
Lecture 1
.

2

Nov 5
,
2024

Continuation of prov lecture on Show's :

Only remains to show with prob.
-

> I yo
modQ (*)

With this
,

we conclude
,

me generate ord(x) with probability ,

R(Yogiv) .

Pf of (*) :

Recall amplitude only isweirs
with J = (E)

Focus on the wyr's term as this is where the constructive

destructive interference occus. Let B = WY = e(2:)

If yo modQ ,
then B = "O for O an

angle st
.101

Then WYs = B corresponds to angle jo with

1j0) = 150) : IT
.

So
,
the terms ofwri span only and

i

#
& pi

Simple calculation: the terms make angle?to

resuldent vector
. Since overall span? It

,
no rector contributes

negatively to resultant rector.

=

So
, length of resultant rectorofwirs

=

Eit
44

halftems contribution

per term

Conclusion : If - * - yo
modQ F

,
then

the resulting rector ly) has magnitude:i
We next show

many
such vectors

y
exist.

(since re)
.

Y

If ged(r , Q) = 1
,
then Jr sit

. v . r" = / mod Q.

Therefore the map y-yo
is a permutation of 50

Q-13.

So
,

at least r vectors y exist
.

S .t . -- yrmodQ *

cor a pomorsyo.

When
g

:= ged (r,Q) < 1
,

note g Y
.

Then yo are

uniformly distributed over

0, 9 ,
29
, .

. .

., (1) g
with young for g valuey

↑ lg>-
Ther

, for at least & g 2 rectre y

,

- yu mod G&

So
,

total probability mass on
st

. - Yo mod Q &*

is:

Therefore ,
we sample ay according to the algoritam for order finding,

we correctly calculate ord(x) with probability iii) .

E

So our overall algorithm for factoring is efficient in that

it runs in time polylog(v).

Next time : efficient classical algorithm for simulating quantum

computation.

Today : Efficient classical algorithms for simulating
quantum computations

Problem :

given an input (C) the description of a

g .
circuit with n qubits ,

m gates ,
and no measurements,

what is the probability that Glo1
the measurement output is1 ?

w = mat
.

mult
, coefficient

Computing p
= ///01/C/O/P to

accuracy + can be

solved in classical time O(logE) and
space 0(2 log(E) ·

If .

Let C =

gmymy -... g.

For gate go ,
letJo be the

pruning of ge toe bits.

Then 115-gll--gelij = 4 . 28 for 4x4 matrices
.

Since 11 . 11:11 . IIF
,

15+-Sel 4 .2 so /lgo-go/ : 4 : 2
.

Then for C = gm--- ,

1) <10 - Clo1) = 4m .2

- l
so IP-p) = Om . 2 -

Choose &S
.

t
.

8m .2 = 1 = &(log)·
Compute i using mat

. multiplication . Ip-plE.

Additionally ,
we can multiply and

prune as we compute.

gives a runtime of 0(2nlog(E)) and
space 0(2"log(*))·

↑
mat

,
must. se

In actuality ,
no one uses such fast malt. algorithms since the coefficients

are huge .

So runtime is more like 0(2207n1)).

Alaim. We can reduce the space complexity to

poly (n , log(t)).

#
p : TougI I

↑= <Or g(0
(one big matrix multiplication)

Add identify terms 1 =Cuy!

=<[M ... (10

-Colgily ...y

Alg : Iterate over y1, Y2mE90 ,
13 computing each multiplication

in the sum . Requires

Ozimlog(E) time but only Olum + log() space .

To estimate p
to %, requires only O(nm) space.

Proves BQPCUSPACE . (Called the Feynman path integral)
i . e.

every g computation
can be simulated with polynomial

space but (perhaps) exponential time .

Next : A situation when we can vastly improve the

time complexity.

The issue is that keeping track of the state ge ... g .
10%

is incofficient and
may

take 2" complex numbers to record.

One solution was to keep "no numbers" using path integral.

Another is succinct descriptions of g. states.

First
,
Pauli matrices :

1, X = (i !) ,

y = (0 -) = ixz
,
z = (-i) .

* Y ,
Z all anticommute

,
have trace O

, square
to 1

.

-

P = (= 1, ik , = X ,
= iX

,
=Y

,
ziY , E,2Z]

.

a

group
under matrix multiplication.

P = [Pote ...
OU /P, . . .,PrEP,)

.

Also a

group

Pauli matrices can be described with 2(m+ 1) bits.

Use notation : X; to denote 10 1X10.... I

↑
it location

-

so (X ,za) (XiY) = (Xz01) (1XOY)

= XOZXeY

· XoiYoy = i(XoYok)
= iX,YY

.

observation : 10) is the unique solution to Ej14) : 147
,

for all
j =,,..., m

.

If
.

7
, 143 : 14) only if (4) = 10014's

Rest follows similarly
. B

Another observation : 1f)* is the
unique solution to X; 14) = 143,

for all j = 1,..., n.

temma Assume 14) is the
unique solution to Pj(4) = 14) for

Pauli matrices P ...,
Pr
. Let I be

any
unitary
.

