Lecture 10 Oct 29, 2024

Problem (Abelian Hiddun Subgroup)
given an abelian group
$$G$$
 and $H \leq G$ and a
fn f hidning H, find a generating set for H.

Requires quardrun Farrier transform for an abelian group.

$$H = OFT(\mathbb{Z}_2)$$
 and $H^{\otimes n} = OFT(\mathbb{Z}_2^n)$.

What is QFT? A unitary finding a different basis for
$$\mathbb{C}^{1G_1}$$
.
Illustrative to understand $G = \mathbb{Z}_N$. Let $\omega = e^{\frac{2\pi T_1^2}{N}}$.

For
$$i \in \{0, \dots, N-1\}$$
,
 $QFT | i \rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega^{i,j} | j \rangle$
or $QFT_{ij} = \langle j | QFT | i \rangle = \frac{1}{\sqrt{N}} \omega^{i,j} = \frac{1}{\sqrt{N}} \left(\cos \frac{2\pi i j}{N} + i \sin \frac{2\pi i j}{N} \right)$
Visualizing $QFT | i \rangle$ (for large N).

For a general abelian group G₁, in order to define QFT(G),
ne need the notion of a character from group theory.
For now,
$$\chi: G \times G \rightarrow C \setminus \{0\}$$
 s.t.
 $\mathfrak{O} \times (g,h) = \chi(h,g)$ $\forall g,h \in G$
 $\mathfrak{O} \times (g,h_1+h_2) = \chi(g,h_1) \times (g,h_2)$. $\forall g,h,h_2 \in G$
 $\mathfrak{O} \sum_{h \in G} \chi(g,h) \times \chi(g',h) = |G| = |G| = g'g \quad \forall g,g' \in G$.

Then QFT (G) E ($^{1}G_{1} \times 1G_{1}$ defined by QFT |g> = $\frac{1}{\sqrt{1G_{1}}} \sum_{h \in G}^{7} \chi(g,h) |h\rangle$. or QFT = $\frac{1}{\sqrt{1G_{1}}} \sum_{g,h \in G}^{7} \chi(g,h) |h\rangle \langle g|$.

Pf QFT is unitary:

$$\langle g_{1} | QFT^{+}QFT | g_{2} \rangle$$

 $= \frac{1}{|G|} \sum_{h_{11}h_{1}eG}^{1} \langle h_{1} | \chi(g_{11}h_{1})^{*} \chi(g_{21}h_{2}) | h_{2} \rangle$
 $= \frac{1}{|G|} \sum_{h \in G}^{1} \chi(g_{11}h_{1})^{*} \chi(g_{21}h_{2})$
 $= \frac{1}{|G|} \cdot |G| = \frac{1}{|g|} g'_{3} = \frac{1}{2} g = g'_{3}.$

Let's use QFT to solve AHSP and then get to writing an efficient q. circuit for QFT - for all ne know it could be hard to implement.

Alternatively, ne can ignore the second measurement like in Simon's problem.

Before Of query:
$$\frac{1}{\sqrt{1G_1}} \sum_{\substack{g \in G \\ \overline{VIG_1}}} \chi(0,g) |g\rangle |0^m\rangle$$

= $\frac{1}{\sqrt{1G_1}} \sum_{\substack{g \in G \\ \overline{J}}} |g\rangle |0^m\rangle$

since $\chi(0,g)\chi(h,g) = \chi(0+h,g) \implies \chi(0,g) = 1$

After Op query and measurement. For some $z \in \{0, 1\}^m$, $\propto \sum_{\substack{g \in P(g) = z}} |g\rangle$

$$\begin{cases} g: f(g) - \overline{a} \\ g = g_{0} + H = \begin{cases} g + h \mid h \in H \\ for some g_{0} \end{cases}$$
So state equals
$$\frac{1}{\sqrt{|H|}} \sum_{h \in H} |g_{0} + h \rangle$$

$$Apply \ QFT : \frac{1}{\sqrt{|G|\cdot|H|}} \sum_{h \in H} \sum_{g \in G} \chi(g_{0} + h, g) |g \rangle$$

$$= \frac{1}{\sqrt{|G|\cdot|H|}} \sum_{h \in H} \sum_{g \in G} \chi(g_{0}, g) \chi(h, g) |g \rangle$$

$$= \frac{1}{\sqrt{|G|\cdot|H|}} \sum_{g \in G} \chi(g_{1}, g) \left(\sum_{h \in H} \chi(h, g)\right) |g \rangle$$

$$= \sqrt{\frac{|H|}{|G|}} \sum_{g \in H^{+}} \chi(g_{1}, g) \left(\sum_{h \in H} \chi(h, g)\right) |g \rangle$$

$$= \sqrt{\frac{|H|}{|G|}} \sum_{g \in H^{+}} \chi(g_{1}, g) |g \rangle = \frac{1}{\sqrt{|H^{+}|}} \sum_{g \in H^{+}} \chi(g_{0}, g) |g \rangle$$
Measuring gives $g \in H^{+}$ uniformly rendomly.
$$Pf \circ f(x): Write g \in G \text{ as } g_{1} + g_{2} , g_{1} \in H_{1} g_{2} \in H^{+}$$

$$\sum_{h \in H} \chi(h_{1}g) = \sum_{h \in H} \chi(h_{1}g_{1}) \chi(h_{1}g_{2})$$

.

