Lecture 3

Oct 3, 2024

Today : The power of entanglement

$$
| \psi \rangle
$$
 a sete on $(n_1 + n_2) - qubits$.
 $\mathcal{L}(\mathbb{C}^2)^{\otimes n_1} \otimes (\mathbb{C}^2)^{\otimes n_2}$

Does
$$
|P\rangle
$$
 reusing equal $|a\rangle \otimes |b\rangle$?
 $(\int_{a}^{2}e^{ax}+(\int_{a}^{2}e^{ax})e^{ax}$

 $N_{\alpha}!$

$$
E(\mathbb{C}^{2})^{\otimes n_{1}} \otimes (\mathbb{C}^{2})^{\otimes n_{2}}
$$
\n
\n
$$
\otimes \quad | \psi \rangle \text{ necessaryly equal } | \omega \rangle \otimes | \omega \rangle ?
$$
\n
$$
\otimes \quad \mathbb{C}^{2} \otimes n_{1}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{2}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{2}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{1}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{2}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{1}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{2}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{2}
$$
\n
$$
\otimes \mathbb{C}^{2} \otimes n_{1}
$$

$$
\underline{P}f.\quad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \otimes \begin{pmatrix} \gamma \\ 5 \end{pmatrix} = \begin{pmatrix} \alpha & \gamma \\ \alpha & \delta \\ \beta & \gamma \\ \beta & \delta \end{pmatrix}.
$$

 $\mathsf{IPH} > \frac{1}{\mathsf{P}} \left(\begin{matrix} A \\ \beta \end{matrix} \right) \otimes \left(\begin{matrix} Y \\ \delta \end{matrix} \right),$ then

cu= ⁼ ^c ⁺ ⁰ , +0. so= ⁼ ^B ⁺ ⁰ , 870 . so ten ad ⁺ ⁰ , BU ⁺ ⁰ , a contradiction . A stronger inition fromcounting states : & Recall from pretty that for any ec ⁰, we can find 2 2n n-qubit phase states of which - > subset of size 2 ((E2")) which are e-orthogonal. within a (2m) qubit space there are(t(2)) such states. How many states are in tanen product? 2n ⁺ ¹ # of states of type 14.30/4)] ⁼ 22g22 2 ⁺ ¹ - Do r(e22) Hereproductstateem = 2 ⁼ zicer) for <20

Def. A short: $ 4\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ is entangled if $ 4\rangle$ cannot be represented as a product static.		
What is so special about an entangled static?		
One Show:	The EPR state.	
What are the only measurements possible?		
In standard basis:	$ 00\rangle + 11\rangle$	$ 00\rangle$ to $ 01\rangle + \frac{1}{2}$
When the first solution is:	$ 00\rangle + 11\rangle$ to $ 01\rangle + \frac{1}{2}$	
When the first solution is:	$ 00\rangle + 10\rangle + 11\rangle + \frac{1}{2}$	
When the first solution is:	$ 11\rangle$ to $ 01\rangle + 10\rangle + (00\rangle - 11\rangle)(0\rangle - 10\rangle - 11\rangle$	
For $ 11\rangle + 11\rangle + 11\rangle + 11\rangle = \frac{(00\rangle + 11\rangle)(0\rangle + 11\rangle + 11\rangle + 0 11\rangle + 0 11\rangle + 0 11\rangle - 0 11\rangle$		

So
$$
P_{\epsilon}
$$
 [mump 1+ $3\frac{1}{3}$ and resulting state of
\n $(\angle + |\otimes 1\frac{1}{2})$ $|+ \rangle + |- \rangle |- \rangle$ $|\div \rangle + |0 \Rightarrow 2^{nd} qwh + \frac{1}{3}$
\n $lim |+ \rangle$
\n $Lineunir, Pr{mung |- \rangle } = $\frac{1}{2}$ and $2^{nd} qwh + \frac{1}{3} \cdot \frac{1}{4}h$
\n $lim |- \rangle$$

Rule EPR
$$
\neq
$$
 mixture over $|0,0\rangle$ and $|1,1\rangle$.

\nIf we measure first qubit of $|0,0\rangle$ in $|+\rangle,|-\rangle$ basis

\nthen $pr(X = |+\rangle) = \frac{1}{2}$ but $2^{n\theta}$ qubit state is $|0\rangle$.

$$
m\omega \quad pr(\text{7 s }1-\text{)}=\frac{1}{2} \quad \text{but} \quad 2^{-\omega} \quad \text{qub}+\text{ s}t\omega \quad \text{in} \quad 10.
$$

If we measure that qubit of (11) in (+), (-) basis
then
$$
pr(X = 1+)
$$
 = $\frac{1}{2}$ but 2^{rd} qubit state is (1)
and $pr(X = 1-)$ = $\frac{1}{2}$ but 2^{rd} qubit state is (1),

Therefore, ^X is uniformly random but on outcome It), 2nd qubit is ^a prob mixture over ¹⁰⁷ and 11) and not It). So we can distinguish /EPR) from ¹⁰ . ⁰⁷ & ¹¹ , 1) mixture . m

Aliv & Bob and EPR

Thm $\frac{1}{\sqrt{2}}$ Alice normes her qubit in basis (b,), lb,). Her meanement roller nearnes we gubit in sabis (et / 10, 10, 10 meavements)

No, this does not allow faster than light communication.

