Lecture 3 Oct 3, 2024

$$|\Psi\rangle$$
 a state on $(n_1 + n_2) - qubits.$
 $\mathcal{E}\left(\left(\int_{-\infty}^{2}\right)^{\otimes n_1} \otimes \left(\left(\int_{-\infty}^{2}\right)^{\otimes n_2}\right)$.

Does IV necessarily equal
$$a \gg b > ?$$

 $(f^2)^{\otimes n}, (f^2)^{\otimes n_2}$

Nº!

$$\underline{E_X} \quad |EPR\rangle = \frac{|O\rangle|O\rangle + |I\rangle|I}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} I \\ O \\ O \\ I \end{pmatrix}$$

 $|f | EPR \rangle = \begin{pmatrix} q \\ \beta \end{pmatrix} \otimes \begin{pmatrix} r \\ \delta \end{pmatrix}, due$

$$\alpha \cdot \vartheta = \frac{1}{\sqrt{2}} \implies \alpha \neq 0, \ \gamma \neq 0,$$

$$\beta \cdot \vartheta = \frac{1}{\sqrt{2}} \implies \beta \neq 0, \ \delta \neq 0.$$
So then $\alpha \cdot \delta \neq 0, \ \beta \cdot \vartheta \neq 0, \ \alpha \text{ constradiction}.$

A stronger intrition from counting states:
Recall from pret 1 that for any $\varepsilon > 0,$
we can find 2^{2^n} in-qubit place states of which
 $\ni \text{ subsect of size } 2^{(\Omega(\varepsilon^{\varepsilon} 2^n))}$ which are $\varepsilon - \text{orthergonel}.$
within $\alpha(2n)$ qubit space there are $2^{(\Omega(\varepsilon^{\varepsilon} 2^{2^n}))}$
such states. How many states are in town poduct?
 $[\notin \text{ of edates of type } |\Psi_{\beta} > \otimes |\Psi_{\beta} >] = 2^{2^n} \cdot 2^{\varepsilon^n} = 2^{2^{n+1}}.$
 $\frac{\# \text{ of town product states}}{2^{(2(\varepsilon^{\varepsilon} 2^{2^n}))}} = 2^{2^n} \cdot 2^{\varepsilon^n} = 2^{-\Re(2^n)}$

•

Def. A state
$$|\Psi\rangle \in \mathcal{H}_{4} \otimes \mathcal{H}_{8}$$
 is entroyed if $|\Psi\rangle$ cannot
be expressed as a product state.
What is so special about an entroyed state?
Care Strong: The EPR state.
What are the only measurements poisible?
In standard basis:
 $\frac{|00\rangle + |11\rangle}{\sqrt{2}} \implies |00\rangle$ is prime $\frac{1}{2}$.
If $|1\rangle$ is prime $\frac{1}{2}$.
Measure first qubit in $|+\rangle_{1}|-\rangle$ basis.
 $\frac{|+\rangle|+\rangle + |-\rangle|-\rangle}{\sqrt{2}} = \frac{(10\rangle + 11\rangle(10\rangle + 11\rangle) + (10\rangle - 11\rangle)(10\rangle - 11\rangle)}{2\sqrt{2}}$
 $\approx \frac{210\rangle10\gamma + 0.10\rangle11\gamma + 0.11\rangle(0\gamma + 211)(1)}{\sqrt{2}}$

So
$$P_r[musury | + \rangle] = \frac{1}{2}$$
 and resulting state α
 $(<+1 \otimes 1) \frac{(+)(+)(+)(+)(-)(-)}{\sqrt{2}} = \frac{(+)}{\sqrt{2}} + 0 \implies 2^{nd} \text{ qubit is}$
 $\frac{1+)}{\sqrt{2}} + 0 \implies 1+2.$
Likewise, $P_r[musurg | - \rangle] = \frac{1}{2}$ and $2^{nd} \text{ qubit is then } | - \rangle.$

Ruck EPR
$$\neq$$
 mixture over $|0,0\rangle$ and $|1,1\rangle$.
P.F. If we measure first qubit of $|00\rangle$ in $|+\rangle, |-\rangle$ basis
then $pr(7 = |+\rangle) = \frac{1}{2}$ but $2^{n\theta}$ qubit state is $|0\rangle$.
and $pr(7 = |-\rangle) = \frac{1}{2}$ but $2^{n\theta}$ qubit state is $|0\rangle$.

