If
$$
P_i = \pm 10
$$
 cm, then $H_i P_j H_i^{\dagger} = \pm 0$ cm = P_j .
\nIf $P_j = X \otimes ...$, then $H_i P_j H_i^{\dagger} = Z \otimes ...$
\nIf $P_j = Z \otimes ...$, then $H_i P_j H_i^{\dagger} = X \otimes ...$
\nIf $P_j = Y \otimes ...$, then $H_i P_j H_i^{\dagger} = Y \otimes ...$
\nSimilarly has an be generated for CNOT and S updates.
\n $\sqrt{G_0 H_{\text{C}}}$ given a circuit $g_{\text{max}}g_i$, with each $g_i \in \{CVOT, S, H\}$,
\nwe can efficiently compute a collection of stabilizes for
\n $g_{\text{max}}g_i(0^n)$.

 \hat{H} . Storting with P_i = $\hat{\epsilon}_j$ which stabilize $10"$, we update stabilizers gate by gats. Each update takes $\mathcal{O}(n^2)$ time as thre are n 0 – 0
stabilizers each of O(n) bits. Total time is $O(mn^2)$, space $O(n^2)$.

What about measurements?

Wog , we only need to consider measuring the first qubit. in standard basis .

$$
Nothie if P(\Psi) = P'(\Psi) = [\Psi] for Paulis P, P', then
$$
\n
$$
PP'(\Psi) = P(\Psi) = (\Psi) so PP' stabilizes |\Psi\rangle as null.
$$

So if
$$
P_{(1^{n-1}}P_n
$$
 stabilize (4) then
\n $\langle P_{(1^{n-1}}P_n \rangle$ stability (4) where this is the stability
\nsubgroup $\subseteq P_n$.

Let
$$
S_{\varphi} = \{ P \in \mathbb{P}_{n} \mid P(\Psi) = (\Psi) \}
$$
.

Measuring 147: D If ^Z, Sp , then measurement outcome is O and state doesn't change . Deterministic measurement ^② If-Z, ESy, then measurement outcome is 1 and state doesn't change . Deterministic measurement ^③ If ^Z, Sp , things get more complicated . & must not commute with all of Sp. Find a basis for Sp ^s . t. Sp =<%..., but , and b,z , = -Zib, but bjz ⁼ Zibj fur j21.

Flip a coin · Replace ^b , with z, or - E, depending on the coin flip. ↑of correctness Since b, and ^E, anticommute , square to 1 , by part ² Problem, there exists a change of basis sit. Ubut ⁼ ^X , and MEN ⁼ E , , and Ubu ⁼ Hob· Since be Su , UI) ⁼ It) - So measuring , E, is a coin-flip resulting in 10) or 11) . Doesn't change remaindes of state , so new state is stabilized by Zyba , ..., bu or -E, be , ..., by depending on outcome. ^T

Finding a basis $\langle b_1, \ldots, b_n \rangle$ for S_ψ s.t. only b_i anticommty : ① Renumber bases ^s . t. ^b , anticommuty .

$$
(2) If b_k anticommutes, replace b_k with b_1b_k.
$$

Next, computation with ^a few non-Clifford gates.

non-Clifford gate examples :

Theory (Solovay-Kibex) Any 2-qubit unitary can be

\n6-approx
\n 6-approx
\n 6-approx
\n 6-0 [polylog('6)]
$$
H_{1}T_{1}CNOT
$$

Solving – Kiteev + Clifford simulation suggests that the number
of
$$
T
$$
 gates in a $H_{1}T$, CNOT circuit should be a neann
of the circuit property.

Thm 3 a constant
$$
\alpha > 0
$$
, s.t. computing the output probability of a
\nquantum circuit consisting of m - Cifferential gets, t T-gatto an n

\nquarks can be classified empirically computed in time $O(2^{\alpha+1} \cdot \text{poly}(n_1m))$.

\nBoth: $\alpha < 0.4$ (Qanin-Paobyon-Gorrot)

\nToday $2^{\alpha} = 3$, $\alpha < 1.6$.

