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In this lecture we discuss list decoding for Reed Solomomrso®S-Decoding a given message
m = (m4,...,m,) means, finding a degree k polynomial p(x), which satisfiestlessage at more
than error correction bound ((D - 1)/2; D = min distance) neméf places. For the scribes define

QXxy) = Qijxiyj-

1 RS List Decoding Problem

For RS codes list decoding a message m with parameters tiglitalfithe codewords(polynomials)
which satisfy the message at atleast t places. This proldenbe stated as:

List Decoding Problem

Given n distinct pairsd;, y;) € F x IF, a degree parameter k and an agreement parameter t, find all
degree k polynomial p(x) such thatepj = y; for atleast t values of € 1,2, ..., n.

Goal: Solve for t~ v/kn, decoding a 1 +/R fraction of errors.

[1] has the following lemma.

Lemma 1.1. Given any n pointsd;, y;) € F x F, 3 nonzero Q(X,Y) withlegx(Q) < 7 and
degy(Q) <1, s.t. Q@u,y;) =0, Vi.

Proof. Note that Q(X,y) :Zogigdz’ogjgdy ¢;z'y’, and we get there aré ¢+ 1)(1 + 1) > n variables

(variables being;;). So we have a system of homogeneous equation with n camtstemd more
than n variable. Hence a non-zero solution exists. O

2 Algorithm Schema

1. Find non-zero Q(X,Y) (with some degree restrictiong),@.explains all the points.

2. Factor Q(X,Y) and for each factor of form y - p(x) with de@y& k; check if pg;) = y; for
atleast t values of i. If so output p(X).

Why the above algorithm runs in polynomial time?

Step 1is solving a system of homogeneous linear equation. Whichbeadone in polynomial
time.

Step 2 Step can also be done in the polynomial time. For detail¢[2}¢
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Lemma 2.1. For a polynomial p(x), s.t. deg(p(x}) k, p(;) = y; for atleast t values andt 7 +1k
theny - p(x) is a factor of Q(X,y).

Proof. We show this by showing that R(x) = Q(x,p(x)) is a 0 polynomiabr this, we will show
that number of roots are greater than the degree of R(x). thate deg(RX n/l + Ik; because y is
replaced by a (atmost) k degree polynomial @agl, < (. If p(a;) = y;, then R¢;) = Q(o,P())
= Q(as, y;) = 0. Number of roots is atleast t. Nowt 7 + [k, R is a 0 polynomial. O

We can try to optimize for t by choosing | appropiately. Now+/Ak > 2v/nk, (AM-GM).
Forl=+/n/k, nll + Ik = 2¢/nk. Hence this choice of | optimizes for t, which now has to fallb

> 2V kn.

2.1 Improvement using (1,k)-weighted deq)

Definition 2.2. For a polynomial Q(x,y) =, i~ ¢;;7'y’, define (1,k)-weighted degree of Q(x,y)
as maximum (i + kj). -

Lemma 2.3. Given any n pointsd;, y;) € F x F, 3 nonzero Q(X,Y) with (1,k)-weighted degree D,
s.t. Q,v;) =0, Vi, forD = [V2kn].

Proof. Let us count the number of coefficiept fori > 0, j > 0 and i+kjle D let there be N.

4] D—kj 14
N = Z 1= (D—-kj+1)
=0 =0 =0

2
(Li)+1) d
= @D+ 2—k[7))
. (L%J; Dipio)s D(l;kf 2)

For D = |v2kn], N > Z2 = n. And hence the system of equation has non-zero solution. OJ
Now Q(x,y) be the polynomial with (1,k)-weighted degree D#2kn |.

Theorem 2.4. For a polynomial p(x), s.t. deg(p(xy k, if p(o;) = y; for atleast t values and t
> v/2kn theny - p(x) is a factor of Q(x,y).

