If
$$P_j = 100$$
, then $H_i P_j H_i^{\dagger} = 100$ = P_j .
If $P_j = X.0$, then $H_i P_j H_i^{\dagger} = Z.0$.
If $P_j = Z.0$, then $H_i P_j H_i^{\dagger} = X.0$.
If $P_j = Y.0$, then $H_i P_j H_i^{\dagger} = Y.0$.
Similar rules on be generated for CNOT and S updates.
V Grottesmon-Knill
Then given a circuit $g_{m,...}g_i$ with each $g_i \in \{CNOT_i S, H\}$,
we can efficiently compute a collection of stabilizers for
 $g_{m,...}g_i 10^{n}$.

 \mathbb{P} . Storting with $P_j = \mathbb{E}_j$ which stabilize 10^n , we update stabilizers gate by gots. Each update takes $O(n^2)$ time as the one n stabilizers each of O(n) bits. Total time is $O(mn^2)$, space $O(n^2)$.

What about measurements?

Notice if
$$P(\Psi) = P'(\Psi) = |\Psi\rangle$$
 for Paulis P, P'. then
 $PP'(\Psi) = P(\Psi) = |\Psi\rangle$ so PP' stabilizes $|\Psi\rangle$ or well.

So if
$$P_{i_1,...,i_n}P_n$$
 stabilize (4) then
 $\langle P_{i_1,...,i_n}P_n \rangle$ stabilizes (4) where this is the stabilizer
subgroup $\subseteq P_n$.

Let
$$S_{\psi} = \frac{2}{P} P \in P_n | P | \psi \rangle = | \psi \rangle^2$$
.

Flip a coln. Replace b, with
$$Z_1$$
 or $-Z_1$
depending on the coin flip.
Pp of correctness
Since b, and Z_1 articommute, square to II, by prot 2
problem, there exists a change of basis sit.
 $Ub_1U^{\dagger} = X_1$ and $UZ_1U^{\dagger} = Z_1$, and $Ub_2U^{\dagger} = Ib b_2'$.
Since $b_1 \in S_{12}$, $Ulp > = |+> 0$.
So measuring, Z_1 is a coin-flip resulting in $|0>$ or $|1>$.
Doesn't change remainder of state, so new state is
stabilized by $Z_1, b_2, ..., b_N$ or $-Z_{11}b_2, ..., b_N$
depending on outcome.

Finding a basis $\langle b_1, ..., b_n \rangle$ for Sy s.t. only b_1 anticommutes: (D) Remumber bases s.t. b_1 anticommutes.

The
$$\exists a \text{ constant } \alpha > 0$$
, s.t. computing the output probability of a grantine circuit constituting of m - Cliffird gates, it T-gates on n qubits can be classically computed in time $O(2^{\alpha t} \cdot \operatorname{poly}(n,m))$.
Best: $\alpha < 0.4$ (Gassim-Paohyon-Gorrot)
Today $2^{\alpha} = 3$, $\alpha < 1.6$.

Model of such a computation:

Tone big motrix multiplication:

Replacement:

$$T_{\otimes}^{\dagger}T = a 1 \otimes 1 + b S^{\dagger} \otimes S + c Z^{\dagger} \otimes Z$$

$$NP - decision problems solvable by non-deterministicclassical polynomial time computationalso known as efficiently verifable decision problems.interaction-perspective:
$$T \in \Sigma_0, S^{prij(n)}$$
$$VerificVerificV(x, T) poly-timecomputation.
$$x \in X \quad \text{if } \exists T \quad \text{s.t. } V(x, T) \text{ accepts}$$
$$x \notin X \quad \text{if } \forall T, V(x, T) \text{ rejects.}$$$$$$

$$\leq$$
 FACTOR = $\begin{cases} (N, K) : N \text{ has a factor } \leq K \end{cases}$.
As binory numbers

Useful to unclustend the notion of reductions.

Def. Promise long X poly-time reduces to X' if

$$\exists a \text{ poly-time algorithm} f: \xio, is^* \rightarrow \xio, is^*$$
 s.t.
 $(i) x \in Xyes$ iff $f(x) \in X'yes$
 $(i) x \in Xno$ iff $f(x) \in X'no.$

Not.
$$\chi \leq \chi'$$
.
"if we can solve χ' , due we can solve χ^* . The is as hard as χ .

Not A long K' is hard for a comp. class C if V X & G, K & K'. X' is C-completes if X'& C and X' is C-hard.

$$P_{r}\left(\underbrace{\mathbb{E}} X \leq b \right) = P_{r}\left[X \leq (aT) - (cT) \right]$$
$$= P_{r}\left[aT - X \geq cT \right]$$
$$\leq P_{r}\left[aT - X \geq caT \right]$$
$$\leq exp\left(-\frac{c^{2}aT}{3} \right) \leq exp\left(-\frac{c^{2}T}{6} \right)$$

only need error bound of $=\frac{1}{3}$.

So
$$T \ge \Omega\left(\frac{1}{\epsilon^2}\right)$$

BGP can estimate pc to accuracy /poly(n).

We can also boost success probability to $2^{-p(n)}$ of outputting correct arower by choosing $T \ge \mathcal{D}\left(\frac{p(n)}{\epsilon^2}\right)$.

Next: GMA "Quantum Merlin-Arthr"

QCIRCUIT-SAT: <C> - q circuit with some inputs fixed to O.

Generalius Circuit-set & cononical B&P-complete problem.