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1 Recapitulation
We currently know the following four bounds on rate as a function of relative distance, three of
them upper bounds (which tell us what rate-distance combinations are impossible), and one lower
bound (which tells us what rate-distance combinations we can achieve). In the following, R is the
rate and δ the relative distance of a code. For example, a (n, k, d) code has R = k/n and δ = d/n.
Hq(x) is the q-ary entropy function, Hq(x) = x logq

(
(q − 1)/x

)
+ (1− x) logq

(
1/(1− x)

)
.

Gilbert-Varshamov: R ≥ 1−Hq(δ) (1)
Volume (Hamming): R ≤ 1−Hq(δ/2) (2)
Singleton: R ≤ 1− δ (3)
(Binary) Plotkin: R ≤ 1− 2δ (4)

Below we plot these bounds, along with the Elias-Bassalygo bound we will prove today, for the
binary case (q = 2).
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Recall that the Shannon capacity can be achieved via decoding up to half the distance only if
we have codes whose rate meets the Hamming upper bound (2). So before today’s bound, any
hope of achieving the Shannon bound using combinatorial codes, according to the above graph,
is only possible with δ less than about 0.3. Today we will extinguish this hope by showing the
Elias-Bassalygo upper bound that gives a strict improvement on all our current upper bounds, as
the graph shows.

This Elias-Bassalygo bound is the best known bound that can be shown by elementary methods.
The current world-record upper bounds extend this proof technique with bounds derived from
linear programming duality.

2 The Johnson Bound
We begin by defining a parametrized bound known as the Johnson bound. Let n be a block length,
d be a distance, and e be a radius. Then J(n, d, e) is the maximum number of codewords contained
in any ball of radius e, of any code with blocklength n and distance d. Hence J(n, d, n) is our usual
upper bound, usually denoted A(n, d): the most number of codewords in any code of distance d
and blocklength n. Looking J(·) from the other end, we have that J(n, d, b(d− 1)/2c) = 1, as in
a distance d code, the balls of radius b(d− 1)/2c do not intersect. As a side note, Johnson actually
studied the maximum number of codewords of the specified distance all lying on the surface of the
specified sphere, that is, wt(c) = e rather than wt(c) ≤ e as we are using.

While there is a geometric proof of the Johnson bound, we will prove it using a useful com-
binatorial technique of counting two ways. Let c1, . . . , cM be M codewords, with ∆(ci, cj) ≥ d
for all i 6= j, and wt(ci) ≤ e for all i. Note that by translation we can assume without loss
of generality that our sphere is centered at zero. We will now bound the sum all distances S =∑

1≤i<j≤M ∆(ci, cj) in two ways.
First, as ∆(ci, cj) ≥ d, we have that

S ≥
(

M

2

)
d. (5)

Now, consider the codewords arranged in an n×M matrix, and look at the i-th column. Suppose
this contains mi 1’s, and M −mi zeros. Then each pair of different bits contributes one to S, for a
total of mi(M −mi) per column. Define

∑
mi/M = e′ as the average weight per codeword, and

note that e′ ≤ e as wt(ci) ≤ e for all codewords. Hence

S =
∑

mi(M −mi) = M2e′ −
∑

m2
i .

As Cauchy-Schwartz tells us
∑

m2
i ≥ (

∑
mi)

2 /n, we have that

≤ M2e′ −M2e′2/n.

Thus by combining this with (5), we have that

M(M − 1)d ≤ 2S ≤ 2M2(e′ − e′2/n).
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Rearranging,
M(d− 2e′ + 2e′2/n) ≤ d.

Provided the left-hand side is positive, we can divide to bound M by

M ≤ nd

nd− 2e′n + 2e′2

=
2nd

(n− 2e′)2 − n(n− 2d)

≤ 2nd

(n− 2e)2 − n(n− 2d)
,

as e′ ≤ e. Finally, if the denominator is positive, it must be at least one as it is an integer. Rear-
ranging the denominator shows that it is positive when e < (n−

√
n(n− 2d))/2. Hence we have

that
J(n, d, e) ≤ 2nd if

e

n
<

1

2

(
1−

√
1− 2d/n

)
.

In other words, any ball with radius smaller than e as above, contains only polynomially many
codewords. In fact, the quantity we are really interested in is when the Johnson bound holds, and
not what the Johnson bound in fact is, just as long as it is polynomial.

Hence if we define J(δ) = (1 −
√

1− 2δ)/2, then in any binary code of relative distance δ,
every Hamming ball of fractional radius less than J(δ) has only polynomially many codewords (as
a function of the block length). We call J(δ) the Johnson radius.

as a bound on what the maximum size ball containing a polynomial number of codewords of
relative distance δ can be. Though we will not prove it here, the Johnson bound can be extended to
q-ary alphabets, and the q-ary Johnson radius is given by

Jq(δ) =
q − 1

q

(
1−

√
1− qδ

q − 1

)
.

There is also an alphabet-independent version that holds for all q,

J(n, d, e) ≤ nd if e < n−
√

n(n− d).

