Lecture 16 Nov 19 , 2024

\n
$$
\begin{array}{ll}\n \text{Pr. Consider a (yeo) instance of 0000000847.} \\
\text{i.e. } \exists (45) s.t. C(14) aceqb & pr21-e.\n \end{array}
$$
\n

\n\n $\begin{array}{ll}\n \text{Then let } | \Psi^3 \rangle = \frac{1}{\sqrt{rH}} \sum_{\epsilon=0}^{T} | \epsilon \rangle \otimes q_{\epsilon-1} q_1 | \Psi_1 \circ \Psi_2 \rangle \\
\text{that this by a fact of (45) by construction,} \\
\text{At (Hprop (45) = 0)} \\
\text{At (Hin (45) = 0)} \\
\text{At (Hin (46) = 0)} \\
\text{At (Hin (47) = 0)} \\
\text{At (Hout (47) = 0)}\n \end{array}$ \n

What about ^a (no) instanceaf QCircuit SAT ?

Recall the max sneess prob. of a QCircuitSAT instence was cv_0^2 Θ where Θ was the angle between $1\over 2$ π \otimes $10\times$ 0 $^{\circ}$ and C^{\dagger} (1×1 & $1\!\!1_{2^{n+m-1}}$) C projectors.

If max success prob is small $(\le \epsilon)$ then Θ is large (near $\frac{\pi}{2}$). α_3 α_3 θ = θ .

We want to show that Xmin (H) is not super small. Since $H_{prop} \geq \frac{c}{T^2} \left(\frac{1}{T} - \pi_{pop} \right)$

it suffices to show lower board on:

$$
\lambda_{min} \left(\frac{C}{T^{2}} \left(\underline{\underline{u}} - \overline{u}_{prop} \right) + \left(\underline{\underline{u}} - \overline{u}_{inert} \right) \right)
$$
\n
$$
\geq \frac{C}{T^{2}} \lambda_{min} \left(\left(\underline{\underline{u}} - \overline{u}_{prop} \right) + \left(\underline{\underline{u}} - \overline{u}_{inert} \right) \right)
$$
\n
$$
\geq \frac{C}{T^{2}} \left(2 - \lambda_{max} \left(\overline{u}_{prop} + \overline{u}_{inert} \right) \right)
$$
\n
$$
= \frac{C}{T^{2}} \left(2 - 2 \cos^{2} \frac{\gamma}{2} \right) = \frac{2C}{T^{2}} \sin^{2} \frac{\gamma}{2}
$$
\nwhere γ = angle between \overline{u}_{prop} and \overline{u}_{hont}

\nwhere γ = angle between \overline{u}_{prop} and \overline{u}_{hont}

To do this, let's bring back
\n
$$
V = \sum_{t=0}^{T} |t \times t| \otimes q_t ... q_t
$$
.

We know that

$$
V^{\dagger} \prod_{t=0}^{T} V = \text{projector} \text{ or } \text{strictor} \left\{ |h_{\psi} \rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |f \rangle \otimes | \psi \rangle \right\}
$$

$$
V^{\dagger} \prod_{h \text{root}} V = (17 \times T) \otimes C^{\dagger}(\text{Disc1}, \otimes \mathcal{I}) C).
$$
\n
$$
(10) \times 01 \otimes \mathcal{I}_{27} \otimes 10^{m} \times 0^{m}1)
$$

tems commets.

$$
\gamma = \text{angle}(\pi_{pop}, \pi_{inout}) = \text{angle}(\nu^+ \pi_{pop} \nu, \nu^+ \pi_{inout} \nu)
$$

To calculate angle between spaces:

$$
cos^2 \gamma = max \langle h_{\psi} | \Pi_{incont} | h_{\psi} \rangle
$$

 $| \psi \rangle$

$$
= \max_{\{\Psi\}} \frac{1}{T+1} \sum_{\{\Psi\}}^{\mathfrak{l}} \langle f|\zeta\Psi| \pi_{\text{inout}} |f\rangle |\Psi\rangle
$$

$$
\frac{1}{\sqrt{2}} \frac{\pi}{\pi} + \frac{1}{\pi} \left(\frac{\sqrt{4} \mathcal{L}^{+} (\ln \mathcal{L} \cdot 1 \otimes \mathcal{L}) \mathcal{L} | \psi}{\sqrt{4} \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L} \cdot \mathcal{L}} \right)
$$
\n
$$
= \frac{\pi}{\pi} \frac{1}{\pi} + \frac{1}{\pi} \frac{2}{\pi} \mathcal{L} \cos^{2} \frac{\mathcal{L}}{\mathcal{L}}
$$

as optimal $|\psi\rangle$ is midway betruen projectors $C^+(1)$ $<$ 1 , \otimes 1) \subset and $\mathbb{1}_{2^m} \otimes |0^m \times 0^m|$ which are θ apart. Recall $\sqrt{6}$ = $\cos \theta$ = $2 \cos^2 \theta$ - $=$ $\Rightarrow 2\omega \frac{1}{2} = 1-\sqrt{6} \Rightarrow$ $\cos^2 \gamma = \frac{T-1}{T+1} + \frac{1}{T+1} \left(1 + \sqrt{\epsilon} \right) = 1 - \frac{(1-\sqrt{\epsilon})}{T+1}$ $\sin^2 \frac{\gamma}{2}$ = $\frac{1-\cos^2 \gamma}{2}$ = $\frac{1-\sqrt{6}}{2(1+i)}$. Therefore, $\lambda_{min}(H) \ge \frac{2C}{T^2} \left(\frac{1-\sqrt{6}}{T+1} \right) = \Omega(\frac{1}{T^3})$ for small ϵ . So if yes instance, $\lambda_{\text{min}}(H) \leq \epsilon$

 P no motence, $\lambda_{min}(H) \geq \frac{1}{T^3}$

To complete
$$
pP
$$
 of GMA-hordness, $fint$ use amplification to
convert any GCIRCVITSAT problem to $(1-e_1e)$ amplification
for $6 \le \frac{1}{T^3}$ Then apply the circuit-to-Hamilton constant.

