Lecture 17 (Slides)

Nov 21, 2024

The packing of Hilbert spaces perspective
goal: comect against unitary errors
$$E_1, E_2, ..., E_3$$
 (for now)
 $E_1 \cdot Enc$
 $E_1 \cdot Enc$
 $E_1 \cdot Enc$
 $E_2 \cdot Enc$
Hilbert space $E_2 \cdot Enc$
Hilbert space $E_2 \cdot Enc$
Hilbert space $E_2 \cdot Enc$
 $E_3 \cdot Enc$
 Enc
 Enc Enc
 Enc
 Enc Enc
 Enc Enc
 Enc Enc

Si

Simple example of a non - code

$$E_1 \cdot E_n = E_2 \cdot E_n = E_2 \cdot E_n = (1 \cdot 2)$$

1.e. $E_1 \cdot E_n = (1 \cdot 2) = E_2 \cdot E_n = (1 \cdot 2)$
 \Rightarrow connot distinguish then errors.
Actually, stronger statement: If $1 \cdot 2 + 1 \cdot 2$, then
these states should be orthogonal.

Why orthogonal? E. Enc.
Fact 2 states (a) and (b) are perfectly distinguisheddle
iff (a)
$$\perp$$
 (b) (orthogonal vectors)
Notice: only connecting $E_1 \notin E_2$ if we can distinguish
 $E_1 \cdot Enc((\cdot))$ and $E_2 \cdot Enc((\cdot))$
 $=$ These vectors are orthogonal.

It would be too much to ask that

$$E_1 \cdot Enc(1 \cdot >)$$
 and $E_2 \cdot Enc(1 \cdot >)$ are orthogonal.
PA: consider $E_1 \approx_{\epsilon} E_2$.
By linearity, there states must be close.
But for some errors E_1 , E_2 , they will be orthogonal.
Morally, there errors will form a "basis" for the set
of errors we can correct.

Show that $\langle a_1 | a_2 \rangle = \eta_{12}$, an invariant that only depends on E1, E2 and not the state $|a\rangle$.

Hint: Use the no cloning theorem.

Why does this yield a notion of a basis for the
space of errors?
If we can correct all errors
$$E \in E$$
, consider a basis s.t.
span $\{E \in Enc|a\}\} = span \{E_i \ Enc|a\}\},$
By exercise, for any other state $|b\rangle,$
span $\{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\} = span \{E_i \ Enc|b\}\},$
 $E \in E \{E \in Enc|b\}\}$, $E \in Enc|b\}$, $E \in E \in E$.

Equiv., can define an inner product on correctable errors

$$\langle E_i, E_j \rangle \stackrel{\text{aff}}{=} \eta_{ij}$$

 $\stackrel{\text{aff}}{=} \langle a | Enc^{\dagger} E_i^{\dagger} E_j Enc | a \rangle$ for any $| a \rangle$.

Can abo correct error channels where elements E E.

The Knill-Laflamme conditions
Mathematically capture all the orthogonality conditions we drew
in the cortoons.
Let C be a quantum code. i.e.
$$C = image of encoding map.$$

Let T be the projector onto subspace C.
Then, C corrects $\xi E_i \ \xi \ iF$ coefficients s.t. $\gamma_{ij} = \gamma_{ii}^{\dagger}$.
TT $E_i^{\dagger} E_j \ TT = \gamma_{ij}^{\dagger} \ TT$ (the inner product
hthreen the error
spaces)

Not hand to show this is equivalent to
$$\forall [a], [b], \langle a|Enc E_1^{\dagger} E_2 Enc|b \rangle = \langle a|b \rangle \cdot \langle E_1, E_2 \rangle$$

Not hand Enc $E_1^{\dagger} E_2 Enc|b \rangle = \langle a|b \rangle \cdot \langle E_1, E_2 \rangle$
Nij prev. defined.
Read Nielsen & Chuang Thim 10.1 for formal
pf and explicit construction of the recovery channel.
But morally, its the same as the pictoral argument
where drawn so far.