Lecture ¹. 2 Nov 5 , 2024

Continuation of prov lecture on Show's :

Only remains to show with prob.
$$
\ge \frac{1}{32}
$$

 $\frac{-1}{2} \le \gamma r \mod Q \le \frac{1}{2}$ (6)

With this, we conclude, we generate onel(x) with probability,

$$
\Omega(\frac{1}{\log N})
$$
.

 Pf of (A) :

Recall amplitude on 1y is
$$
\frac{1}{\sqrt{25}} \omega^{\gamma} \sum_{j=0}^{T-1} \omega^{\gamma} \frac{1}{j}
$$

\n $\omega^{\gamma} \frac{1}{\omega}$
\n $\frac{1}{\sqrt{25}} \omega^{\gamma} \frac{1}{\omega}$
\nSo, the terms of $\sum_{j=0}^{T-1} \omega^{\gamma} \frac{1}{\omega} = \sum_{j=0}^{T-1} \beta^j$ span only angle II.

Simple calculation:
$$
\frac{1}{2}
$$
 the terms mode angle $\leq \frac{\pi}{4}$ to
resultant vector. Since overall span $\leq \pi$, no vector conditions
negatively to resultant vector.

\nAns. $\frac{\pi}{4} = \frac{1}{\sqrt{2}}$.

\nSo, length of the result of vector $\frac{1}{\sqrt{2}} = \frac{1}{2^{2t}}$.

\nSo, length of the result of vector $\frac{1}{\sqrt{2}} = \frac{1}{2^{2t}}$. $\frac{1}{\sqrt{\frac{\alpha}{3}}} = \frac{1}{4\sqrt{r}}$.

\nfor both $\frac{1}{2}$ and $\frac{1}{2}$.

Conclusion: If
$$
-\frac{c}{2} \leq \gamma^c
$$
 mol $Q \leq \frac{c}{2}$, thus

the resulting rector ly) has magnitude : i We next show many such vectors y exist. (since re). Y If ged(r, Q) ⁼ 1 , then Jr sit. ^v .r" ⁼ / mod ^Q. Therefore the map y-yo is a permutation of ⁵⁰.... Q-13 . So, at least r vectors y exist. ^S .t. -- yrmod Q * cor a pomyo or^s . When ^g := ged (r, Q) < ¹ , note g Y . Then yo are uniformly distributed over 0, 9 , 29 ,,(1) g with young for ^g value y

If
$$
|\lambda g| \leq \frac{r}{2} \Rightarrow |\lambda| \leq \frac{r}{2g}
$$

\nThen, for ωh least $2\left[\frac{r}{2g}\right] \cdot g \geq \frac{r}{2}$ vectors γ_1

\n $\frac{r}{2} \leq \gamma r$ mod $\theta \leq \frac{r}{2}$

\nSo, both probability mass on γ s.t. $\frac{r}{2} \leq \gamma r$ mod $\theta \leq \frac{r}{2}$

\nis $\geq \frac{r}{2} \cdot \left(\frac{1}{4\sqrt{r}}\right)^2 = \frac{1}{32}$

\nTherefore, we sample a γ according to the algorithm for order finding the constant velocity calculate $\omega d(x)$ with probability $\Omega\left(\frac{1}{\log N}\right)$.

\nSo ωr overall algorithm for factors is efficient, in that

is
$$
\geq \frac{P}{2} \cdot \left(\frac{1}{4\sqrt{r}}\right)^2 = \frac{1}{32}
$$
.

Therefore, we sample a
$$
\gamma
$$
 according to the algorithm for order finding
we conceptly calculates order) with probability $Sl(\frac{1}{\log N})$.
So an overall algorithm for factoring is efficient in that
it cross in three polylog(N).

Next time : efficient classical algorithm for simulating quantum computation.

Today: Efficient classical algorithms for simultaneously
\nquantum computations

\nProblem: given an input
$$
\angle C
$$
 that describe the data of the measurements, which in qubits, in gates, and no measurements, what is the probability that $\frac{17!}{1!} \cdot \frac{1}{1!} \cdot \$

