Lecture 18 Nov 26 , 2024

Typically, when people table about classical error. Cemection

\nthey are falling about linear codes.

\n
$$
k = \dim C
$$
 and $C = \ker A \Leftarrow$ check matrix.

\nNotation: $C = [n, k, d]$ code with locally $l \cdot i$

\n $C = \ker A$ which locally $l \cdot i$

\n $C = \ker A$ which locally $l \cdot i$

\n $C = \ker A$ which is given by:

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{1}{t}$

\n $\lim_{t \to \infty} \frac{1}{t} \cdot \frac{1$

Quantun Codes.
Let
$$
C \subseteq (C^2)^{6n}
$$
 be a Hilbert space s.t.
dim $C = 2^k$ and for all $E = E_s^{'\circ} \circ 1_{[n] \setminus S}$
Thus $|S| < d_1$ we have

$$
\langle \Psi_1 | E | \Psi_2 \rangle = 0
$$
 if $| \Psi_1 \rangle \perp | \Psi_2 \rangle$.
\nEquiv, dist d is the max d s.t. for all Paulis of
\nsic d,
\n π Γ Γ = $\gamma_p \pi$ for π du
\nprojectro over a count of the distinct
\n $\frac{d-1}{2}$.
\nNotation: Γ Γ k , d)] code.
\n
\nShow do not build code of better parametres?
\nTo do, so we will study a special subclass if codes
\ncolde's stability code a due to their fundamental
\nrelation to Paulis and stochastic.

directly inely, and community Paulis
$$
P_1...P_n
$$
.

\nWell if we only consider $P_1,..., P_{n-k}$, the will be a

\n 2^{n-k} dim subspace $(\tilde{=}(\mathbb{C}^2)^{6k})$ of states $3k$.

\n $P_i|\psi\rangle = |\psi\rangle$.

$$
\frac{\text{Claim}}{2!} \text{Span} \{1000, 1111\} \text{ is defined by } Z_1 Z_2, Z_2 Z_3.
$$
\n
$$
\text{Pr. } Z_1 Z_2 \left(\sum_{x} \alpha_x |x\rangle \right) = \sum_{x} (-1)^{\alpha_1 + \alpha_2} \alpha_x |x\rangle
$$
\n
$$
\text{So } \alpha_x = 0 \text{ when } \alpha_1 + \alpha_2 = 1.
$$

Chapter 2. So

\n
$$
\alpha_{x} \neq 0 \quad \text{when} \quad \alpha_{z} + \alpha_{y} = 1. \quad \text{So}
$$
\n
$$
\alpha_{x} \neq 0 \quad \text{when} \quad \alpha \in \{0.00, 111\}.
$$

Recall notron,
$$
\theta
$$
 meaning $w.r.t. an observable.$
\n $M = \Lambda_{+} - \Lambda_{-}$
\n $M = \pi_{+} - \Lambda_{-}$
\n $lim_{u \to 0} \frac{1}{u}$

commutes with all stabilizes.

Is the a logical phoxr flip? Yes.
$$
Z_1
$$
.

Since have *is a* 1, *qubit phere*
$$
f_{i\tilde{p}}
$$
, *dhis cannot*
correct against *phore flip envs*.

There, flip code stabilized by X₁X₂, X₂X₃.

\nlogical plot, flip.
$$
Z_{2}Z_{3}
$$

\nlogical bit, flip. X_{1} .

\nWhat are the stabilizes of the following:

\n
$$
12 \rightarrow 0
$$

\n $$

How do ne correct and detect erroys for stabilizer code? Suffices to consider Paulos.

Let C be stabilized by $\langle S_{1},...,S_{n-k}\rangle$ Three types of errors: Good, Bad, Ugly.

① Good emn . E is ^a product of stabilizes. Then El4) ⁼ 14) and rothing changed. ^② Bad cror . ^E anticommutes with some Si.

(3) Ugly orn. E commutus nicht all
$$
S_{1},...,S_{k}
$$

but is ontrieb, their spent.

Bad errors one detectable. To detect error, measure each stabilirus
$$
S_i
$$
. $| \theta \in S_i = -S_i E_i$ from

\n $S_i E | \psi \rangle = -ES_i | \psi \rangle = -E | \psi \rangle$ for $| \psi \rangle \in C$.

\nTherefore S_i measurements output = 1.

Ugly arros are logical transforms. They are undetectable as every stabilizes will menus ⁺ 1 but the state changes)
ly eme
enges.

Ex. For bit flip code

$$
3^{000}
$$
 Z Z T
\n
$$
3^{100}
$$
 Z Z T
\n
$$
3^{100}
$$
 Z Z T
\n
$$
3^{100}
$$
 Z Z T
\n
$$
4^{100}
$$
 Z Z T
\n
$$
4^{100}
$$
 Z Z T
\n
$$
4^{100}
$$
 Z Z T

Let $G = \langle S_1, ..., S_k \rangle$

 $\frac{1}{2}$

The combralizer
$$
C(G) = C_{p_n}(G)
$$
 is the set
\n $\{P \in P_n | \forall g \in G, P_g = gP\}$

$$
q \circ \circ d = Q
$$
\n
$$
bad = P_n \setminus C(Q)
$$
\n
$$
usly = C(Q) \setminus Q.
$$

Pauli A stabilizes code has distance d, if every error of size<I is either good or bad

Cequir trivial or correctable).

They For a stabilizer code on n-gubits with n-k independent Pauli stabilizers $S_{lj}...,S_{n-k},$ let \mathcal{G} = $\langle S_{lj}...,S_{k}\rangle$. Then the rate of he code is k and the distance is the minimum size of a Pauli ϵ $C_p(G) \setminus G$.

