Lecture 10

Oct ²⁹ , ²⁰²⁴

Problem (Abelian Hidden Subgroup)
Given an abelian group
$$
G
$$
 and $H \leq G$ and a

 $\{h\}$ binding H , find a generating set for H .

A ^q algorithm for solving AHSP exists and it will be ^a generalization of Simon's algorithm.

generalization of Simov's algorithm.
Reguires quordur Favier transfenn for en abelvan group.
H = CFT(
$$
\mathbb{Z}_2
$$
) and H^{®n} = CFT(\mathbb{Z}_2^n).

What is
$$
QFT
$$
? A unitary finding a different basis for $\mathbb{C}^{|G|}$.
Illustrative to understand $G = \mathbb{Z}_N$. Let $\omega = e^{\frac{2\pi i}{N}e^{-\text{imaginary}z}}$

$$
e_{\frac{1}{2}u\text{ times}} \quad \text{quadrup} \quad \text{Fawier} \quad \text{transferm} \quad \text{for} \quad \text{on} \quad \text{d}x \text{ is given by:}
$$
\n
$$
H = \text{OPT}(\mathbb{Z}_{2}) \quad \text{and} \quad H^{\text{on}} = \text{OPT}(\mathbb{Z}_{2}^{n}).
$$
\n
$$
\text{What is } \text{OPT}?\quad A \text{ unitary finding a different basis for } \mathbb{C}^{|\mathcal{L}|}.
$$
\n
$$
\text{Justhalte the unclustand} \quad G_{\overline{z}} = \mathbb{Z}_{N}. \quad \text{Let} \quad \omega = c \frac{2\pi i}{N} \cdot \text{constant}.
$$
\n
$$
\text{For } i \in \{0, \dots, N-1\}.
$$
\n
$$
\text{OPT} \quad i > a \quad \text{or} \quad \sqrt{N} \quad \text{if} \quad \omega^{i,j} \mid j > 0.
$$
\n
$$
\text{or } \text{OPT} \quad i > \quad \text{if} \quad \text{OPT} \quad i > a \quad \text{if} \quad \omega^{i,j} \quad \text{if} \quad \text{for} \quad \text{for} \quad \frac{2\pi i}{N} + \hat{\gamma} \text{ sin} \quad \frac{2\pi i j}{N}.
$$
\n
$$
\text{Visualizing } \text{OPT} \quad i > \quad \text{if} \quad \text{for } \text{large } N.
$$

For a general abelian group
$$
G_i
$$
 in order to define $QFT(G)$
\nwe need the notion of a characteristic from group them.
\nFor now, $X: G \times G \rightarrow \mathbb{C} \setminus \{0\}$ s.t.
\n $Q \times (g,h) = X(h,g)$ $\forall g,h \in G$
\n $Q \times (g,h_1+h_2) = X(g,h_1) \times (g,h_2)$ $\forall g,h_1h_2 \in G$
\n $Q \sum_{h \in G} X(g,h) * \chi(g',h) = |G| \mathbb{1}_{\{g=g'\}} \forall g.g' \in G$.

Then QFT (G) & C "Gl×1Gl defined by OFT $|g\rangle = \frac{1}{\sqrt{|G|}} \sum_{h \in G} \chi(g,h) |h\rangle$. or QFT = $\frac{1}{\sqrt{1G_1}} \sum_{q,h \in G_1} \chi(q,h) \mid h \times q \mid$.

PQFT is unitary:
\n
$$
\langle g_1 | \text{CFT}^+ \text{CFT} | g_2 \rangle
$$

\n $= \frac{1}{|G|} \sum_{h_{11}h_{1} \in G} \langle h_1 | \chi(g_{11}h_1)^* \chi(g_{21}h_2) | h_2 \rangle$
\n $= \frac{1}{|G|} \sum_{h \in G} \chi(g_{11}h)^* \chi(g_{11}h)$
\n $= \frac{1}{|G|} \cdot |G| \mathbb{1}_{\{g = g'\}} = \mathbb{1}_{\{g = g'\}}.$

Let's use QFT to solve AHSP and then get to writing an efficient q. creuit for AFT - for all ne know it could be hard to implement.

Iclea: Subroutine to learn ranchom clement of H⁺ where H^{\perp} is the subgroup $\begin{cases} g \downarrow \chi(g,w) = 1 \end{cases}$ be H^{\prime}

Alternatively, we can ignore the second measurement like in Sinon's problem.