$$
\|\tilde{g}_{f}-g_{f}\| \leq 4 \cdot 2^{e} \quad \text{so} \quad \|\tilde{g}_{f}\omega_{1}L-g_{f}\omega_{1}\| \leq 4 \cdot 2^{e} \quad \text{Thus, for } \tilde{C} \text{ is } \tilde{g}_{m}\tilde{g}_{m1} \cdots \tilde{g}_{1}
$$
\n
$$
\|\tilde{C}|0^{m} > - C|0^{m} > \| \leq 4m \cdot 2^{-e}
$$
\n
$$
\text{Show } \ell \text{ s.t. } \mathfrak{g}_{m} \cdot 2^{-e} \leq \epsilon
$$
\n
$$
\text{Chone } \ell \text{ s.t. } \mathfrak{g}_{m} \cdot 2^{-e} \leq \epsilon \Rightarrow \ell \geq \mathfrak{J}(\lfloor \log \frac{m}{\epsilon} \rfloor)
$$
\n
$$
\text{Computation } \tilde{p} \text{ using most. multiplication. } |p-\tilde{p}| \leq \epsilon.
$$
\n
$$
\text{Abelithomally, we can multiply and prove an ne compute.}
$$
\n
$$
\text{gives a multiple of } O\left(2^{wn} \log(\frac{m}{\epsilon})\right) \text{ and } \text{space } O\left(2^{n} \log(\frac{m}{\epsilon})\right)
$$
\n
$$
\text{that, with } \text{ size of } \text{ integers}
$$
\n
$$
\text{The addubity, no one uses such fact mark. algorithms since the coefficients are huge. So, and the case is more like } O\left(2^{2 \cdot 7n} \log^2(\frac{m}{\epsilon})\right).
$$
\n
$$
\text{Claim } \mathfrak{M} \text{ can reduce the space complexity to } \text{poly}(n, \log(\frac{1}{\epsilon}))
$$
\n
$$
\widetilde{p} = \begin{bmatrix} \leq 0 & -\frac{1}{\sqrt{C}} \cdot |X| & \frac{1}{\sqrt{C}} \cdot |
$$

 $\biggr)$.

$$
\widetilde{p} = \langle \circ \mid \widetilde{g}_{1}^{\dagger} \widetilde{g}_{2}^{\dagger} \cdots \widetilde{g}_{m}^{\dagger} \left(1 \times \mid \circ \bot \right) \widetilde{g}_{m} \cdots \widetilde{g}_{1} \mid \circ \rangle
$$
\n(one big matrix multiplication)\n
\nAdd identity terms\n
$$
\mathbb{1} = \sum_{\gamma \in [0,1]^n} \frac{1}{\gamma} \times \gamma!
$$
\n
$$
\widetilde{p} = \langle \circ \mid \widetilde{g}_{1} \left(\sum_{\gamma_{nm}} | \gamma_{nm} \rangle \widetilde{g}_{1} \right) \widetilde{g}_{2} \left(\sum_{\gamma_{nm}} | \gamma_{nm} \rangle \widetilde{g}_{2} \right) \cdots \left(\sum_{\gamma} | \gamma_{n} \rangle \widetilde{g}_{1} \right) \circ \gamma
$$
\n
$$
= \sum_{\gamma_{1} \gamma_{1} \gamma_{2} \cdots \gamma_{l}} \langle \circ \mid \widetilde{g}_{1} | \gamma_{2} \cdots \rangle \cdots \langle \gamma \mid \widetilde{g}_{1} \mid \circ \gamma \rangle
$$
\n
$$
\gamma_{1} \gamma_{2} \cdots \gamma_{l}
$$

Alg: Hence over
$$
y_1, ..., y_{2m+1} \in [0, 1]^n
$$
 computing each multiplication

\nin the sum. Reguires

\n $O(2^{2nm} \log^2(\frac{m}{\epsilon}))$ this but only $O(nm + \log(\frac{m}{\epsilon}))$ space.\nTo estimate $p + b$ % 1 requires only $O(nm)$ space.

\nProves BQP \subseteq PSPACE. (Called the Feynman path integral)

\ni.e. every q . computational can be simulated with polynomial space but (perhaps) exponential time.

Next: A situation when we can vaotry improve due-
\ntime completion when we can vaotry inpose due-
\ntime completion and may take 2' complex numbers to record.
\nOne solution was to keep "no number' using path integral.
\nAnother a specific description of 9: study.
\nAnother a specific description of 9: status.
\nThird- Pauli matrices:
\n
$$
11, X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = iXZ_1 Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
$$
.
\n $X_1 Y_1 Z$ all anticommatic, have true 0, square to 11.
\n $P_1 = \begin{cases} \frac{1}{2} \pm 11, \pm i1, \pm X, \pm iX, \pm Y, \pm iY, \pm iZ, \pm iZ \end{cases}$
\na group under matrix multiplication.
\n $P_n = \begin{cases} P_n P_n e_{n+1} P_n ... P_n \in P_1 \end{cases}$. Also a group.
\nPauli matrices can be described with 2(n+1) bits.

