Lecture 14 Nov 12 , 2024

Notion of non-deterministic ^g computation. Also of internot as it relates to major questions of interest in q. mechanics.

Does QMA have the same error-amplification properties of BQP?

Yes. But it is not as easy as repeat multiple times .

^B . C. measurement is perturbative . After running ((14), (01)) the state 14) may be destroyed.

Easiest to smitch to Prans & Verifics interaction perspective

Prover fie Venti mins (14)10% and messes .

Goal . Come up with ^a better verifier which accept with near certainty if I an accepting witnes and reject with near certainly if ^X an accepting witness.

$$
lclua: Have the power send $|\psi\rangle^{\otimes T} \in (\bigcap^{1})^{\otimes nT}$
\n
$$
lssne: Prove may check and sent a different entangled
$$

\n
$$
sects |\psi\rangle \in (\bigcap^{2})^{\otimes nT}
$$
$$

Resolution : One can show that best strategy for the prover is to send ancrentangled state

But in fact, G a verification algorithm with letter acceptance and rejection probabilities that only needs I copy.

Requies Jordan's lemma. The story of ^a QMA verification circuits ^C is ^a take of two projective.

$$
\Pi_{0} = \mathcal{L}_{2} \otimes |0 \times 0|^{m}
$$
\n
$$
\Pi_{1} = C^{\dagger} (11 \times 110 \underline{11}_{2^{num-1}})C.
$$
\n
$$
\Pi_{0} I\overline{V} > \pi I\overline{V} > \text{where } I\overline{V} > \pi I\overline{V} > 0
$$
\n
$$
\Pi_{0} I\overline{V} > \pi I\overline{V} > \text{where } I\overline{V} > \pi I\overline{V} > 0
$$
\n
$$
\Pi_{0} \text{ extends input has correct ancilla.}
$$
\n
$$
\Pi_{1} \text{ the terms computation + measurement acupb.}
$$
\n
$$
\underline{\text{Jordan's lemma}} \quad \text{Girm two projects } A_{1}B \in \mathbb{C}^{D \times D},
$$
\n
$$
\exists a \text{ charge of basis s.t. } A_{1}B \text{ or block-diagonal with}
$$
\n
$$
\Delta_{0} \circ \Delta_{1} \circ \Delta_{2} \circ \Delta_{3} \circ \Delta_{4} \circ \Delta_{5} \circ \Delta_{6} \circ \Delta_{7} \circ \Delta_{8} \circ \Delta_{8} \circ \Delta_{9} \circ \Delta_{10}
$$
\n
$$
\Delta_{1} \circ \Delta_{1} \circ \Delta_{2} \circ \Delta_{1} \circ \Delta_{11} \circ \Delta_{12} \circ \Delta_{13} \circ \Delta_{14} \circ \Delta_{15}
$$
\n
$$
\Delta_{1} \circ \Delta_{12}
$$
\n
$$
\Delta_{1} \circ \Delta_{2} \circ \Delta_{3} \circ \Delta_{1} \circ \Delta_{
$$

if Alv> &
$$
spon(iv)
$$
, tum
\nBlv> & $spon(Aiv), iv) =: S$
\nThen, $A(\alpha Aiv) + \beta iv) = \alpha Aiv + \beta Aiv) \in S$.
\n $d \beta(\alpha Aiv) + \beta iv) = B(\alpha (\lambda iv) - Biv) + \beta iv)$
\n $\alpha Biv) \in S$.
\nSo, S is proved by both A or B. Recusin fhis

Claim Acceptance prob. = max $\|\Pi_1\Pi_0\|\Psi\|$ ²

$$
\begin{array}{lll}\n\mathbb{P}1. & when & |\overline{\psi}\rangle = |\psi\rangle \otimes |0^m\rangle & \text{for optimal } |\psi\rangle, \text{then} \\
\mathbb{C}HS \leq RHS.\n\end{array}
$$
\n
$$
\begin{array}{lll}\n\text{To show } LHS \geq RHS, & \text{we minus } |\psi\rangle = \pi, |\overline{\psi}\rangle.\n\end{array}
$$

网

$$
\mathcal{E}^{\text{q}_{\text{mix}}} \quad \text{acceptme } \text{prb} = \lambda_{\text{max}} \left(\pi_{\text{o}} \pi_{\text{l}} \pi_{\text{o}} \right)
$$
\n
$$
\uparrow \qquad \qquad \
$$

T1₀ T1₁ T1₀ is also block-diagonal
so
$$
\lambda_{max}
$$
 is map eigenvalue over block.

