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Definitions and notation from Lecture 1
We use Σ to denote the alphabet, the set of symbols we use to write codewords. The block length,
or length of codewords is n. The set of codewords is a code C ⊆ Σn.

A code C distinguishes between |C| messages and therefore encodes log |C| bits of informa-
tion. In an error-free world, you could encode n log |Σ| bits using all of Σn. We define the rate of
a code C, R(C), to be the ratio of the information it encodes to the maximum possible:

R(C) =
log |C|

n log |Σ|
.

The (minimum) distance of a code C, d(C), is the minimum Hamming distance between any
two of its codewords,

d(C) = min
x,y∈C,x 6=y

∆(x, y).

We sometimes like to normalize the distance of a code to its block length, as we do with rate.
To do so, we define the relative distance of a code C, denoted δ(C), as the ratio of its distance to
its block length:

δ(C) =
d(C)

n
.

Given an n× k generator matrix over Fq of full rank G, we defined a linear code C

C = {Gx | x ∈ Fk
q}.

We say that C is an [n, k, d]q code, where we may omit d and/or q if their values are understood or
not relevant to the discussion.

1 The [7, 4, 3]2 Hamming Code and its Parity Check Matrix
We defined the C0 = [7, 4, 3]2 Hamming code using generator matrix

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


.
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Lemma 1.1. C0 = {x ∈ F7
2 | Hx = 0} for

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

Proof. Let D = {x ∈ F7
2 | Hx = 0}. We will show that C0 ⊆ D and that D ⊆ C0.

Observe that HG = 0. Then for c ∈ C0, Hc = HGx for some x ∈ F4
2 and HGx = (HG)x =

0x = 0. Thus C0 ⊆ D.
In linear algebraic terms, D is simply the null space of H . For the reverse direction, note that

H has full rank 3 and that its null space must therefore have dimension 4. However, G is in the
null space of H and has dimension 4 and thus spans D, showing that D ⊆ C0.

In general, an [n, k] linear code C ⊆ Fn can be described as

C = {c ∈ Fn | Hc = 0}

for an (n− k)× n matrix H of rank n− k. Such an H is called a parity check matrix.

Correcting One Bit Flip in the Hamming code: Suppose that y is a noisy transmission of code-
word c ∈ C0, that is y is c with a single bit flipped. We have not yet discussed any practical ways
to recover c from y. A simple method with which we could do this would be to flip each bit of y
and see if the resulting vector is in the null space of H .

We can represent y as c + ei, where ei is the column vector of all zeros except a single 1 in
the ith position. The method above recovers i by brute force, requiring up to n matrix-vector
multiplications. A more clever way to correct y is to simply calculate

Hy = H(c + ei) = Hc + Hei = Hei = the ith column of H.

The ith column of H is the binary representation of i, and thus this method can recover the value
of i with only a single multiplication.

2 Generalized Hamming Codes
Define Hr to be the r × (2r − 1) matrix where column i of Hr is the binary representation of i.
This matrix must contain e1 through er, which are the binary representations of all powers of two
from 1 to 2r−1, and thus has full rank.

Now we can define
CHam

r = {c ∈ F2r−1
2 | Hrc = 0}.

CHam
r is an [nr = 2r − 1, kr = 2r − 1 − r] binary linear code. We would like to know what the

distance of this code is, but in order to compute that, we will need the following lemma.

Lemma 2.1. The minimum distance of a linear code is the minimum Hamming weight of a nonzero
codeword.
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Proof. Let C be a linear code with minimum distance d. Then there exist x, y ∈ C such that
∆(x, y) = d. Since C is linear, x−y is a (nonzero) codeword and wt(x−y) = ∆(x, y) = d. Thus
d is at least as large as the minimum Hamming weight of a nonzero codeword.

However, C must contain the zero codeword, and thus d is by definition as small as the mini-
mum over all codewords c of ∆(c, 0) = wt(c).