Before Of
$$
qump: \frac{1}{\sqrt{161}} \sum_{g \in G} \chi(o, g) \mid g > 10^{m}
$$
)
= $\frac{1}{\sqrt{161}} \sum_{g} \mid g > 10^{m}$

 $sinea \quad \mathcal{K}(0, g) \mathcal{K}(h, g) = \mathcal{K}(0+h, g) \implies \mathcal{K}(0, g) = 1$

After Op guerry and measurement. For some 36.613^m $\propto \sum_{i}$ 1g> $9: f(g) = z$

$$
\begin{aligned}\n\frac{3}{2} \, g: f(g) - 3 \, g - g_0 + H &= \frac{3}{2} \, g + h \mid h \in H^2 \quad \text{for some } g_0 \\
\text{So } \text{state } e_1 \text{uds} \quad \frac{1}{\sqrt{|f_1|}} \sum_{h \in H} |g_0 + h \rangle \\
\text{Apply } \text{QFT}: \quad \frac{1}{\sqrt{|f_0| \cdot |H|}} \sum_{h \in H} \sum_{g \in G} \mathcal{K}(g_0 + h, g) |g \rangle \\
&= \frac{1}{\sqrt{|f_0| \cdot |H|}} \sum_{h \in H} \sum_{g \in G} \mathcal{K}(g_0, g) \mathcal{K}(h, g) |g \rangle \\
&= \frac{1}{\sqrt{|f_0| \cdot |H|}} \sum_{g \in G} \mathcal{K}(g_0, g) \left(\sum_{h \in H} \mathcal{K}(h, g) \right) |g \rangle \\
&= \sqrt{\frac{|H|}{|g_1|}} \sum_{g \in H^+} \mathcal{K}(g_0, g) |g \rangle = \frac{1}{\sqrt{|H^+|}} \sum_{g \in H^+} \mathcal{K}(g_0, g) |g \rangle \\
\text{Measuring gives } g \in H^+ \text{ uniformly randomly.} \quad \text{where } g \in H^+ \text{ with } \text{the } g_0 \text{ is } H^+ \text{ with } \text{the } g_1 \text{ is } H^+ \text{ with } \text{the } g_1 \text{ is } H^+ \text{ with } \text{the } g_2 \text{ is } H^+ \text{ with } \text{the } g_3 \text{ is } H^+ \text{ with } \text{the } g_4 \text{ is } H^+ \text{ with } \text{the } g_5 \text{ is } H^+ \text{ with } \text{the } g_6 \text{ is } H^+ \text{ with } \text{the } g_7 \text{ is } H^+ \text{ with } \text{the } g_8 \text{ is } H^+ \text{ with } \text{the } g_9 \text{ is } H^+ \text{ with } \text{the } g_9 \text{ is } H^+ \text{ with } \text{the } g_9 \text{ is } H^+ \text{ with } \text{the } g_9 \text{ is } H^+ \text{ with } \text{the } g_9 \text{ is } H^+ \text{ with } \text{the }
$$

 $\ddot{}$

$$
=\sum_{h\in H} \chi(h,g_1) \cdot 1
$$
\n
$$
=\sum_{h\in H} \chi(h,g_1) \chi(h,0)
$$
\n
$$
= |H| \cdot 1 \cdot 1 \cdot 1_{\{g_e = 0\}}
$$
\n
$$
= |H| \cdot 1 \cdot 1 \cdot 1_{\{g_e = 0\}}
$$
\n
$$
= |H| \cdot 1 \cdot 1 \cdot 1_{\{g_e = 0\}}
$$
\n
$$
= |H| \cdot 1 \cdot 1 \cdot 1_{\{g_e = 0\}}
$$
\n
$$
= \text{Perning samples from } H^{\perp} \text{ can be used to calculate a generating set } \{F \in H \text{ using Gaussian elimination.}
$$
\n
$$
\text{For Sima's problem, } H = \{0, 5\} \text{ so } H^{\perp} = \{7\} \cdot 1 \cdot 1 \cdot 1 \cdot 1_{\{0\}} \cdot
$$

For Simon's problem,
$$
H = \{0, s\}
$$
 so $H^{\perp} = \{y : y \cdot s = 0\}$.

Solving AHSP when
$$
G = \mathbb{Z}_{\alpha+1} r
$$
 divides α
 $f(x) = f(x^r) \quad \text{iff} \quad x^r - x \quad \text{is a multiple of } r$:

When $G = \mathbb{Z}_{\alpha}$, $\mathcal{K}(g, h) = w^{g \cdot h}$ where $w = e^{2\pi i / g}$ Each sample gives γ s.t. $\chi(\gamma, r) = 1 \iff \gamma r = 0 \mod Q$

or
$$
\gamma^r = kQ
$$
. Since r divides $Q_i \xrightarrow{Q_i}$ is an int-
Each sample $\gamma_i = k_i \cdot \frac{Q}{r}$ is an integer.
 $QCD(\frac{1}{2}\gamma_i\gamma_i) = \frac{Q}{r}$ with high probability with
 $O(\log Q)$ samples. Next lecture, we will review Euclid's
 algorithm for efficiently calculating QCD .