Supercoding. # wants to send messages to b , who is leaving fr ^a trip fr away · Can they some on postage using ^g. m. &asically ^m bits requires ^m communication .

$$
\underline{Clain} \qquad T^{x3} = \chi^{x} Z^{3}.
$$

$$
|\Phi_{oo}\rangle = \frac{|\phi\phi\rangle + |v\rangle}{\sqrt{2}} \qquad |\Phi_{oo}\rangle = \frac{|\phi\phi\rangle - |v\rangle}{\sqrt{2}}
$$

$$
|\hat{\Phi}_{1v}\rangle = \frac{|\Phi_{1}\rangle + |\Phi_{2}\rangle}{\sqrt{2}}, \qquad |\hat{\Phi}_{11}\rangle = \frac{|\Phi_{12}\rangle - |\Phi_{22}\rangle}{\sqrt{2}}
$$

orthogonal states.

State of Alice & Bob is ^a 2-qubit state ^e C" . There are ⁴ orthogonal states &". Alia can switch the global state to any of the ⁴ of them . Since dry are orthogonal , there exists a distinguishing measurement. Lesson IEPR) ⁼ 17) ⁰ ¹ ⁺) u unentangled. TEDR) * SE prb 100] shared randomnes . I pub ¹¹¹⁷

Dealing with entanglement and randomness at the same time : densing matrix.

For a stat
$$
|\psi\rangle
$$
 (omoganding density matrix is $|\psi\rangle\langle\psi|$.

For a prob mixture p. of (ψ_{\bullet}) and

P. P.
$$
(4)
$$
, duality motor
\n $\rho = p$. $|0.0 \times 0.1 + p.14.0 \times 0.1$.
\nIn general, $\rho = \sum_{a} p_{a} |1/2 \times 0.1$.
\nProperty: $\rho = \sum_{a} p_{a} |1/2 \times 0.1$.
\nProperty: $\rho = \rho^{+}$ and $\rho \ge 0$. $\rho = |0.0 \times 0.1|$ and $\rho = |0.0 \times 0.1|$.
\n
\nStrong convex: given any dim. $\rho = \sum_{m} p_{a} |1/2 \times 0.1|$.
\n $\sum p_{a}$ and $\sum p_{a}$ and $\sum p_{a}$ and $\sum p_{a}$, with the
\n $\sum p_{a}$ and $\sum p_{a}$ and $\sum p_{a}$ and $\sum p_{a}$.
\n $\sum q_{a}$ and $\sum p_{a}$ is the probability of $\rho = \sum p_{a} |1/2 \times 0.1$.
\n
\nExample
\n $(0) \Rightarrow (0, 0)$

$$
|+\rangle \ni \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad |- \rangle \ni \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}
$$

$$
\text{Cun}(\text{supp } \Rightarrow \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}).
$$

$$
EPR \Rightarrow \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 6 & 6 & 6 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}
$$

$$
shord numbers \geqslant \frac{1}{2} \left(\begin{array}{cc} 1 & & & \\ & 0 & & \\ & & 0 & \\ & & & 1 \end{array} \right).
$$

 $|+\rangle \otimes |+\rangle \Rightarrow \frac{1}{4} \left(\begin{matrix} \text{all} & \text{mod} \end{matrix} \right).$

The denved, consequence of 9. computation.
\n0. n-qubit static is a density matrix in
$$
\chi((C^*)^{\infty})
$$
.
\n2) update by unitary transformations

$$
\rho \mapsto u\rho u^{+}
$$
\n
$$
\beta \mapsto u\rho u^{+}
$$
\n
$$
\rho \mapsto (b\times b\otimes u) \rho (b\times c\otimes u)
$$
\n
$$
+ (H)\times (1\otimes u) \rho (1\otimes u) \wedge (1\otimes u)
$$
\n
$$
+ (H)\times (1\otimes u) \rho (1\otimes u) \wedge (1\otimes u)
$$
\n
$$
\beta \left(\text{meaning } 0\right) = \text{tr}\left(\left[\frac{b\times b\otimes u}{b\times b}\right] \rho\right)
$$
\n
$$
\beta \neq \text{tr}\left(\text{maximum } 1\right) \Rightarrow \text{tr}\left(\left[\frac{b\times b\otimes u}{b\times b}\right] \rho\right)
$$
\n
$$
\left(\frac{b\times b\otimes u}{b\times b\otimes u} \rho\right) = \frac{u}{b\times b} \left(\frac{b\times b\otimes u}{b\times b\otimes u} \rho\right)
$$
\n
$$
\text{tr}\left(\frac{b\times b\otimes u}{b\times b\otimes u} \rho\right) = \frac{u}{b\times b} \left(\frac{b\times b\otimes u}{b\times b\otimes u} \rho\right)
$$
\n
$$
\text{In class: } \text{Verify that this state has trace 1.}
$$
\n
$$
\text{H with probability } pa_1 \text{ find such that } \text{ is } \rho_a \text{ and } \text{ s.t.}
$$
\n
$$
\sum pa \cdot (pa \otimes \sigma_a).
$$

PP that class if matrix compacts	allow both
the axions.	
Consider mixture of status $\{ \varphi_{a}\}\}$ with pol. Pa	
8.1. $\sum_{a} p_{a} = 1$.	
The corresponding matrix is $\rho = \sum_{a} p_{a} \psi_{a} \times \psi_{a} $.	
① $\rho \ge 0$ b.c. sum of positive matrices.	
② $\rho = \rho^{+}$ b.c. sum of Herm. matrices.	
③ $tr(\rho) = tr(\sum_{a} p_{a} \psi_{a} \times \psi_{a})$	
② $\sum_{a} p_{a} tr(\psi_{a} \times \psi_{a})$	
② $\sum_{a} p_{a} tr(\psi_{a} \times \psi_{a})$	
② $\sum_{a} p_{a} tr(\psi_{a} \times \psi_{a})$	
② $\sum_{a} p_{a} tr(\psi_{a} \times \psi_{a})$	
② $\sum_{a} p_{a} tr(\psi_{a} \times \psi_{a})$	
② $\sum_{a} p_{a} = 1$.	

So p is a density matrix.