Ganifications

·

Every quantum state $|\Psi\rangle\epsilon(\mathbb{C}^2)^{\otimes n}$ is a unit rec. $\left\{\begin{array}{c} \psi(\rho... \circ) \\ \psi(\rho... \circ) \\ \psi(\rho... \circ) \\ \vdots \end{array}\right\} \quad \left\{\begin{array}{c} \psi(\rho) \\ \psi(\rho) \\ \vdots \\ \vdots \end{array}\right\}$ applications

In the IV $\epsilon(\Gamma^2)^{8n}$ is
 $\psi(0...0)$
 $\psi(0...0)$
 \vdots
 $\psi(1...1)$
 $\psi(2^{n}-1)$
 \vdots
 $\psi(1...1)$
 $\psi(2^{n}-1)$
 \vdots
 $\psi(2^{n}-1)$
 \vdots
 \vdots
 $\psi(2^{n}-1)$
 \vdots
 $|\psi\rangle = \sum_{x=0}^{\infty} \psi(x_1x_2...x_n) |x_1,...,x_n\rangle = \sum \psi(x) |x\rangle$ amplitude 14) is classical if all amplitudes are 0 except 1. 14) is in superposition if Here are multiple non-zero amplitudes.

University, the performance of
$$
2^{l+2^{l-1}}
$$
 is also called a l -quart

\naway. In performance, $U \in \mathbb{C}^{2^{k} \times 2^{l-1}}$ is a single-qubit mixing

\nand $U \in \mathbb{C}^{4 \times u}$ is a 2 -qubit unitary.

is a general 9.2. *uniform* transform.
\nSay
$$
U = \begin{pmatrix} U_{0,11,(i_1,1)} & U_{(0,11),(i_1,1)} & \dots & U_{(0,01),(i_1,1)} \\ \vdots & \vdots & \vdots & \vdots \\ U_{(1,11),(1,0,0)} & \dots & \dots & U_{(1,11),(1,1)} \end{pmatrix}
$$

 $U = \sum_{k_1 k_2 j_1 j_1} u_{(k_1, k_2) (j_1, j_2)} [k_1, k_2] \times j_1, j_2$ $i.e.$

Them , $(\mathbb{1}, \mathbb{e}, \ldots \circ \mathbb{1}, \mathbb{e} \mathcal{U} \mathbb{e} \mathbb{1}, \ldots \circ \mathbb{1}, \) |_{\mathsf{x}_1, \ldots, \mathsf{x}_n}$ = $(|x_1\rangle|x_2\rangle...|x_{i-1}\rangle)$ & U $|x_1, x_{i+1}\rangle$ & $(|x_{i+2}\rangle...|x_{n}\rangle)$ $=$ $\left(\begin{array}{c} |x_1\rangle |x_2\rangle ... |x_k \end{array} \right)$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \mathcal{U} & \mathbf{1} \end{pmatrix}$

1)) $\begin{pmatrix} 0 & \mathcal{U} & \mathbf{1} \end{pmatrix}$ $\begin{pmatrix} x_{i_1} & x_{i_2} \\ x_{i_3} & x_{i_4} \end{pmatrix}$

1)) $\begin{pmatrix} 0 & \mathbf{1} & \mathbf{1} \end{pmatrix}$ $\begin{pmatrix} x_{i_1} & x_{i_2} \\ x_{i_3} & x_{i_4} \end{pmatrix}$

1) By linearity we can compute $(\mathbb{1}, \mathbb{1}, \cdots, \mathbb{1}, \mathbb{1})$... $\mathbb{1}, \cdots, \mathbb{1}, \mathbb{1}$ for any $(\Psi > \epsilon(\mathbb{C}^2)^{6n}$ by expressing $|\psi\rangle$: $\sum_{\alpha} \Psi(x_1, \ldots, x_n)$ $|x_1, \ldots, x_n|$ * n) $\sum_{x_1...x_n} \psi_{x_1...x_n}$ (ez.m. xn) 1
amplitude.

