Lecture 12 Nov 5, 2024

Only remains to show with prob.
$$\geq \frac{1}{32_1}$$

 $\frac{-\Gamma}{2} \notin \gamma r \mod Q \notin \frac{\Gamma}{2}$. (4)

With this, we conclude, we generate
$$\operatorname{ord}(x)$$
 with probability,
 $\Omega(1/\log N)$.

Pf of (*):

Recall amplitude on
$$|\gamma\rangle$$
 is $\prod_{\substack{i=0\\j=0}}^{i} \omega^{\gamma i} \sum_{\substack{j=0\\j=0}}^{J-1} \omega^{\gamma i}$
with $J = \lfloor \frac{Q}{r} \rfloor$
Focus on the $\sum_{\substack{j=0\\j=0}}^{J+1} \omega^{\gamma i}$ term as this is where the constructive of destructive interference occurs. Let $\beta = \omega^{\gamma r} = e^{(2\pi i \cdot \frac{T}{Q})}$
if $\frac{-r}{2} \leq \gamma r \mod Q \leq \frac{r}{2}$, then $\beta = e^{i\theta}$ for θ and angle s.t. $|\theta| \leq \frac{2\pi r}{2Q} = \pi(\frac{r}{Q})$.
Thus $\omega^{\gamma r j} = \beta^{j}$ corresponds to angle $j\theta$ with $|j\theta| \leq |J\theta| = \pi$.
So₁ the terms of $\sum_{\substack{j=0\\j=0}}^{J+1} \omega^{\gamma r j} = \sum_{\substack{j=0\\j=0}}^{J-1} \beta^{j}$ span only angle π .

Simple calculation:
$$\frac{1}{2}$$
 the terms make angle $\leq \frac{1}{4}$ to
resultant vector. Since one of $\prod_{i=1}^{T} (1 - \frac{1}{\sqrt{2}})^{T_i}$
 $co \frac{1}{4} = \frac{1}{\sqrt{2}}$.
So length of resultant vector of $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} (1 - \frac{1}{\sqrt{2}})^{T_i}$
 $\geq \frac{1}{2} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2^{N_i}} \cdot \frac{1}{\sqrt{\frac{2}{3}}} \geq \frac{1}{\sqrt{\sqrt{7}}}$.

the resulting vector
$$|\gamma\rangle$$
 has magnitude $\geq \frac{1}{4\sqrt{r}}$.
We next show many such vectors γ exist. (since $r\in\mathbb{Z}_{d}^{*}$).
If $gcd(r, Q) = I$, then $\exists r^{-1}$ s.t. $r.r^{-1} \equiv 1 \mod Q$.
Therefore the map $\gamma \mapsto \gamma r$ is a permutation of $\{0, \dots, Q^{-1}\}$.
So, at least r vectors γ exist. s.t. $-\frac{r}{2} \in \gamma r \mod Q \leq \frac{r}{2}$.
Cartoon:
Cartoon:
 qr .
 qr .
So r vectors in region.
 qr .
So r vectors in region.
 qr .
So r vectors in region.
 qr .
 qr

$$\begin{aligned} |f| |\lambda g| \leq \frac{r}{2} \implies |\lambda| \leq \frac{r}{2g} \\ \text{Then, for at least} \quad 2 \left[\frac{r}{2g} \right] \cdot g \geq \frac{r}{2} \quad \text{vectors } \gamma_1 \\ \frac{r}{2} \leq \gamma r \mod Q \leq \frac{r}{2}. \end{aligned}$$

So, total probability mass on
$$\gamma$$
 set. $\frac{\gamma}{2} \in \gamma r \mod \mathbb{Q} \leq \frac{r}{2}$.
is $\geq \frac{r}{2} \cdot \left(\frac{1}{4\sqrt{r}}\right)^2 = \frac{1}{32}$.

Therefore, we sample a
$$\gamma$$
 according to the algorithm for order finding,
we correctly calculates ord(x) with probability $\mathfrak{I}\left(\frac{1}{\log N}\right)$.
So are overall algorithm for factoring is efficient in that
it cons in three polylog(N).

Today: Efflicient classical algorithms for simulating
quantum computations
Problem: given an input
$$\langle C \rangle$$
 the description of a
q. circuit with n qubits, m gates, and no measurements,
what is the probability that $\frac{1}{|T|} + \frac{1}{|C|} + \frac{1}{|T|} + \frac{1}$