Use notation:
$$
X_j
$$
 to divide 1 & ... 0 1 0 $X \in 1$ θ ... 0 1
\n \uparrow *location*.
\nSo $(X_1 Z_2)(X_1 Y_3) = (X \times 2 \times 1)$ $(1 \times X \times Y)$
\n $\Rightarrow X \times 2X \times Y$
\n $= i X_1 Y_2 Y_3$

An observation:
$$
|0^{n}\rangle
$$
 is the unique solution to $Z_{j}|\psi\rangle = |\psi\rangle_{j}$
for all $j = 1, ..., n$.

$$
\begin{aligned}\n\mathbb{P} &= \mathbb{P} \mathbb{P} \mathbb{P} \mathbb{P} = \mathbb{P} \mathbb{P} \mathbb{P} \quad \text{only} \quad \text{if} \quad |\psi\rangle = |\mathbb{P} \mathbb{P} \text{ or } |\psi'\rangle \\
\mathbb{P} &= \mathbb{P} \mathbb{P} \mathbb{P} \quad \text{if} \quad |\psi'\rangle = |\mathbb{P} \mathbb{P} \text{ or } |\psi'\rangle.\n\end{aligned}
$$

Another observation:
$$
(+\int^{\infty} ds
$$
 the unique solution to $X_j(\Psi) = |\Psi\rangle$,
for all $j = 1, ..., n$.

temma Assume 14) is the unique solution to Pj(4) ⁼ 14) for emma Assume 142 is the unique solution to
Pauli matrices P1,..., Pr. Let U be any unitor .
7.

Define
$$
Q_j = UP_jU^{\dagger}
$$
. Then $U|\Psi\rangle$ is the unique solution to $Q_j|\tau\rangle = |\tau\rangle$
for all $j = 1, ..., n$.

Pf. To see it is a solution, notice

$$
Q_{j}U|\psi\rangle = UP_{j}U^{\dagger}U|\psi\rangle
$$

= UP_{j}|\psi\rangle
= U|\psi\rangle.

$$
= U(\Psi).
$$

For uniqueness, assume \exists a solution $|\hat{c}\rangle$. Then,

$$
|\hat{c}\rangle = \hat{c}_{j}|\hat{c}\rangle \implies U^{\dagger}|\hat{c}\rangle = P_{j}U^{\dagger}|\hat{c}\rangle \qquad V_{j} = 1,...,n.
$$

So, $U^{\dagger}|\hat{c}\rangle = |\Psi\rangle$ by uniqueness. So $|\hat{c}\rangle$: $U(\Psi)$.

If
$$
|\psi\rangle
$$
 is the unique static st. \vec{B} $|\psi\rangle \cdot |\psi\rangle$ for all $j = 1, ..., n$,
we say $P_{ij}..., P_{in}$ stability $|\psi\rangle$.

$$
I \quad \text{Isine} \quad \text{is that} \quad \oint_{\text{or}}^{\text{or}} \quad \text{arbitary} \quad \mathcal{U}_1 \quad \mathcal{U}_1^T \mathcal{U}^T \quad \text{may not be a}
$$

But for some 11, it will be. The set of 11 for which
UPU[†] is also a Pauli motorx
$$
VP
$$
 is called the normalier

group of
$$
\pi
$$
. The normalizing group of π is called the
\nCifferential group C_n .

\n $C_n = \frac{1}{2}U$ | UPU[†] $\in \pi$, $V P \in \pi$?

\nIf's a more complicated of than we have time $\frac{1}{2}\pi$ this class, but every matrix $\in C_n$ can be generated from

\nCNOT $\otimes \mathcal{I}_{n-2}$, $S \otimes \mathcal{I}_{n-1}$, $H \otimes \mathcal{I}_{n-1}$, and their \pm , $\pm i$ *veclants*.

\nHere, $S = \begin{pmatrix} 1 & o \\ o & i \end{pmatrix}$.

\nMany other unitries such as $X_1 Y_1 Z_1$ SWAP, C_2 are all

part of the Clifford group.

Consider ^H, in the Clifford group Cn. Suppose P. ...in stabilize 14].