\n $Mearne in \{10\}, 0+\sqrt{2}\rangle\}$ \n	\n $Mearne in \{10\}, 1\rangle\}$ \n	\n $Mearne in \{10\}, 1\rangle\}$ \n	\n $Mearne in \{10\}, 1\rangle\}$ \n	\n $C = \text{car}^2 \theta, \text{ } S = \text{sin}^2 \theta$ \n	\n $C = \text{car}^2 \theta, \text{ } S = \text{sin}^2 \theta$ \n	\n $C = \text{car}^2 \theta, \text{ } S = \text{sin}^2 \theta$ \n	\n $C = \text{cm}^2 \theta, \text{ } S = \text{sin}^2 \theta$ \n	\n $C = \text{tan}^2 \theta, \text{ } S = \text{sin}^2 \theta$ \n	\n $C = \text{tan}^2 \theta, \text{ } S = \text{sin}^2 \theta$ \n	\n $C = \text{tan}^2 \theta, \text{ } S = \text{sin}^2 \theta, \text{$
--	---------------------------------------	---------------------------------------	---------------------------------------	---	---	---	--	---	---	--

10 Apply C. Meusne output and record as x_1 . Appl CT.

(7) Meane POINT
$$
\{ \pi_{0}, 11 - \pi_{0} \}
$$
, Recall an κ_{2} .

\n(Not the same as meaning all oscillating similar to Gmur reflection)

\n(3) Apply C. Meine output and need as π_{2} , Apply C[†].

\n...

\n(7) Meane POM $\{ \pi_{0}, 11 - \pi_{0} \}$, Recall as π_{1} .

\n(7) Meane POM $\{ \pi_{0}, 11 - \pi_{0} \}$, Recall as π_{1} .

\n(7) Suppose POM $\{ \pi_{0}, 11 - \pi_{0} \}$, Recall as π_{1} .

\n(7) Suppose $\gamma_{+} = \kappa_{\epsilon} \otimes \kappa_{\epsilon-1}$, for $6 = 1, \ldots T$.

\nAccording to the following case, we have:

\n...

\

The local Hamiltonian problem Why study QMA? - Quantum generalization of NP - Has a complete problem that is very interesting for physics.

Li problem :

A tolocal Hamiltonian term is a matrix $h_i = h_i^{\pm} \in \mathbb{C}^{2^k}$ $(\omega log 12 h_i \ge 0)$ and a site $S_i \subseteq [n]$ with $|S_i| = k$. The Ham, tem can also be seen as $(h_i)_{S_i}$ or $\mathcal{H}_{(m)\setminus S_i}$ as an operator on $(\int_0^2)^{\otimes n}$.

A L·local Hamiltonian (system) is a collection of
\nk-local Hamilton terms and ne define
\n
$$
H = \sum_{i=1}^{m} h_i
$$
 . $\in \mathbb{C}^{2^{n} \times 2^{n}}$.
\n $\lambda_{min}(H) = \text{ground energy.}$

Problem
$$
(\langle H \rangle, a, b)
$$
:

\nDecich if $\lambda_{min}(H) \leq a$ or $\lambda_{min}(H) \geq b$.

\nYes

Note:
$$
\langle H \rangle
$$
 is the succinct $O(m(2^{k} + k \log n))$
src also point given by distribinge each h_i.

(1) LH is a generalization of CSPs.
3-SAT close
$$
x_1 V x_2 V \neg x_3 \Rightarrow
$$

$$
h_i
$$
, $diag(0, 0, 0, 0, 0, 0, 1, 0)$
\n \uparrow
\n $(0, 0, 1)$
\n $ext{t}_{i}$

sie.
Each term cheche a local energy stem n_{i} hi are all diagones, $\lambda_{min}(H)$ occus at a basis vector. Corresponds to be classical optimal solution to th CSP.