$$\begin{split} \|\tilde{g}_{t}-g_{t}\| &\leq 4\cdot 2^{-\ell} \quad \text{so} \quad \|\tilde{g}_{t}\otimes \mathcal{I}\| - g_{t}\otimes \mathcal{I}\| \leq 4\cdot 2^{-\ell} \\ \text{Then for } \tilde{C} &= \tilde{g}_{m}\tilde{g}_{m} \cdots \tilde{g}_{l} \\ & \|\tilde{C}|^{\alpha} > - C|^{\alpha} > \| \leq 4m\cdot 2^{-\ell} \\ & \text{So} \quad |\tilde{p} - p| \leq 8m\cdot 2^{-\ell} \leq \epsilon \\ & \text{Chook } \ell \text{ s.t. } 8m\cdot 2^{-\ell} \leq \epsilon \\ & \text{Chook } \ell \text{ s.t. } 8m\cdot 2^{-\ell} \leq \epsilon \\ & \text{Chook } \ell \text{ s.t. } 8m\cdot 2^{-\ell} \leq \epsilon \\ & \text{Additionally, we can multiplication. } |p-\tilde{p}| \leq \epsilon. \\ & \text{Additionally, we can multiply and prune as me compute.} \\ & \text{gives a number of } O(2^{\cos \ell} \log(\frac{m}{\epsilon})) \quad \text{and space } O(2^{n} \log(\frac{m}{\epsilon})) \\ & \text{ med. mult. } \text{ size of } \\ & \text{ integers } \\ & \text{Tr admiting, no one uses such fast meth. algorithms since the coefficients \\ & \text{are huge. So number is more like } O(2^{2\cdot 7+n} \log^2(\frac{m}{\epsilon})). \\ & \text{Claim We can reduce the space complexity to poly $(n, \log(\frac{t}{\epsilon})). \\ & \text{TF. } \\ & \tilde{p} = \left(\begin{array}{c} < 1 - \frac{1}{C} + \frac{1}{1} \times 11 - \frac{1}{C} + \frac{1}{10^{n-1}} > \\ < 0^{n}l + \frac{1}{C} + \frac{1}{10^{n-1}} > \end{array} \right) \end{aligned}$$$

).

$$\begin{split} \widetilde{P} &= \langle 0^{n} | \widetilde{g}_{1}^{\dagger} \widetilde{g}_{2}^{\dagger} \dots \widetilde{g}_{m}^{\dagger} (11 \times 10 \times 11) \widetilde{g}_{m} \dots \widetilde{g}_{1} | 0^{n} \rangle \\ (one \ \text{big matrix multiplication}) \\ \text{Add identity terms } II &= \sum_{\substack{Y \in [0_{1} \times 1^{n}]^{n}}} 1_{Y} \times Y^{1} \\ \widetilde{P} &= \langle 0^{n} | \widetilde{g}_{1} (\sum_{\substack{Y \in \mathbb{N}^{n} \times 1^{n}}} 1_{\underline{X} \times \underline{Y}} 1_{\underline{Y} \times \underline{Y}} 1_{\underline{$$

Alg: Iterate over
$$\gamma_{1}, ..., \gamma_{2m+1} \in [0, 1]^n$$
 computing each multiplication
in the sum. Requires
 $O\left(2^{2nm} \log^2\left(\frac{m}{E}\right)\right)$ time but only $O\left(nnt + \log\left(\frac{m}{E}\right)\right)$ space.
To estimates p to $\frac{1}{6}$, requires only $O(nm)$ space.
Proves BQP \leq DSPACE. (Called the Feynman path integral)
i.e. every q. computation can be simulated with polynomial
space but (perhaps) exponential time.

Next: A situation when we can vasity improve the
time couplexity.
The issure is that keeping tack of the state
$$g_{\ell} \dots g_{1} | 0^{n} >$$

is inefficient and may take 2" complex numbers to record.
Che solution was to keep "no numbers" using path entegral.
Another is succed descriptions of q , states.
First, Pauli matrices:
IL, $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = i X \overline{c}_{1} Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 $X_{1}Y_{1}Z$ all enticommute, have trace 0, square to IL.
 $P_{1} = \begin{cases} \pm IL, \pm iIL, \pm X, \pm iX, \pm Y, \pm iY, \pm iZ \end{cases}$.
a group under matrix multiplication.
 $P_{n} = \begin{cases} P_{1} \otimes P_{2} \otimes \dots \otimes P_{n} \\ P_{1}, \dots, P_{n} \in P_{1} \end{cases}$. Also a group.
Poul, matrices can be described with $2(n+1)$ bits.

Use notation:
$$X_j$$
 to durate IL $@$... $@$ I $@$ $X_0 &$ I $@$... $@$ II
 \uparrow
 j^{h} beation.
So $(X_1 Z_2)(X_2 Y_3) = (X @ Z @ IL)(IL @ X @ Y)$
 $= X @ Z X @ Y$
 $= X @ i Y @ Y = i(X @ Y @ Y)$
 $= i X_1 Y_2 Y_3$.

An observation:
$$|0^n\rangle$$
 is the unique solution to $\mathbb{Z}_j |\Psi\rangle = |\Psi\rangle_j$
for all $j = 1, ..., N$.

Another observation:
$$|+\rangle^{\otimes n}$$
 is the unique solution to $X_j |\Psi\rangle = |\Psi\rangle$,
for all $j = 1, ..., n$.