If we measure first qubit of 111) in
$$(+), (-)$$
 basis
team $pr(7 = (+)) = \frac{1}{2}$ but $2^{n\theta}$ qubit state is 11)
and $pr(7 = (-)) = \frac{1}{2}$ but $2^{n\theta}$ qubit state is 11),

This Alice reasones her qubit in basis [b,], [b,]. Her measurement will be uniformly rendom i E [9, 13, but Bob's states will be [b;].

Superdure cooling. (i) wonto to sind nessages to (i), who is leaving for a trip for any. Can they save an postage using q.m.? Classically in Sito require in commission.

Claim
$$T^{x3} = X^{x}Z^{z}$$
.

$$|\Phi_{00}\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
, $|\Phi_{01}\rangle = \frac{|00\rangle - |11\rangle}{\sqrt{2}}$

$$\left|\underline{\Phi}_{1}\right\rangle = \frac{\left(0\right) + \left(1\right)}{\sqrt{2}}, \qquad \left|\underline{\Phi}_{1}\right\rangle = \frac{\left(0\right) - \left(1\right)}{\sqrt{2}},$$

orthogonal states.

State of Alice & Bob is a 2-qubit state
$$\in \mathbb{C}^4$$
.
Three on 4 orthogonal states $\in \mathbb{C}^4$.
Alice an switch the global state to any of the 4 of
them.
Since thy one orthogonal, three exists a distinguishing
measurement.
Lesson $|EPR \rangle \neq |+ \rangle \otimes |+ \rangle$
unentagled.
 $|EPR \rangle \neq \begin{cases} \frac{1}{2} \\ \frac{1}{2} \end{cases} prob (00)$ shared randomnes.
 $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} prob (11)$

For a state
$$|\psi\rangle$$
, corresponding density matrix is $|\psi\rangle\langle\psi|$.

For a prob mixture p. of (4.) and

Pi of
$$(\Psi_{1})$$
, duoidy matrix
 $p = p \cdot |\Psi_{0}\rangle \langle \Psi_{1}| + p \cdot |\Psi_{1}\rangle \langle \Psi_{1}|.$
In general, $p = \sum_{a} p_{a} |\Psi_{a}\rangle \langle \Psi_{a}|.$
Properties:
() $fr(p) = 1.$
() $fr(p) =$

shired randomiss
$$E$$
) $\frac{1}{2}$ $\begin{pmatrix} 1 \\ 0 \\ & 0 \\ & & 0 \end{pmatrix}$.

 $|+\rangle \otimes |+\rangle \implies \frac{1}{4} (all ones).$

The derived consequence of q. computation.
() *n*-qubit state is a density matrix in
$$\mathcal{X}((\Gamma^{*})^{\otimes n})$$
.
(2) update by unitary transformations

$$\rho \mapsto \mathcal{U}\rho\mathcal{U}^{\dagger}$$
(3) measurement of a single qubit:

$$\rho \mapsto (10\times0101) \rho (10\times0101) + (10\times101) \rho (11\times1101) \rho (11\times1101) \rho (11\times101) \rho$$

$$Pr(measuring 0) = tr((10\times0101) \rho)$$

$$Pr(measuring 1) = tr((10\times0101) \rho)$$

$$(state conditioned on outcome 0] = (10\times0101) \rho (10\times0101) \rho$$

$$Tr((10\times0101) \rho)$$

$$In class: verify that this state has trave 1.$$
(4) If with probability part first state is ρ_{a} and second state is σ_{a} , then overall other is $\sum_{i}^{r} \rho_{a} \cdot (\rho_{a} \otimes \sigma_{a})$.

$$\frac{PP}{A} \text{ that density matrix computations follow from the axions.}$$
Consider mixture of states $\{|\Psi_{a}|\}$ with prol. Pas.
S.t. $\sum_{a} p_{a} = 1$.
The corresponding matrix is $P = \sum_{a} p_{a} |\Psi_{a} \times \Psi_{a}|$.
 $\bigcirc P \ge 0$ b.c. sum of positive matrices.
 $(\bigcirc P = P^{+})$ b.c. sum of Herm. matrices.
 $(\bigcirc P = P^{+})$ b.c. sum of Herm. matrices.
 $(\bigcirc P = P^{+})$ b.c. sum of $(|\Psi_{a} \times \Psi_{a}|)$ linearly of the point of the second states of the se