$$= \sum_{h \in H} \chi(h, g_{i}) \cdot 1$$

$$= \sum_{h \in H} \chi(h, g_{i}) \chi(h, 0)$$

$$= [H] \cdot I \{g_{i} = 0\}$$

$$= [H] \cdot I \{g \in H^{\perp}\}.$$

Dk, learning samples from H[±] can be used to calculate
a generating set for H using Gaussian elimination.
To Simon's problem, H = $\{0, s\}$ so $H^{\pm} = \{\gamma : \gamma \cdot s = 0\}.$
Solving AHSP when $G = \mathbb{Z}_{Q_{i}}$, r divides Q
 $f(x) = f(x')$ iff $x' - x$ is a multiple of r :

For Simon's problem,
$$H = \{0, s\}$$
 so $H^{\perp} = \{\gamma : \gamma \cdot s = 0\}$.

Solving AHSP when
$$G = \mathbb{Z}_{Q_1} r$$
 devides Q
 $f(x) = f(x')$ iff $x' - x$ is a multiple of r :

When $G = \mathbb{Z}_{Q}$, $\chi(g,h) = \omega^{g,h}$ where $\omega = e^{2\pi i/Q}$ Each sample gives y s.t. X(y,r)=1 (yr=0 mod Q

or
$$\gamma r = kQ$$
. Since r divides Q_{i} , $\frac{Q}{r}$ is an integer.
Each sample $\gamma_{i} = k_{i} \cdot \frac{Q}{r}$ is an integer.
 $GCD(\{\gamma_{i}\}) = \frac{Q}{r}$ with high probability with
 $O(\log Q)$ samples. Next lecture, we will review Enclid's
algorithm for efficiently calculating GCD.

But...

We still need to create a q. circuit for QFT.
When
$$G_{t} = \mathbb{Z}_{Q_{t}}$$
, $\mathcal{X}(q,h) = \omega^{q,h}$ where $\omega = e^{2\pi i/Q}$
And for groups $G_{11} G_{2}$
 $\mathcal{X}_{G_{11} \times G_{2}} ((q_{11}q_{2}), (h_{1}h_{2})) = \mathcal{X}_{G_{1}}(q_{11}h_{1}) \cdot \mathcal{X}_{G_{2}}(q_{2}, h_{2}).$
equiv. $QFT(G_{1} \times G_{2}) = QFT(G_{1}) \otimes QFT(G_{2}).$

Note that all abelian groups are isomorphic to $\mathbb{Z}_{Q_1} \times \ldots \times \mathbb{Z}_{Q_k}$.

We know how to produce
$$H = QFT(\mathbb{Z}_2)$$

and $H^{son} = QFT(\mathbb{Z}_2^n)$

We will show how to produce
$$QFT(\mathbb{Z}_N)$$
 for $N=2^n$.
Note: $\mathbb{Z}_{2^N} \neq \mathbb{Z}_2^n$. Turns out sufficient for Shor's.

For
$$x \in N$$
, write $x = x_1 \dots x_n$ as a binary number,

$$\underline{Claim} \quad QFT | \mathscr{V} = \bigotimes_{j=1}^{n} \frac{1}{\sqrt{2}} \left(|0\rangle + \omega^{\varkappa 2^{n-j}} | 1\rangle \right) =: \bigotimes_{j=1}^{n} | \Psi_{j}^{(*)} \rangle$$

$$\underline{PF} : \langle \gamma | \bigotimes_{j=1}^{n} \frac{1}{\sqrt{2}} \left(|0\rangle + \omega^{\chi 2^{n-j}} |1\rangle \right) \\
= \prod_{j: \gamma_{j=1}}^{n} \omega^{\chi 2^{n-j}}$$

$$= \left(\sum_{j=\gamma_{j=1}}^{n} \chi 2^{n-j} \right)$$

= $\omega \left(\chi \cdot \sum_{j=1}^{n} \gamma_j 2^{n-j} \right)$
= ω binony decomposition of γ

1

 $= \omega^{\times \gamma}$.

Notice
$$\omega = \omega^{\chi 2^{n-j}}$$
 ($\chi 2^{n-j} \mod N$)

$$\chi \cdot 2^{n-j} \mod N = \sum_{k=1}^{n} \chi_k 2^{n-k} \cdot 2^{n-j} \mod N$$
$$= \sum_{k \ge n-j}^{n} \chi_k 2^{2n-k-j}.$$

Using this, let's write a q. circuit for QFT.
gates: H,
$$R_{1k} = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^{k}} \end{pmatrix}$$
 and $CR_{k} = \begin{pmatrix} 1L_{2} \\ R_{k} \end{pmatrix}$
 $e^{2\pi i/2^{k}} = \omega^{(2^{n-k})}$

Not all C-Re gates may be necessary.

Consider replacing gates g in det with g' s.t.

$$\|g - g\|' \leq \varepsilon.$$
By unitarity, total change in output POVM is also $\varepsilon.$

$$C - R_{k} = \begin{pmatrix} 1 & & \\ &$$

We have reduced from
$$O(n^2)$$
 gates to $O(n \log \frac{h}{E})$ gates.
Time permitting, ne will see how to generate any remaining
gate approximately from a family of standard gates.
(Solovay-Kitzer theorem)

Next time:

- The classical scrup/mathematics of Shor's facturing algorithm.

- Order finding and a quantum algorithm for it.