delta}\right)$$

here
$$\mu = 0.75n$$
 $S = \frac{0.8}{0.75} < 1.07$

$$P_{r}\left[\chi \ge 0.8 n\right] \le exp\left(-0.27 n\right)$$

want
$$exp(-0.27n) \leq 10^{-9}$$

0.27n $\geq 9 \ln 10$
n ≥ 77