But...

We still need to create a 9. circuit for QFT.
\nWhen
$$
G = \mathbb{Z}_{\theta}
$$
, $\chi(g, h) = \omega^{g \cdot h}$ where $\omega = e^{2\pi i / Q}$
\nAnd for groups $G_{11} G_2$
\n $\mathcal{V}_{G_1 * G_2} (G_1, g_2), G_1, h_1) = \chi_{G_1} (g_1, h_1) \cdot \chi_{G_2} (g_2, h_2)$
\ncquv. QFT $(G_1 * G_2) = QFT(G_1) \otimes QFT(G_2)$.

Note that all abelic groups are isomorphic to .
I. α_1 x ... \overline{z}_{α_k}

We know how to produce
$$
H = QFT(\mathbb{Z}_2)
$$

and $H^{\infty} = QFT(\mathbb{Z}_2^{n})$

and
$$
H^{\text{can}} = \text{QFT}(\mathbb{Z}_2^n)
$$

\nWe will show how to produce $\text{QFT}(\mathbb{Z}_N)$ for $N = 2^n$.

\nNote: $\mathbb{Z}_{2^n} \neq \mathbb{Z}_2^n$. Thus out sufficient for Shor's.

\nFor $\alpha \in N$, write $\alpha = \alpha_1, ..., \alpha_n$ as a binary number.

For
$$
x \in N
$$
, write $x = x_1 \cdots x_n$ as a binary number,

For
$$
x \in N
$$
, write $x = x_1 \cdots x_n$ as a binary number.
Claim $QFT|x\rangle = \bigotimes_{j=1}^{n} \frac{1}{T^2} (10\rangle + \omega^{x2^{n-j}} 11\rangle) =: \bigotimes_{j=1}^{n} |\psi_j^{(x)}\rangle$

$$
\mathbb{P}.\quad \langle \gamma \mid \bigotimes_{j=1}^{n} \frac{1}{\sqrt{2}} \left(| \circ \rangle + \omega^{x \cdot 2^{n-j}} | I \rangle \right)
$$
\n
$$
= \prod_{j: \gamma_{j+1}} \omega^{x \cdot 2^{n-j}}
$$

$$
= \omega \left(\sum_{j=\gamma_{j=1}}^{n} \chi 2^{n-j} \right)
$$

= $\omega \left(x \cdot \sum_{j=1}^{n} \gamma_{j} 2^{n-j} \right)$

$$
= \omega \left(x \cdot \sum_{j=1}^{n} \gamma_{j} 2^{n-j} \right)
$$

 $=$ $\omega^{x.7}$.

$$
N \circ h^{\text{inc}} \quad \omega \quad \text{and} \quad N)
$$

$$
\chi \cdot 2^{n-j} \mod N = \sum_{k=1}^{n} \chi_k 2^{n-k} \cdot 2^{n-j} \mod N
$$

$$
= \sum_{k \ge n-j} \chi_k 2^{2n-k-j}.
$$

Using this, let's write a q. circuit for QFT.
\ngates: H,
$$
R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix}
$$
 and $CR_k = \begin{pmatrix} \frac{\pi}{2} & 0 \\ 0 & R_k \end{pmatrix}$
\n $e^{2\pi i/2^k} = \omega$

Not all C -R_k gates may be necessar .
7.

Consider replacing
$$
\frac{1}{4} \times 6
$$
.

\nIf $3 - 3 \times 1 = 6$.

\nBy uniformly, $\frac{1}{2} \times 6$.

\nBy $\frac{1}{2} \times 6$.

\nBy $\frac{1}{2} \times 6$, $\frac{1}{2} \times 6$.

\n $\frac{1}{2} \times 10^{16}$

\nUsing $\frac{1}{2} \times 10^{16}$.

\nUsing $\frac{1}{2} \times$

We have reduced from
$$
O(n^2)
$$
 gates to $O(n \log \frac{n}{\epsilon})$ gates.
Time permitting, we will see how to generate any remaining
gats approximately from a family of standard gates.
(Solovcy-Kikev theorem)

Next time :

- The classical setup/mathematics of Shor's facticing algorithm.
- Order finding and ^a quantum algorithm for it .