Lemma Assume (4) is the unique solution to Pj(4)=(4) for Pauli matrices P1,..., Pn. Let U be any unitery.

Define
$$Q_j = \mathcal{U}P_j\mathcal{U}^{\dagger}$$
. Then $\mathcal{U}|\psi\rangle$ is the unique solution to $Q_j|\tau\rangle = |\tau\rangle$
for all $j = 1, ..., n$.
 PP_j . To see it is a solution, notice

For uniqueness, assume
$$\exists a \text{ solution } | T \rangle$$
. Then,
 $| T \rangle = Q_j | T \rangle \implies U^{\dagger} | T \rangle = P_j U^{\dagger} | T \rangle \quad \forall j = 1, ..., u.$
So, $U^{\dagger} | T \rangle = | U \rangle$ by uniqueness. So $| T \rangle = U | U \rangle$. D

group of Pn. The normalizes group of Pn is called the
Cliffind group, Cn.

$$C_n = \frac{3}{2} U | UPU^{\dagger} \in Pn \forall P \in Pn \frac{3}{2}$$
.
It's a more complicated pf than we have time for this class, but
every matrix ϵ Cn can be generated from
 $CNOT \otimes IL_{n-2}, S \otimes IL_{n-1}, H \otimes IL_{n-1}$ and there $\pm i \pm i$
 $Vertants$.
Here, $S = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$.
Mony other uniteries such as X, Y, Z, SWAP, CZ are all

Then, we can efficiently calculate stabilizers for H(4).

If
$$P_j = 160$$
, then $H_i P_j H_i^{\dagger} = 160$ = P_j .
If $P_j = X.0$, then $H_i P_j H_i^{\dagger} = Z.0$.
If $P_j = Z.0$, then $H_i P_j H_i^{\dagger} = X.0$.
If $P_j = Y.0$, then $H_i P_j H_i^{\dagger} = Y.0$.
Similar rules on be generated for CNOT and S updates.
V Grottesmon-Knill
Then given a circuit $g_{m,\dots}g_i$ with each $g_i \in \{CNOT_i S, H\}$,
we can efficiently compute a collection of stabilizers for
 $g_{m,\dots}g_i 10^n >$.

 \mathbb{P} . Storting with $P_j = \mathbb{E}_j$ which stabilize 10^n , we update stabilizers gate by gots. Each update takes $O(n^2)$ time as the one n stabilizers each of O(n) bits. Total time is $O(mn^2)$, space $O(n^2)$.

What about measurements?

Notice if
$$P(\Psi) = P'(\Psi) = |\Psi\rangle$$
 for Paulis P, P'. then
 $PP'(\Psi) = P(\Psi) = |\Psi\rangle$ so PP' stabilizes $|\Psi\rangle$ or well.

So if
$$P_{i_1,...,i_n}P_n$$
 stabilize (4) then
 $\langle P_{i_1,...,i_n}P_n \rangle$ stabilizes (4) where this is the stabilizer
subgroup $\subseteq P_n$.

Let
$$S_{\psi} = \frac{2}{P} P \in P_n | P | \psi \rangle = | \psi \rangle^2$$
.

Flip a coln. Replace b, with
$$Z_1$$
 or $-Z_1$
depending on the coin flip.
Pp of correctness
Since b, and Z_1 articommute, square to II, by prot 2
problem, there exists a change of basis sit.
 $Ub_1U^{\dagger} = X_1$ and $UZ_1U^{\dagger} = Z_1$, and $Ub_2U^{\dagger} = Ib b_2'$.
Since $b_1 \in S_{12}$, $Ulp > = |+> 0$.
So measuring, Z_1 is a coin-flip resulting in $|0>$ or $|1>$.
Doesn't change remainder of state, so new state is
stabilized by $Z_1, b_2, ..., b_N$ or $-Z_{11}b_2, ..., b_N$
depending on outcome.

Finding a basis $\langle b_1, ..., b_n \rangle$ for Sq s.t. only b_1 anticommutes: (D) Remumber bases s.t. b_1 anticommutes.

The
$$\exists a \text{ constant } \alpha > 0$$
, s.t. computing the output probability of a quantum circuit constituting of m - Cliffird gates, t T-gates on n quality computed in time $O(2^{\alpha t} \cdot \operatorname{poly}(m,m))$.
Best: $\alpha < 0.4$ (Qassim-Paohyon-Gorrot)
Today $2^{\alpha} = 3$, $\alpha < 1.6$.

Model of such a computerdion:

Tone big motrix multiplication:

Replacement:

$$T_{\otimes}^{\dagger}T = a 1 \otimes 1 + b S^{\dagger} \otimes S + c Z^{\dagger} \otimes Z$$

Apply this replacement recursively for every pair of T gates. Videls 3^t colculations each of which was a only Clifford computation. So previous, subrowtine gives are efficient poly (n,m) algorithm.