Model of such a computation:

1 one big motrix multiplication:

Replalement :

\n
$$
T^{\dagger}_{\otimes}T = a \perp 0 \perp + b \circ ^{\dagger} \circ S + c \cdot Z^{\dagger} \circ Z
$$

Apply this replacement recursively for away pair of
$$
T
$$
 gates.
Yidets 3⁶ calculations each of which war a only Clifford
computation. So provides, subrootine gives an effect of play (n,m)
algorithm.

QuanmComplexity Theory

In a previous lecture, me defined BQP - the class of decision problems decidable in poly-time by ^a family of uniform quantum circuits . Other complexity classes.

P-decision problems solvable by deterministic classical polynomial time computation

BPP - decision problems solvable by randomized classical polynomial time computation

NP - decision problems isobvable by non-detaministic
classical polynomial time computation
also known as effectively venifable, decision problems.
interaction- perspective:

linearation- perspective:

Time
$$
V(x,\pi)
$$
 power
 $V(x,\pi)$ apply-time
computation
3.4 X if $V = \pi$ s.t. $V(x,\pi)$ acups
3.4 X if $V = \pi$, $V(x,\pi)$ rejects.
1.1 $V(x,\pi)$ rejects.
1.1 $V(x,\pi)$ rejects.

$$
\leq FACCOR = \begin{cases} (N,K) : N has a factor \leq K \end{cases}.
$$

as binary numbers

Useful to unclustent the notion of reductions.

Def. Formixe:
$$
long X
$$
 poly-times reduces to X' if

\n $\exists a$ poly-times. $\{0, 0, 0, \ldots\} \rightarrow \{0, 0, 0, \ldots\}$

\n $\exists a$ poly-times. $\{0, x \in X_{\gamma e_0} \text{ if } \{0, 0\} \in X'_{\gamma e_0} \}$

\n $\exists x \in X_{\gamma e_0} \text{ if } \{0, 0\} \in X'_{\gamma e_0}$

\n $\exists x \in X_{\gamma e_0} \text{ if } \{0, 0\} \in X'_{\gamma e_0}$

$$
\overbrace{\phantom{h^{2}}\sum_{i=1}^{N_{0}+N_{1}}}\chi_{i}\leq\chi'.
$$

Not. A long % is hard for a camp class C if \forall $X \in C$, $X \leq K'$. X' is C -complete if $X' \in C$ and X' is C -hand.

$$
\underline{\mathcal{E}}x \cdot \left(\underline{\mathcal{E}} \underline{\mathcal{F}}ACTOR \right) \leq \left(\underline{\mathcal{E}} ODDER-FINDING \right)
$$

Ex.
$$
(6 \text{ PACTOR}) \leq (\leq 00000 - \text{PINDING})
$$

\nCarcati - sort i: NP-complete.

\nInput: $\langle C \rangle$ \leq classical boolean rowable circuit with some five wires and form, $\{$ field, \exists x s.t. $C(x)$ accept.

\nBeide: IP \exists x s.t. $C(x)$ accept.

\nBCP-copulate: Input $\langle C \rangle$ \leq quantum circuit

\nDecide: IP $\langle D \rangle$ year: $\|C(\text{I} \cup \{C \mid \sigma^*)\}^2 \geq \frac{2}{3}$

\n(2) no: $\|C \cup \{C \mid \sigma^* \} \leq \frac{1}{3}$

\nNormal BSP-copblus in \leq 1/3.

\nNormal quantum circuit.

$$
Pr\left[EX \leq b\right] = Pr\left[X \leq (aT) - (cT)\right]
$$

$$
= Pr\left[aT - X \geq cT\right]
$$

$$
\leq Pr\left[aT - X \geq cT\right]
$$

$$
\leq exp\left(-\frac{c^{2}aT}{3}\right) \leq exp\left(-\frac{c^{2}T}{6}\right)
$$

only need error bound of $\leq \frac{1}{3}$.

So
$$
T \ge 3\left(\frac{1}{\epsilon^2}\right)
$$

 BGP can estimate p_c to accuracy p poly(n).

we can also boast success probability to $2^{-p(n)}$ of outputting correct answer by chasing $T \geq 52(\frac{p(n)}{\epsilon^2})$.

Next: GMA"Quantum Merlin-Artar"

Easiest to define by complete problem : QCIRCUIT-SAT

GORCUIT-SAT: <C> - q circuit with some inputs fixed to O.

Generatius Circuit-set & commical BGP-complete problem.