Then, ne can efficiently calculate stabilizers for $H(\Psi)$

If
$$
P_i = \pm 10
$$
 cm, then $H_i P_j H_i^{\dagger} = \pm 0$ cm = P_j .
\nIf $P_j = X \otimes ...$, then $H_i P_j H_i^{\dagger} = Z \otimes ...$
\nIf $P_j = Z \otimes ...$, then $H_i P_j H_i^{\dagger} = X \otimes ...$
\nIf $P_j = Y \otimes ...$, then $H_i P_j H_i^{\dagger} = Y \otimes ...$
\nSimilarly has an be generated for CNOT and S updates.
\n $\sqrt{G_0 H_{\text{C}}}$ given a circuit $g_{\text{max}}g_i$, with each $g_i \in \{CVOT, S, H\}$,
\nwe can efficiently compute a collection of stabilizes for
\n $g_{\text{max}}g_i(0^n)$.

 \hat{H} . Storting with P_i = $\hat{\epsilon}_j$ which stabilize $10"$, we update stabilizers gate by gats. Each update takes $\mathcal{O}(n^2)$ time as thre are n 0 – 0
stabilizers each of O(n) bits. Total time is $O(mn^2)$, space $O(n^2)$.

What about measurements?

Wog , we only need to consider measuring the first qubit. in standard basis .

$$
Nothie if P(\Psi) = P'(\Psi) = [\Psi] for Paulis P, P', then
$$
\n
$$
PP'(\Psi) = P(\Psi) = (\Psi) so PP' stabilizes |\Psi\rangle as null.
$$

So if
$$
P_{(1^{n-1}}P_n
$$
 stabilize (4) then
\n $\langle P_{(1^{n-1}}P_n \rangle$ stability (4) where this is the stability
\nsubgroup $\subseteq P_n$.

Let
$$
S_{\varphi} = \{ P \in \mathbb{P}_{n} \mid P(\varphi) = (\psi) \}
$$
.

Measuring 147: D If ^Z, Sp , then measurement outcome is O and state doesn't change . Deterministic measurement ^② If-Z, ESy, then measurement outcome is 1 and state doesn't change . Deterministic measurement ^③ If ^Z, Sp , things get more complicated . & must not commute with all of Sp. Find a basis for Sp ^s . t. Sp =<%..., but , and b,z , = -Zib, but bjz ⁼ Zibj fur j21.

Flip a coin · Replace ^b , with z, or - E, depending on the coin flip. ↑of correctness Since b, and ^E, anticommute , square to 1 , by part ² Problem, there exists a change of basis sit. Ubut ⁼ ^X , and MEN ⁼ E , , and Ubu ⁼ Hob· Since be Su , UI) ⁼ It) - So measuring , E, is a coin-flip resulting in 10) or 11) . Doesn't change remaindes of state , so new state is stabilized by Zyba , ..., bu or -E, be , ..., by depending on outcome. ^T

Finding a basis $\langle b_1, \ldots, b_n \rangle$ for S_ψ s.t. only b_i anticommty : ① Renumber bases ^s . t. ^b , anticommuty .

$$
(2) If b_k anticommutes, replace b_k with b_1b_k.
$$

Next, computation with ^a few non-Clifford gates.

non-Clifford gate examples :

Theory (Solovay-Kibex) Any 2-qubit unitary can be

\n6-approx
\n 6-approx
\n 6-approx
\n 6-0 [polylog('6)]
$$
H_{1}T_{1}CNOT
$$

Solving – Kiteev + Clifford simulation suggests that the number
of
$$
T
$$
 gates in a $H_{1}T$, CNOT circuit should be a neann
of the circuit property.

Thm 3 a constant
$$
\alpha > 0
$$
, s.t. computing the output probability of a
\nquantum circuit consisting of m - Cifferential gets, t T-gatto an n

\nquarks can be classified empirically computed in time $O(2^{\alpha+1} \cdot \text{poly}(n_1m))$.

\nBoth: $\alpha < 0.4$ (Qanin-Paobyon-Gorrot)

\nToday $2^{\alpha} = 3$, $\alpha < 1.6$.

Model of such a computation:

1 one big motrix multiplication:

Replalement :

\n
$$
T^{\dagger}_{\emptyset}T = a 11 \cdot 11 + b 5^{\dagger} \cdot 5 + c 7^{\dagger} \cdot 2
$$

Apply this replacement recusively for every pair of ^T gates. Yields ³⁵ calculations each of which was a only Clifford computation. So provious, subrovotive gives are pflicit poly (n,m) algorithm.