Today: Quantum's pour over classical
\nO Elitzur-Vaidmon Bomb Testus
\nO Deutrel-Josza game.
\nRecall axions of quantum computation:
\nO The state of a n qubit system is a unit vec in
\n
$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} e^{2} = (\sum_{n=0}^{\infty} e^{2})^{m} \equiv \sum_{n=0}^{\infty} e^{2}
$$
\nIn this
\n
$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m} = \sum_{n=0}^{\infty} e^{2}
$$
\n
$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{m} = \sum_{n=0}^{\infty} e^{2}
$$

3) Measure the first qubit: $|\psi\rangle = |0\rangle |\psi_0\rangle + |1\rangle | \psi_1\rangle$ Trensfrom to $|i\rangle| \psi_i\rangle$ with pr $\| |\psi_i\rangle\|^2$.

(4) Given that
$$
|4\rangle
$$
 m n-3ubits, no can generate the shot: $|4\rangle$ on $|n+1\rangle$ -3 whilst

\nObs General basis single-3ubit measurements.

\nLet $|b_{a}\rangle, |b_{1}\rangle$ be orthonormal vectors in \mathbb{C}^{2} .

\nAwin give us a way to measure $|4\rangle$ and get

\n100 w pr $|\langle 014\rangle|^2$ and

\n111) w pr $|\langle 114\rangle|^2$.

\nCon we generate a method of part

\n $|b_{0}\rangle$ w pr $|\langle b_{0}|4\rangle|^2$.

\nAns: let $U = \begin{pmatrix} 1 & 1 \\ 15 & 16 \end{pmatrix} \begin{pmatrix} -\langle b_{1}|-1 \rangle \\ 1 & 1 \end{pmatrix}$.

\nThus, the sum of $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

\nThus, the sum of $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

\nThus, the sum of $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

\nThus, the sum of $U = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

\nThus, the sum of $U = \begin{pmatrix} \langle b_{1}|b_{1}\rangle & \langle b_{1}|b_{1}\rangle \\ \langle b_{1}|b_{1}\rangle & \langle b_{1}|b_{1}\rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot 1$.

$$
\widehat{t^ic} \quad i \in [v_1]^3, \quad \mathcal{U}(i) = b_i \qquad \text{so} \quad \mathcal{U}^+ | b_i \rangle = i \rangle.
$$

Algonibun
\n① Apply
$$
u^{\dagger}
$$
 (also unitary)
\n② Meuwe
\n③ Apply U .
\n
\n9.4994 U .
\n
\n9.4994 U .
\n
\n10.4994 U .
\n
\n11.4147
\n
\n12.5111⁺147² = $|\langle b_1 | 47 \rangle|^2$
\n
\n15.111⁺147² = $|\langle b_1 | 47 \rangle|^2$
\n
\n16.111⁺147².

Aphysics motivation forqubits .

Polarization of light.

Photons have a polarization: Photons that travel \iff Photons that travel $\xi \gg$ "in state" $|0\rangle$
Photons that travel \int_{0}^{∞} "in state" $|1\rangle$ Photons that touch ℓ "in state" $\frac{|0\rangle + |1\rangle}{\sqrt{2}} = i |1\rangle$. Build a sieve : H found $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ so denot B_{ini} B_{a} sieve. $\boxed{1}$ $\boxed{2}$ $\boxed{3}$ $\boxed{3}$ $\boxed{3}$ $\boxed{4}$ $\boxed{4}$ $\boxed{3}$ $\boxed{2}$ $\boxed{4}$ $\boxed{4}$ $\boxed{4}$ $\boxed{5}$ $\boxed{6}$ $\boxed{2}$ $\boxed{2$ What is happening as photon hits the sieve? Ans measurement: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = (\begin{pmatrix} \alpha \\ \beta \end{pmatrix})$ \textsf{static} of photon before. Collopes to eider \ket{o} "bounces back" w \ket{r} $\ket{\alpha}^{2}$ $11)$ "goes through" w pr $|\beta|^2$.

Random light's polarization can be thought of as ^a r andom angle. Easy to show that \sim /2 of photons pass through in the stat. mech. limit.

Problems :

$$
\Pr\left[\begin{array}{cc} \boxed{\gamma_{\theta\eta}} & \text{measurable } \text{accepts} \end{array} \Big| \text{ } b_{o}^{x} > \right]
$$

$$
= \left| \left\langle b_{o}^{\theta+ \gamma} \middle| b_{o}^{\gamma} \right\rangle \right|^{2}
$$

= $\left(c_{o} \gamma c_{o} \theta + \gamma + \sin \gamma \sin \theta + \gamma \right)^{2}$
= $c_{o} \left((\theta + \gamma) - \gamma \right) = \boxed{c_{o}^{2} \theta}$

us vithout setting off the bomb?