Define Q
j

= UPUT .

Then U14] is the unique solution to Q
j
It) = It)

for all job ..., n.

& To see it is a solution
,

notice

QUI) = uputu(4)

= Up 14)

= 2147
.

For
uniqueness ,

assume - a solution I5]. Then
,

(t) = Oj(t) => utT) = PUT) Vj = h

So
,

UPIT) = 14) by uniqueness .
So It] : UI)

·
E

If 14) is the unique state sit . PlN) = 14) for all j = 1
...,

n
,

we

say Py ...,
Ph Stabilize 147.

Issue is that for arbitrary U
, UPUT may not be a

Pauli matrix.

But for some 2 it will be. The set of 11 for which

UP2t is also a Pauli matrix VD is called the normalizes

group of Ju. The normalizes
group of Ph is called the

Clifford group,

Cn
.

C = 32/uputePu V PePh]
.

It's a more complicated pf than me have time for this class
,

but

every
matrix e On can be generated from

GNOTIn2
,
Soln-

,
Helme

.

and their I
,
Ii

variants
.

Here
,

S = (!?).

Many other uniteries such as X
,

Y
,

Z
,

SWAP
,

CE are all

part of the Clifford group.

Consider H
,

in the Clifford group
Cn
.

Suppose P
.
... in stabilize 14]

.

Then
,

we can efficiently calculate stabilizes for HIN) .

If P = 10-
,
the HipH = 10 = Pj .

If P = XO-
,

then HipH = zo-

If Pj = z0_
,

then H,PHT = XQ
-

If P = YQ-
,

then HPHT = YQ-

Similar reles can be generated for CNOT and S updates

↓
Gottesman- Knill

#hm given a circuit gm ... 81 with each go - ECNUT,
S

, H3
,

we canefficiently compute a collection of stabilizers for

gm . - - g ,
lov .

Starting with P = Ej which stabilize 102)
,

we update stabilizes

gate by gate
. Each update takes O(u) time as there are n

stabilizes each of O(n) bits. Total time is O(mu) , space O(n") ·D

What about measurements?

Wog ,
we only need to consider measuring the first qubit.
in standard basis.

Notice if PIP) = p'14) = 14) for Paulis P
,

P ! then

PP 14) = P14)-14) so PP'stabilizes 14) an well
.

So if P
, ...,
in stabilize 14) then

<P, ...,Pn) Stabilizes (4) where this is the stabilize

subgroup E Pr.

Let Sp = &PePulPly) : 1433
.

Measuring 147 :

D If Z , Sp ,
then measurement outcome is O and

state doesn't change
.
Deterministic measurement

② If-Z , ESy, then measurement outcome is 1 and

state doesn't change
.
Deterministic measurement

③ If Z, Sp , things get more complicated.

& must not commute with all of Sp.

Find a basis for Sp s
.
t

. Sp =<%..., but
,

and b,z ,
= -Zib

,
but bjz = Zibj fur j21.

Flip a coin
· Replace b

,
with z

, or - E
,

depending on the coin flip.

↑of correctness

Since b
,

and E
, anticommute

, square
to 1

, by part 2

Problem ,
there exists a change of basis sit.

Ubut = X
,

and MEN = E
, ,
and Ubu = Hob·

Since be Su
,

UI) = It)-

So measuring ,
E

,
is a coin-flip resulting in 10) or 11).

Doesn't change remaindes of state ,
so new state is

stabilized by Zyba , ...,
bu or

-E
,

be
, ..., by

depending on outcome. T

Finding a basis <bbu] for Sp sit
- only by

anticommty :

① Renumber bases s
.

t
.

b
,

anticommuty
.

② If by anticommates
, replace by with biba.

Next
, computation with a few non-Clifford gates.

non-Clifford gate examples :

T=5-(! eio) cez
ceX=
(Toffoli)

Tem (Solovay - Kitev) Any 2-qubit uniting can be

- approximated using O(polylog(YE) H
,
T

,
CNOT gates

Soloway - Nitae + Clifford simulation suggests that the number

of T gates in a H
,
T

,
CNOT circuit should be a measure

of the circuits complexity.

Im J a constant as 0
,

S .
t
. computing the output probability of a

quantum circuit consisting of m - Cliffed gates ,
- T-gates on un

qubitsaan be classically computed in time 02
&·

poly (n , m)).

Best: < < 0
. 4 (QaisinsPashyon-Goret)

Today
25 = 3

,
< 1

.
6.

Model of such a computation :

·
↑

one big matrix multiplication :

Replacement :

#T = a 101 + b5S + cZtoz
.

Je
*

==) =(a) + (b

- x

,) +) ...)
Solve a + b + c = 1 a=

a + bi = c = git/ b = Y

a - bi = c = ei c = t -t

By linearity, T
= a s

T

Apply this replacement recusively for every pair of T
gates.

Yields 35 calculations each of which was a only Clifford

computatio n. So previous ,
subroutine gives an efficient poly (n,m)

algorithm.