LHs are the Hermitian generalization of CSPs.

Write h_i = $\begin{array}{ccc} \mathcal{L} & \sim & \sim \\ \mathcal{L} & \mathsf{spectral}\ \textit{divergoint} \end{array}$

Measure
$$
| \psi \rangle
$$
 with P_i

\n
$$
\{ |\psi_i \times \psi_i| \}_{S_i}^{\circ} \otimes 1 \quad S_i.
$$
\nFor measurement outcome j_1 accept $i \uparrow \lambda_j \leq \frac{b}{m}$.

\nProof.

\nLet's compute the expectation over λ_j output:

\nBy combination, measuring the $P01M$, P_i giving us expected

\noutconv.

\n
$$
\sum_{i} \lambda_j \langle \psi | (|\psi_i \times \psi_i| \otimes 1 \cup \psi) \rangle
$$
\n
$$
= \langle \psi | h_i | \psi \rangle.
$$
\nExpectation over i gives output $\langle \psi | E h_i | \psi \rangle = \frac{1}{m} \langle \psi | H | \psi \rangle$.

\nLet $X \in [0,1]$ be the outcome of λ_j .

\nEX = $\frac{E}{m}$

If yes intence: $E \le a$ so $E \times \le \frac{a}{m}$ If no instance: $E26$ so $EX2\frac{b}{m}$.

Using
$$
X \in [0,1]
$$
, we can show (exercise) that
\n $Pr\left[\text{accept } |\gamma u\right] \ge 1 - \frac{a}{m}$ and $Pr\left[\text{accept } |no\right] \le 1 - \frac{b}{m}$.
\ngap between completeness and sum thus $= \frac{b-a}{m}$.
\nSince $m \le n^k$, as long as $b-a \ge 1/poly(n)$,
\n $LH_{a,b}$ is in QMA.

Proving local Hamr/tonian is QMA-hard:

\nIn Clan₁ we will only prove that
$$
O(\log n) \sim LH
$$
 is QMA-hard-level.

\nHow will include problem for proving S-local horonous.

\nQucothw analyze of the cooler levin the two groups of the topological formula.

\nCook-Levin Tebkew: Cosh-Levin Tebkew: Cosh-Levin Tebkew: Cosh-Levin Tebkew: Cosh-Levin Cheekew: Cosh-Levin Cheekew: Cosh-the states of the machine at this to find the side of the machine.

Can we construct the same fr quantum comp ?

Consider a circuit C = gr.... gr car ne create a table with rows

$$
|\varphi_{o}\rangle = |\varphi_{\omega_{i}+\omega_{i}}\rangle \otimes |o^{m}\rangle
$$

\n
$$
|\varphi_{o}\rangle = g_{1}|\varphi_{o}\rangle
$$

\n
$$
|\varphi_{2}\rangle = g_{2}g_{1}|\psi_{o}\rangle = g_{2}|\psi_{1}\rangle
$$

\n
$$
\vdots
$$

 $|\psi_{\tau}\rangle$ = $C|\psi_{o}\rangle$.

Why does this not nort? Local checks cannot verify the evolutions. E_X $|\psi_t\rangle$ = $\frac{|0^n\rangle + |1^n\rangle}{\sqrt{n}}$ and $q_{t+1} = Z_t$. Then $|\psi_{t+1}\rangle = \frac{|0^{n}-1|^{n}}{\sqrt{2}}$ Wheres if $g_{t+1} = 1$, then $|\psi_{t+1}\rangle = \frac{|0^{n} \rangle + |1^{n}|}{\sqrt{2}}$. Claim Any $k \leq (n-1)$ reduced density mention of $\left(\frac{0^{n}}{n} \pm 1 \right)^{n}$ is $\frac{1}{2} (10^{k} \times 0^{k} l + l^{k} \times (l^{k} l))$.

So a check differentiating if
$$
g_{t+1} = Z_1
$$
 vs. 11 and be
non-local if it can distribg with
 $|\psi_t\rangle \otimes |\psi_{t+1}\rangle$ from $|\psi_t\rangle \otimes |\psi_t\rangle$
 $g_t = Z_1$ $g_t = Z_1$

We need a better solution that can detect global changes that occur from local gates.