Then to know the distance of the Hamming code, we must determine the minimum weight of
a nonzero codeword. Since the codewords are defined as the vectors c such that Hrc = 0, this
is equivalent to determining the size of the smallest linearly dependent set of columns of Hr. Hr

does not contain a zero column, nor does it contain two equal columns, so this set must contain at
least 3 elements. However, the first three columns of Hr represent 1, 2, and 3 in binary and sum
(mod 2) to zero. This shows that the Hamming code in fact has distance 3.

Fact 2.2. The Hamming code is the best possible code (in terms of k) with distance 3. In other
words, the Hamming code has optimal rate.

Proof. Consider a distance 3 code of block length n with 2k codewords. Within distance 1 of
each codeword there are n + 1 different points, n corresponding to the n possible bit flips and one
corresponding to flipping no bits. There are only 2n points in the entire space, and thus n and k
must satisfy

2k(n + 1) ≤ 2n,

implying that
k ≤ n− log2(n + 1).

The Hamming codes CHam
r with kr = 2r−1−r and nr = 2r−1 achieve equality of this bound.

Note that in general, the volume of a Hamming ball of radius d is

d∑
i=0

(
n

i

)
,

and that using this in conjunction with the above logic we obtain the following lemma, called the
Volume bound or the Sphere-Packing boun or the Hamming bound:

Lemma 2.3. A code of block length n and distance d has at most

2n∑b d−1
2

c
i=0

(
n
i

)
codewords.

Codes which meet this bound are called perfect codes. It has been shown that for binary linear
codes, the Hamming codes, the trivial code ([n, 1, n]2 code with codewords 0n and 1n for odd n),
and the Golay code [23,12] are the only perfect codes.
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3 The Dual
The dual of a code C, denoted C⊥, is

C⊥ = {c′ | c′ · c = 0 for all c ∈ C}.

For a linear code C with parity check matrix H , C⊥ is the linear code with generator matrix
HT . If C is an [n, k] code, C⊥ is an [n, n− k] code.

The dual of the Hamming code is a linear code with parameters [2r − 1, r] with a generator
matrix whose rows are all the nonzero r-bit vectors. This is the Simplex code. If we include the
zero row, we obtain the Hadamard code [2r, r]. The Hadamard code is the most redundant possible
linear code in which no codeword bit repeats in every codeword.

We saw earlier that the Hamming code has optimal rate, but its relative distance is 3
2r . The

Hadamard and Simplex codes have the awful rate r
2r , which goes to zero as r increases, but they

make up for this by having a very large distance:

Fact 3.1. The Hadamard and Simplex codes have distance n
2
.

Proof. Let a be any nonzero element of Fr
2 and i be an index such that ai 6= 0. For x ∈ Fr

2,
a · x + a · (x + ei) = a · (x + x + ei) = a · ei = 1, implying that a · x 6= a · (x + ei). Thus if we
partition the 2r numbers into 2r−1 pairs (x, x + ei), then for each pair one of a · x and a · (x + ei)
equals 1. This implies that exactly half of the bits of the encoding of a, HT

r a, will be 1, and that for
any nonzero a, wt(HT

r a) = 2r−1. Therefore every nonzero codeword of the Hadamard/Simplex
codes has weight 2r−1 and by an earlier lemma, these codes have distance 2r−1 = n

2
.

We will see more about these codes and their special properties relating to distance in a future
lecture.

Conclusion
The comparison between the Hamming and Hadamard/Simplex codes show the two endpoints of
the spectrum implied by the Hamming bound. The Hamming code has optimal rate but low relative
distance, and the Hadamard/Simplex codes have poor rate but optimal distance. An interesting
question is

Are there codes that have good rate and relative distance?

More specifically, is there an infinite family of [ni, ki, di] binary codes of increasing block
lengths ni where

ki

ni

≥ R and
di

ni

≥ δ

for some (R, δ) > 0? If so, what pairs (R, δ) are possible? Finally, from a practical standpoint,
are any of these codes nicely structured, i.e., do we know what they are and how to describe and
implement them efficiently?
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