A more sophioticated analysis proves that no instances map to $\Omega(\frac{l}{l^2})$

Note that we only proved GMA-hordnus for
$$
\alpha \log T = O(log n)
$$

local Hamiltonians. Your however includes a transfenn to 5-level
Hamiltonians.

Hamiltonians.
\nThis will yield a Hamiltoniating on T+n+m, qubits.
\nAlso, we only proved it was QMA-hud to estimates
$$
\lambda_{min}(H)
$$
 to
\n $\frac{1}{T^3} \sim \frac{1}{N^3}$ where N is due number of qubits in the Ham.
\nIt may be easier to get a coaser approximation

Quantum Error Correction .

Until knew, , me have talked about perfect application of gates and perfect initializations of ^g. states.

What if that is not the cuc?

Error-correction gives a thorup of how to recover information in he concertar gins a
proxime of noise

Biggest block to our construction of large scale go computers Quantum computation is more succeptible to voice thou classical computation.

Errors can occur in any component..-

How dome correct.

O ^A thony of correction for statio ^q information. No computation occuring , just errors. Run a sequence of corrections to return information back to original.

baeal to original.
Quentun analog of relative Sada sebagai.
Clausical:
$$
CD_{s,}SSD_{s,}
$$
 Haddives, Pen and Paper

② Correction interspersed with computation Called Fault-Tolerance and will be covered in Lecture ²⁰ by quest lecturer Michael Beverland.

How do ne correct classical information?

Theory : Rich. Practice : Redundancy

WiPi/3G/4G : LDPC codes CD-Rom : Reed -Solomon codes

Comprehation: Run it thrice and take majority vote.

Reasonable because a classical bit in a modern transiters incur on error with $\beta r < 10^{-16}$.

To analyzecrror-correction (theretically) , we first need a model for crow

Simplest model bit flip Channel .

$$
\rho \longmapsto \mathcal{E}(\rho) = p \cdot X_{\rho}X + (1-p) \rho.
$$

At
Nokin holds ρ_1 quantum also.

$$
B_{i+1}^{i+1}f_{i+1}^{i+1} \text{ on each } b_{i+1}^{i+1}
$$
\n
$$
Z(C^{2^{n}}) \text{ is } \rho \mapsto E^{2^{n}C}(\rho).
$$
\n
$$
Pr[m \text{ bit } q_{i+1}^{i+1} f_{i+1}^{i+1} p_{i+1}^{i+1}] = (1-\rho)^{n} \to 0 \text{ on } n \to \infty.
$$

General procedure.

Easiest classical example: Reputition code.

 \overline{O} is $Enc(O)$ = 0.22220 $T := Enc(1) =$ $\begin{array}{c} \begin{array}{c} \text{1.}\text{...} \\ \text{...} \end{array} \end{array}$ n times.

Assume $p < \frac{1}{2}$.

$$
Dec(\gamma) = \begin{cases} 0 & \text{if } |\gamma| < \frac{\pi}{2} \\ 1 & \text{if } |\gamma| > \frac{n}{2} \end{cases}
$$

Pr
$$
Dec(\gamma) = \begin{cases} 1 & \text{if } |\gamma| > \frac{n}{2} \\ 1 & \text{if } |\gamma| > \frac{n}{2} \end{cases}
$$

Pr
$$
Dec(\gamma) = C
$$

Pr
$$
Dec(\gamma) = C
$$

Pr
$$
C
$$

The 3 +*conv* be of *quantum error* concentration.
Or
$$
C
$$

Pr
$$
C
$$

Im
$$
C
$$

Im <math display="block</math>

② No-cloning theorem . There is no unity mapping 10) 10310) and It) 1* / +) Therefore quarter repetition code dent make sense .

③ Measurements destroy quarte infor How do we correct when measurement is perforative?

Today : Show's ⁹ qubit code ⁺ theory of EC.

Let's correct
$$
f
$$
 in + for a specific subset of errors:
Single qubit X (bit flip), Z (plane flip), and X3 (bit + plane)

To correct just bit flip errors, appeal to classical intuition.

map 10) + 1000) ³ Does not violate no cloning ¹¹⁷ + /112) as we copy in I basis

 $|\psi\rangle$ = α $|\circ\rangle$ + β $|\iota\rangle$ + \bullet $|\overline{\psi}\rangle$ = \mathbb{E} nc $|\psi\rangle$ = α $|\circ$ $\circ\circ\rangle$ + β $|\iota\iota\iota\rangle$.

Say arrow occus on middle qubit. $E|\bar{\Psi}\rangle$ = $\propto |010\rangle + |0101\rangle$ Measing would destroy superposition. Instead , $\nonumber \begin{aligned} \n\varphi > \varphi > \varphi \quad \text{and} \quad \varphi \quad \$

