Lecture 18 Nov 26, 2024

Typically, when people talk about classical error correction
they are talking about linear codes.

$$k = dim C \quad and \quad C = ker \quad A \quad \leftarrow \quad check \quad matrix.$$
Notation:
$$C = [n, k, d] \quad code \quad with \quad locality \quad l \quad if$$

$$C = ker \quad A \quad with \quad A \quad bring \quad l - row \quad & - \quad column \quad sprne.$$

$$Ex. \quad A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & l \end{pmatrix}. \qquad A \quad x = 0$$

$$cquelto \quad x_{1} \otimes x_{2} = x_{2} \otimes x_{3} = 0.$$

$$C = [3, 1, 3] \quad code.$$

$$d = \min \quad d_{H}(x, y) = \min \quad [\pi].$$

Quarton Codes.
Let
$$C \subseteq (\mathbb{C}^2)^{\otimes n}$$
 be a Hilbert space s.t.
dim $C = 2^k$ and for all $E = E_s' \otimes II_{m_1 \setminus s}$
where $|s| < d_1$ we have

Recell stubilizes states as the states defined	by
--	----

linearly indep, and commuting Paulis
$$P_{1}, \dots, P_{n}$$
.
Well if we only considered $P_{1j}, \dots, P_{n-k_{j}}$ the will be a
 $2^{n-k} \dim$ subspace $(\cong (\mathbb{C}^{2})^{\otimes k})$ of states s.t.
 $P_{1} \mid \psi \rangle = |\psi \rangle$.

Claim span
$$\{|000\rangle, |111\rangle\}$$
 is defined by Z_1Z_2, Z_2Z_3 .
Pf. $Z_1Z_2\left(\sum_{x} \alpha_x |x\rangle\right) = \sum_{x} (-1)^{\alpha_1 + \alpha_2} \alpha_x |x\rangle$
So $\alpha_x = 0$ when $\alpha_1 + \alpha_2 = 1$.

Likene,
$$\alpha_{x} = 0$$
 when $\alpha_{x} + \alpha_{y} = 1$. so
 $\alpha_{x} \neq 0$ when $x \in \{0000, 101\}$.

Recall notion of measuring current. an observable,

$$M = \Lambda_{+} - \Lambda_{-}$$

 $\Lambda_{+} = \Lambda_{-}$
 $\Lambda_{+} = \Lambda_{-}$
 $\Lambda_{+} = \Lambda_{-}$
 $\Lambda_{+} = \Lambda_{-}$

committes with all stabilizers.

Phere flip code stabilized by
$$X_1X_2, X_2X_3$$
.
logical phone flip. $\Xi_1 \Xi_2 \Xi_3$
logical bit flip. X_1 .
Whet are the stabilizers of Shor code?
It $\longrightarrow (10) + (-1)^2 (12)^{\otimes 3} + (1000) + (-1)^2 (111)^{\otimes 3}$
 X_1X_2, X_2X_3
 X_1X_2, X_2X_3
 X_1X_2, X_2X_3
 X_1X_2, X_2X_3
 $X_1X_2X_3X_4X_7X_6$
 $(\Xi_1\Xi_2, \Xi_2\Xi_3)$
 $X_1X_2X_3X_4X_7X_6$
 $(\Xi_2\Xi_7, \Xi_7\Xi_6)^2$
 $X_4X_7X_6X_9X_9X_9$.
 $(\Xi_7\Xi_7, \Xi_8\Xi_9)^2$
 $X_2X_7X_6X_9X_9X_9$.
 $X_2X_7X_6X_9X_9X_9$.
 $X_2 = X_1 - X_9$, $\Xi = \Xi_1 - Z_9$.
Are thre other logical bit and phone flips?
Table of stabilizers:

$S_{2} = 1 \overrightarrow{2} \overrightarrow{2} 1 1 1 1 3_{3} 3 1 1 1 \overrightarrow{2} \overrightarrow{2} 1 1 1 1 1 3_{4} 3_{4} 1 1 1 \overrightarrow{2} \overrightarrow{2} 1 1 1 2 \overrightarrow{2} 1 1 1 2 3_{4} $	Sl	د	Z	Z	l	l	ι	1	l	l	ι
$S_{3} = 1 (\ 1 Z 2 1 (\ 1 S_{4} = 1 (\ 1 1 Z 2 1 (\ 1 S_{7} = 1 (\ 1 1 Z Z (\ 1 1 Z Z Z Z Z Z Z Z $	Sz	2	l	2	2	ι	ι	l	ι	t	ι
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S,	3	1	(l	Z	2	1	ι	ι	l
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Տղ	÷	ι	l		ι	z	Ę	ί	ί	ι
$S_{G} = 1 ((((((\chi Z) S_{T}) X X X X X X X (()) S_{R} = 1 (1) X X X X X () \overline{X} - X X X X X X X X X X \overline{Z} = Z 2 Z Z Z Z Z Z Z Z $	Sr	2	(l	1	t	l	۱	z	2	١
$S_{7} \sim \chi \times \chi \times \chi \times \chi \times \chi $ $S_{8} \sim 1 1 \chi \times \chi$	S ₆	2	l	l	l	((((ą	Į
$S_{8} = 1 1 1 X X X X X X X $	S ₇	S	χ	Х	χ	χ	γ	K	ſ	l	l
X X X X X X X X Z - Z - Z Z Z Z Z Z	S &	2	l	ι	1	Χ	χ	X	χ	X	χ
2 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\overline{\chi}$	"	X	х	K	Х	K	Х	R	Х	×
	Ż	ų	5	2	2	7	2	2	Z	z	Z

How do ne correct and detect errors for stabilizer code? Suffices to consider Paulos.