Next: Kitaev's toric code. A construction of an error correcting code with local checks and distance growing with n.

Toric code is ^a special core of Cauldenbank-Shor-Steame (CSS) codes

Camberson Evan Orean (2007 acces

\n
$$
\text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad \text{26.4} \quad \text{27.4} \quad \text{28.4} \quad \text{29.4} \quad \text{20.4} \quad \text{21.4} \quad \text{22.4} \quad \text{23.4} \quad \text{24.4} \quad \text{25.4} \quad
$$

Shor's code is also CSS.

$$
\frac{Obs}{det}
$$
 X-type cubes defect for Z-ensors and Z-type check
olated for X-ensors. only tensor product of
Z and 11.

What is the smallest
$$
Z
$$
 - error that is logical?
\nIt's the smallest element of $C_{\text{pr}}(G) \setminus G$
\nwhich only consists of Z - terms.

goal is to design ^a code ^S . t. all small E-erice either are⑪ detected by the X-check ⑤ product of the z-checks and (therefre , trivial as it act like a stabilizer) .

For
$$
E\subseteq[n]
$$
, let $Z_{\varepsilon} = \mathbb{1} \otimes \mathbb{1} \otimes ... \otimes \otimes Z \otimes Z \otimes \mathbb{1}$
locations indicated by E.

An env
$$
Z_{\epsilon}
$$
 is detected by a stabilizer X_A
if $A \cdot E = 1$. Equiv, the size of N inforward
[$A \cap E$] is odd.

 $So,$ the " Z -distance" of the code is the smallest size error $\mathcal{Z}_{\bm{\epsilon}}$ where intersection with every X-check $X_{\mathcal{A}}$ is even but $\mathcal{Z}_{\mathcal{E}}$ is not a product of the Z - checks.

Place qubits on the edges of ^a grid-discretization of ^a torus .

For every face
$$
f
$$
, place a check Z_{ρ}
which equals $Z \otimes Z \otimes Z \otimes Z$
edges touching f .

And for every vertex
$$
v
$$
, place a check X_v
which equals $X \otimes X \otimes X \otimes X$
edges touching v .

All stabilizes commute as the intersection of a facef and ^a vertex ^w is citur ⁰ or ².

Two observations :

(1) A Zveror ZE commutes with every X -check X_{ν} iff $E=$ union of cycles.

 \hat{H} . Use the edges $\epsilon \in h$ draw a graph (V, E)

- What is the difference between cycles and boundon'es?
	- All boundaries are cycles but not all cycles are boundaries .

Cycles | Boundeder = "non-trivial loops".
\nWhat is the shortest non-trivial loop?
\nLength =
$$
\sqrt{n}
$$
.
\nSo, thus Z-distance will be \sqrt{n} .
\nThe X- distance is also \sqrt{n} by a similar
\nargument.
\n
$$
A non-trivial loop\nthrough the faces.\n
$$
=
$$
\n
$$
=
$$
\
$$

Conecting a general Pauli env.
\n
$$
P = X_g Z_{\epsilon'}
$$
.
\nSince chabs are only X- or Z-type, P antcommutus
\nwith X_V iff |E'0v| is odd and
\nwith ZP iff |E'0f| is odd.
\nTherefore, correctly the IP Xg and Zg' are both
\neperately connected.
\nWhat are the logical transformations for this rule.
\nThey will correspond to non-trivial loops.
\n $\frac{Z_2}{Z_1}$

Notice \overline{X}_1 and \overline{Z}_1 share an edge and threfore
anticommute. Likeuse \overline{X}_2 and \overline{Z}_2 anticommute. anticommute. Libeure \overline{X}_2 and \overline{z}_2 anticommute.
Other relations are commutation.

These logical operators are defined up to stabilizes.

By these relations , there define ² logical qubits -

There are multiple p{s that there are the only logical
qubits such as counting the number of independent
stabilizes:
So, this is a [[n, 2,
$$
\Omega(\sqrt{n})
$$
]] code.

So, this is a
$$
\left[\left(n, 2, \Omega(\sqrt{n})\right]\right)
$$
 code.

For the longest time, this was the best known code . Today , we have constructions of (In ,(n) , R(n>]] codes

Lastly,

A rotated basis picture on stabilizer codes. Let $\mathcal{G} = \langle s_{1},...,s_{n-k} \rangle$ for indep, stabilizers s_i . Then \exists unitary V s.t. VS_iV^{\dagger} = Z_i Then VCV^{\dagger} = $|0\rangle$ ^{On-k} \otimes $(\binom{1}{2})$ & h ^V is therefore the Encoding circuit. Furthermore , if we measure the syndrome and get out $\vec{s} \in \left\{0, \iota\right\}^{n-k}$, then the state lies in $|\vec{s}\rangle \otimes (\mathbb{C}^2)^{\otimes n-k}$. So, $e^{\int (C \cdot V - 10)}$
 \therefore direpter the Encoding circuit.
 $e^{\int (C \cdot V - 10)}$
 $e^{\int (C \cdot V)^{n-k}}$, then the syndrome and
 $e^{\int (C \cdot V)^{n-k}}$.
 \therefore
 $E_1 E_2$
 \therefore
 $E_3 E_3$
 \therefore
 E_4
 \therefore
 E_5
 \therefore
 E_7
 \therefore
 E_8 s ^{subspace}s basis picture on si

(S_{IJ}..., Sn-L) fe

ory V s.t. V S,
 $t^1 = 10^{8n-k} \otimes (\bigoplus_{i=1}^{n}$

w the Encoding control

or C C²)

(C²)

E, E,

E, E,

(C²)

(C²)

(C₂)

(C₂)

(C₂)

(C₂)

(C₂) depending on bifferent
subspacers
liperding of
syndrome