3 Using the Johnson Bound
We know show how the Johnson bound can be used to give an upper bound for the coding problem.
The technique we will use has been called the fishnet method, and is useful to know about. The
outline is that we have a bound on how many codewords can fit into a ball of a certain size. We’ll
then show that there exists a ball containing relatively large fraction of the code, which when
combined with our bound constrains the size of the code.

Lemma 3.1. Given a code C of blocklength n, for any e, n there exists a Hamming ball of radius
e containing at least |C| · Vol(n, e)/2n codewords.
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Proof. Consider the event of picking a Hamming ball B of radius e around a random center. For
each c ∈ C, let Xc be an indicator variable equal to 1 if c ∈ B and 0 otherwise. Then for all c,
E(Xc) = Pr(Xc = 1) = Vol(n, e)/2n. The total number of codewords in B is equal to

∑
Xc, so

by linearity of expectation, E(# codewords in B) =
∑

E(Xc) = |C|Vol(n, e)/2n. As there must
exist at least one ball achieving the expectation, the lemma is proved.

Theorem 3.2 (The Elias-Bassalygo Bound).

R ≤ H
(
(1−

√
1− 2δ)/2

)
Proof. Set e = J(δ)n − 1. Then by the above lemma there is a ball of radius e containing
|C|Vol(n, e)/2n codewords. By the Johnson bound, no such ball can contain more than 2nd
codewords, hence |C|Vol(n, e)/2n < 2nd. Rearranging and using the entropy approximation for
the volume of a Hamming ball, we have that

|C| ≤ 21−H(J(δ))n · 2o(n).

By taking n →∞, we get the claimed upper bound on the rate.

As shown in the graph at the beginning of this lecture, this bound is a strict improvement to
both the Hamming bound and the binary Plotkin bound.

4 Revisiting the Gilbert-Varshamov Bound: Linear Codes
The Elias-Bassalygo bound has been slightly improved, but there has been no asymptotic im-
provement for binary codes to the GV bound. Hence it is still open whether the GV bound of
R = 1 − H(δ) the best asymptotic rate that can be achieved. One way to address this is to study
what sort of codes meet the GV bound. The version of the bound that we saw constructed a general
code, so it is natural to ask if there is a linear code that meets the GV bound. We show below that
there is. The theorem below is due to Varshamov, who proved it independently of the theorem
of Gilbert that achieved a similar bound for general, nonlinear codes. The two results are usually
cited together, giving us the Gilbert-Varshamov bound (or Varshamov-Gilbert bound, depending
on if you learned it in Cyrillic or not).

Theorem 4.1. For every 0 < δ < 1/2, and all large eough n, there exists an [n, k,≥ δn]2 binary
linear code with with k ≥ n(1−H(δ))− 1.

Proof. Let k = bn(1 − H(δ))c − 1, so that k ≥ n(1 − H(δ)) − 2. Pick a random linear code
by forming (n − k) × n Boolean parity-check matrix H with each entry chosen independently at
random. The probability that the resulting code does not have distance at least d = δn is equal to
the probability that there exists a point x with weight ≤ d − 1 and Hx = 0. Let us call this event
E . Then by the union bound, we have that

Pr(E) ≤
∑

wt(x)≤d−1
x 6=0

Pr(Hx = 0).
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Consider computing the product Hx one row at a time. For every x 6= 0, for a uniformly random
binary vector r, Pr(〈x, r〉 = 0) = 1/2, as fixing all random choices except one whose coefficient
in x is one, we have that the dot product is 1 with probability 1/2. Note this use critically the
constraint that x 6= 0. Now as the rows of H are chosen independently, for any fixed x, Pr(Hx =
0) = (1/2)n−k. Hence

∑
wt(x)≤d−1

x 6=0

Pr(Hx = 0) ≤
∑

wt(x)≤d−1

(
1

2

)n−k

≤ 2H(δ)n−n+k ≤ 1/2 < 1 .

Therefore, there exists a choice of H which defines a code of relative distance at least δ.

The above proof in fact shows that for k = (1 − H(δ) − ε)n, all but an exponentially small
fraction of parity check matrices yield codes of rate at least 1 − H(δ) − ε. Therefore codes that
approach the GV bound are in abundance. As is unfortunately a common situation in combina-
torics, despite this good performance of most codes, we do not know an explicit construction of a
binary linear code that meets the GV bound. Settling this would be a major breakthrough in coding
theory.

Note that we can construct a good meeting the GV bound with high probability simply by
choosing a random parity matrix after setting n and k appropriately. The problem is that there
is no known efficient algorithm to compute the minimum distance of a linear code—in fact, the
problem is NP-hard—so there is now way to ascertain that the code picked in fact has distance
meeting the GV bound. this fact does not have much practical impact.

Exercise: Give a deterministic algorithm to construct a binary linear code meeting the GV
bound that runs in 2O(n) time. The trivial brute-force algorithm that tries all parity-check matrices
will take 2O(n2) time, so a faster algorithm, while still exponential, is interesting, and in fact will
later be useful in finding “inner codes” for concatenation schemes.
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