Let C be stabilized by <S1,..., Sn-k? Three types of errors: Good, Bad, Ugly.

Bad errors one detectable. To detect errors, measure
each stabilizers
$$S_i$$
. If $ES_i = -S_iE_i$ then
 $S_iE|\Psi\rangle = -ES_i|\Psi\rangle = -E|\Psi\rangle$ for $|\Psi\rangle \in C_i$

Therefore Si mensurement ortputs - 1.

Ugly envis one logical transforms. They are indetectable as every stabilizer will measure +1 but the states changes. Ex. For bit flip cude

Let $G = \langle S_1, \dots, S_k \rangle$

The centralizer
$$C(G) = C_{P_n}(G)$$
 is the set
 $\sum P \in P_n \mid \forall g \in G, P_g = g P$.

The set of Paulis which commutes with all of G.

$$good = G$$

 $bad = P_n \setminus C(G)$
 $ughy = C(G) \setminus G$.

Then For a stabilizer code on n-qubits with n-k independent Pauli stabilizers $S_{1,...,S_{n-k}}$, let $G = \langle S_{2,...,S_{k}} \rangle$. Then the rate of the code is k and the distance is the minimum size of a Pauli $\in C_{p_n}(G) \setminus G$.

Next: Kitaer's toric code. A construction of an error correcting code with local checks and distance growing with n.

where each stabilizer generator is either X-type or Z-type.

$$X - type = X^a \leftarrow tensor product of only X terms.$$

 $Z - type = Z^b \leftarrow tensor product of only Z terms.$

Shor's code is also CSS.

What is the smallest Z-error that is logical?
It's the smallest element of
$$C_{pn}(G) \setminus G$$

which only consists of Z-terms.

For
$$E \in [n]$$
, let $Z_E = 1 \otimes 1 \otimes ... Z \otimes Z \otimes Z \otimes 1$
locations indicated by E .

An error
$$Z_E$$
 is detected by a stabilizer X_A
if $A \cdot E = 1$. Equiv., the size of the intersection
 $|A \cap E|$ is odd.

So, the "Z-distance" of the code is the smallest size error
$$Z_E$$
 where intersection with even X-check X_A is even but Z_E is not a product of the Z-checks.

Two observations:

(1) A Z-error Z_E commutes with every X-check X_{v} iff E = union of cycles.

PF. Use the edges 6 E to draw a graph (V, E).

- What is the difference between cycles and boundaries?
 - All boundaries are cycles but not all cycles are boundaries.

To see this its often easiest to unfold the torus.

I dentify the top & bottom and identify the sides.

Correcting a general Pauli error.

$$P = X_E Z_E^{i}.$$
Since checks are only X- or Z-type, P anticommutes
with X_V iff |E' |V| is odde and
with Zp iff |E || || is odde.
Therefore, correctable if XE and ZEI are both
separately correctable.
What are the logical transformations for this code?.
They will correspond to non-trivial loops.

$$Z_{i} = \frac{1}{Z_{i}} = \frac{1}{Z_{i}} = \frac{1}{Z_{i}} = \frac{1}{Z_{i}}$$

Notice \overline{X}_1 and \overline{Z}_1 share an edge and threfore anticommute. Likewise \overline{X}_2 and \overline{Z}_2 anticommute. Other relations are commutation.

So, this is a
$$\left[\left(n, 2, \mathcal{N}(\sqrt{n})\right)\right]$$
 code.

For the longest time, this was the best known code. Today, we have constructions of
$$([N, \Omega(n), \Omega(n)])$$
 codes.

Lastly,

A rotated basis picture on stabilizer codes. Let G = < S1, ..., Sn-k> for indep. stabilizers Si. Then \exists unitary V s.t. $VS_iV^{\dagger} = Z_i$. Then $VCV^{\dagger} = |0\rangle^{\otimes n-k} \otimes (\mathbb{C}^2)^{\otimes k}$ V is dure fre the Encoding circuit. Furturnore, if ne measure the syndrome and get out $\vec{s} \in \{0, i\}^{n/k}$, then the state lies in $|\vec{s}\rangle \otimes \left((\vec{r})^{\otimes n-k} \right)$ E:Ena E:Ena E:Ena E:Ena E:Ena I So, different subspaces clipending on synchrome.