Let's create a O(log n) - local Horn'ibration whose ground status
are of the form
$$
\frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle \otimes |\Psi_t\rangle
$$

t expand in Fig(T+1) bits

$$
\text{and } |\psi_{\epsilon}\rangle = g_{\epsilon} - g_1 |\psi_{\epsilon}\rangle \qquad \text{(all related)}.
$$

In order to write out the Ham. let's first understand

$$
h = |i \times i| \otimes 1! - |i \times 0| \otimes 1! - |i \times 1| \otimes 1! + |i \times 0| \otimes 1! -
$$

$$
h = \frac{1}{2} \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} (-\frac{1}{2} - \frac{1}{2})
$$
\n
$$
= \frac{1}{2} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} (-\frac{1}{2} - \frac{1}{2}) (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2})
$$
\n
$$
= \frac{1}{2} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2})
$$
\n
$$
= \frac{1}{2} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} (\frac{1}{2} - \frac{1}{2}) (\frac{1}{2} - \frac{1}{2})
$$

$$
\frac{1}{\sqrt{2}} |0\rangle |\psi_0\rangle + \frac{1}{\sqrt{2}} |1\rangle \mathcal{U}|\psi_1\rangle
$$

 \mathbb{R}^2

Altonute proof of fact:	
Let $V = i \times i \otimes U + i \times i \otimes U$	$+ i \times i \otimes U + i \times i \otimes U$
$V^* = i \times i \otimes U^* + i \times i \otimes U$	
$V^*hV = i \times i \otimes U - i \times i \otimes U - i \times i \otimes U + i \times i \otimes U$	
$= i \times -1 \otimes U $	$\frac{1}{2}$
$= i \times -1 \otimes U $	
So generally, $ V^*hV $ are static of the form $ V^*hV $ is a projectis. So, growth are status of the form $V(+) \otimes V_0\rangle$	
$= \frac{1}{\sqrt{2}} (0\rangle V_0\rangle + 1\rangle U V_0\rangle)$	

Apply this intuition to general Hamiltonian circuit

$$
h_{\xi} = \frac{1}{2} \left(|f \rangle \zeta + 1 \otimes 1 \right) - |f \rangle \zeta + 1 \otimes g_{\xi} - |f - \zeta \rangle \zeta + 1 \otimes g_{\xi}^{\dagger} + |f - \zeta \rangle \zeta + 1 \otimes 1 \right)
$$

Same calculation with tell us that $f_{or}(\psi)=\sum_{k}\alpha_{k}|\hat{t}\rangle|\psi_{k}\rangle$

$$
\langle \psi | h_{\ell} | \psi \rangle = \left\| \alpha_{\ell-1} | \psi_{\ell-1} \rangle - \alpha_{\ell} g_{\ell}^{\dagger} | \psi_{\ell} \rangle \right\|^{2}.
$$

But how do all the piecer act togedler? Analyze a stutton.

$$
V = \sum_{i=0}^{T} |i\rangle\langle i| \otimes q_{i-1}q_{i}
$$

$$
V^{\dagger} = \sum_{i=0}^{T} |i\rangle\langle i| \otimes q_{i-1}^{+}q_{i}
$$

$$
\mathcal{V}^{\dagger}h_{t}\mathcal{V} = \frac{1}{2} \left([f\chi] + \otimes \underline{1} - [f-1\chi] + [g\underline{1} - [f\chi] + [g\underline{1} - [f\chi] + [g\underline{1} - [g\underline{1} - [g\chi] + [g\underline{1} - [g\underline{1} - [g\chi]) + [g\chi] + [g\underline{1} - [g\chi] + [g
$$

This is a special matrix . It is the Laplacian of ^a line graph and also ^a circulant matrix . (aso tri-diagonal) p-0-0-0- -- ^O & 23 --- T-1 T 10 = 0 , elgenector (i) :It ↑ - exercise/intuition from graph mixing time . So , removing rotation by ^V : ^Mprop=he is ^a Hamiltonian with grand-every-o , grandstates of he formgog for any state (To] highing degements grands pace. and first non-zero energy of : 2. Next : Adding checks for ancilla and output and computing overall cigenvales to make sure cheating provers are detected.