Proof. Again consider R(x) = Q(x,p(x)). We will show that number obts of R(x) are greater
than the degree of R(x). Note that, deg®R) If p(«;) = y;, then Re;) = Q(a;,Pl)) = Qo ;)
= 0. Number of roots is atleast t. Nowst v/2kn, R is a O polynomial or y - p(x) is a factor of
Q(x,y). O

So this will give us a decoding fraction of p = 32 R. Note thatas R— 0, p— 1.
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3 Improvements to match Johnson Bound

Now, we will consider improvements to match Johnson bound\fkn. The main idea here is
weighted polynomial reconstruction. For each paif, {;;) we are also given an integer weight

as input.

Let Q(x,y) be polynomial such that Qf; ;) = 0,V i. We impose a stronger condition for the points
(cv;, y;) with higherw;; i.e. Q(X,y) has a root of multiplicityy; at («;, ;).

Definition 3.1. Given a polynomial Q(x,y), defin@‘(x,y) as the polynomial, s.t. Qf,v;) =
Q'(0,0). In general)’(x,y) = Q(x+a;,y+y;).

Given Q(x,y) and a paird(;, y;), Q' (x,y) = >_ ¢’ . z"y*. To see how’, is related to coefficients
of Q(x,y), note that

Q'(r.y) = g+ ) (y+y)  This gives

r,s

/ /

. T ’ S ’
i 2 r’—r s'—s
qrs = QT'S'(< r ) ai < s ) yz )

r'>r.s'>s

The w; multiplicity of root implies that partial derivaties uptotal of w; order are all zero at
that point. More precisely

[8 0
ox" Oy*

Q(z,y)|(cv,y:) =0 Vr,s, st. r+s<uw;

or
0 0

[09:’“ oy*
i.e.¢’, = 0wheneverr+ s 0.

Q" (z,)](0,0) =0 Vr,s, st r+s<uw

Let V; = Number of constraints introduced to impose themultiplicity of root («;, y;) for
Q(X,Y).
- vl w; * (w; — 1)
> > > wr — :

w; + 1 <wi+1)
:wi* =
2 2

Lemma 3.2. Given any n pointsq;, ;) € F x IF and corresponding integer weights, 3 nonzero
Q(X,Y) with (1,k)-weighted degree D, s.t. Q(x,y) has;) as a root withw; multiplicity, V i, for

D= L\/%Z(wi;l )J.




2
let us count,the number of variables. As in the prodf-of 2.3kwew that number of variables

D2—Z) ForD = L\/ka ( wi2+1 )J, number of variables- >° < w";l ) Number of variables

Proof. Let us count, the number of constraints. Total constraints &,; = > . Now

are greater than the number of constraints, hence the sydteguation has non-zero solutionl]

Lemma 3.3. If p(«;) = y; and Q(X,y) hasv; roots at ;, w;) then R(x), defined as Q(x,p(x)) is
divisible by(z — «a;)™:.

Given n distinct pairsd;, y;) € F x F, with associated integer weights > 1, find all degree k
polynomial p(x) such thazi:p(ai):yi w; > W, for some weighted arguement parameter W.

We will solve this forW:\/QkZ ( wi; L )

Lemma 3.4. For a polynomial p(x), s.t deg(p(x§ k, if 3=, . =, Wi > WandW:\/%Z ( wi; L )

theny - p(x) is a factor of Q(X,y).

Proof. Consider R(x) = Q(x,p(x)). Degree of R(x) = D, as Q(x,y) is bfk)-weighted degree D.
Now Lemmd3.B says that jf(«;) = w; thenq; is a root of multiplicatiyw; of R(x). Number of
roots of R(X) :Zi:p(ai):yi w;. Now number of roots ¢ W = D. Hence R(X) is a O polynomial ory -
p(x) divides Q(X,y). O

Now for

w; = ]., t > V2kn
w; = 2, 2t > V6kn
\/3kn /2 is an improvement from/2kn. We can use this approach to get better results. If we pick

1
w; = w = 2kn, t> 2]{:717“02Jr = “Vkn+kn/w = kn+1/2
w

Assuming Lemm&3l3, we can obtain our goal of solving listodixeg problem defined earlier for
t > v/kn, i.e. decoding a 1 v/R fraction of errors.
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