Ideas :

3.1
$$
\theta
$$

\n3.1 θ

\n3.2 θ

\n3.3 θ

\n3.4 θ

\n4. θ

\n5. θ

\n6. θ

\n7. θ

\n8. θ

\n9. θ

\n10. θ

\n11. θ

\n12. θ

\n13. θ

\n14. θ

\n15. θ

\n16. θ

\n17. θ

\n18. θ

\n19. θ

\n10. θ

\n11. θ

\n12. θ

\n13. θ

\n14. θ

\n15. θ

\n16. θ

\n17. <

Model the Dud as the identity transform the Bomb as a storderd baois measurement.

by prev. we can write it as

inelevant

$P_r\left(\begin{array}{c} a_{\text{loop}}t^{\text{th}} \mid a_{\text{empty}}t^{\text{th}} \end{array} \middle \begin{array}{c} a_{\text{empty}}t^{\text{th}} \\ \text{from } \text{empty} \end{array} \right) = \text{sin}^2(\theta_2)$
$P_r\left(\begin{array}{c} a_{\text{right}}t^{\text{th}} \mid \text{from } \text{empty} \end{array} \right) = \text{sin}^2(\theta_2)$
$2a_{\text{up}}$ we are willing to be better to the top of the behavior.
$2a_{\text{up}}$ we are willing to be better to the proof of the behavior.
$2a_{\text{up}}$ we have the probability of the function θ_2 should be given by:
$2a_{\text{up}}$ we have the probability of the function $\theta_2 = 0$ with the probability of the function $\theta_2 = 0$

accepts ω pr $(L-\epsilon)^2 \approx 1-2\epsilon$

If "bomb", each pass through the black box either
exploles with probableity
$$
sin^2\theta
$$
 or resets to $|0\rangle$
with prob. $cos^2\theta$.
Prob (explosim) = $T_1[1^{\circ}exp.]+T_1[2^{\circ}exp|1^{\circ}+not]$
 $+...+T_1[T^{\circ}exp|1-0+1^{\circ}]$
 $= T sin^2\theta$.
End $sin\theta$ with be $|0\rangle$ than with prob. $21-7sin^2\theta$
and explain with pr $\leq T sin^2\theta$.
If expansion tolerance is \leq than
 $T sin^2\theta \approx (\frac{\pi}{2\theta})\theta^2 - \frac{\pi}{2}\theta \leq \epsilon$
pick $\theta = \frac{2\epsilon}{\pi} = O(\epsilon)$. $T = O(\frac{1}{\epsilon})$.
Con defect if bound with only ϵ risk of explanation
in time $O(\frac{1}{\epsilon})$.

$$
p_{a}^{b} - n_{tunneled.m.} = (10 \times 010 \text{ L}) |4a \times 4. | (10 \times 010 \text{ L})
$$
\n
$$
p'_{a} = (10 \times 010 \text{ L}) |4a \times 4. | (10 \times 010 \text{ L})
$$
\n
$$
p_{t} + (10 \times 010 \text{ L}) |4 \times 4. |
$$
\n
$$
p_{t} + 50 \text{ row}
$$
\n
$$
p' \leftarrow \text{post} 0 \text{ maximum when the original equation}
$$
\n
$$
p' = \sum_{a} pr(a | 7 = 0) \cdot p'_{a}
$$
\n
$$
= \sum_{a} \frac{pr(a | 7 = 0)}{pr(7 = 0)} (10 \times 010 \text{ L}) |4a \times 4. | (10 \times 010 \text{ L})
$$
\n
$$
= \sum_{a} \frac{pr(a)}{pr(7 = 0)} (10 \times 010 \text{ L}) |4a \times 4. | (10 \times 010 \text{ L})
$$
\n
$$
= \frac{(10 \times 010 \text{ L})}{2} p (10 \times 010 \text{ L})
$$
\n
$$
= \frac{(10 \times 010 \text{ L})}{2} p (10 \times 010 \text{ L})
$$
\n
$$
= \frac{(10 \times 010 \text{ L})}{2} p (10 \times 010 \text{ L})
$$
\n
$$
= \frac{(10 \times 010 \text{ L})}{2} p (10 \times 010 \text{ L})
$$