
CSE 533: Error-Correcting Codes (Autumn 2006)

Lecture 12: Near-Capacity Polynomial-Time Codes for BSCp

11/08/2006

Lecturer: Venkatesan Guruswami Scribe: Alexander Jaffe

After recapping last lecture, we return to studying the Binary Symmetric Channel, in order to
present a code that nearly achieves Shannon’s capacity. We will also begin to discuss expander-
based codes in the Hamming environment, which are a particularly combinatorial (rather than
geometric or algebraic) approach to good codes.

1 Review of Last Lecture

Last time, we discussed:

• The Welch-Berlekamp decoding algorithm for Reed-Solomon codes.

• A simple decoding algorithm for concatenated codes, which corrects< dD
4

errors for the
Justesen code.

• A stronger, randomized decoding algorithm for the Justesencode due to [Forney ’66]. This
Generalized Minimum Distance (GMD) algorithm can correct fewer thandD

2
errors.

• A fully functional derandomized version of GMD.

Derandomized GMD can generally be summarized as follows. Each inner blockzi is en-
coded asyi, with some weightwi representing the likelihood that the block was decoded incor-
rectly. For sortedwi1 < wi2 < . . . win, we erase all blocks past some thresholdΘ, leaving only
wi1 , wi2, . . . , wij to be decoded. We try this for all distinguishing values ofΘ, that is, for all possi-
ble values ofj. Picking thej that minimizes the distance between that codeword and the received
codeword gets the most likely codeword; this is guaranteed to be correct for fewer thandD

2
errors.

Note that this requires running the decoding algorithmd/2 times, in order to try at most every pos-
sible weight threshold, (0 ≤ wi ≤ d/2). Thus the overall running time isO(d · T imeRS−Decoding).

2 Background and Motivation

For this lecture, we will concentrate on the relationship between the rate of the code and the fraction
of errors we can correct. This is a more direct study of the quality of a code than our our previous
discussions, which compared relative distance and rate.

We previously saw that Reed-Solomon lets us correct, for rateR and distanced = 1−R, up to
d
2
− o(1) errors. We know that it is impossible to correct more than half a code’s distance in errors

1

and still return a unique answer. We will relax this uniqueness requirement later in the course, but
for our current consideration, Reed-Solomon is in some sense the best we can do. Unfortunately,
the alphabet size is very large, and impractical for many purposes.

In the binary case, we have seen that it is possible to correctup to aδ∆
2

fraction of errors. This
was achieved by concatenating an outer code of distance∆ with an inner code of distanceδ and the
best possible rate(1−H(δ)), (as given by the GV bound). From the Zyablov bound, this achieves
an overall rate ofR = (1 − ∆)(1 − H(δ)).

If our goal is to correct a maximal number of errors, then we can set the parameters of the
above concatenated code accordingly. Lettingδ = 1

2
− ε and∆ = 1 − ε allows us to correct a

1
4
− ε fraction of errors. However, the rate of such a code is onlyΩ(ε3), which is not particularly

desirable. In fact, this does not meet the best bound on rate for such high correctability, namely
Ω(ε2), given by the GV bound.

In this lecture, we take a somewhat different approach. Rather than maximizing the number
of errors we can correct, our goal will be to correct only a small number of errors with high
probability, but to achieve the best possible rate while doing so. Assume that we wish to correct a
fractionγ of errors, withγ → 0. Then we will construct a concatenated code with outer distance
∆ = 2

√
γ, and inner distanceδ =

√
γ. From the Zyablov bound, the rate is roughly(1−2

√
γ)(1−

√
γ log 1

γ
) ≤ 1− 2

√
γ log 1

γ
= 1−O(

√

γ log 1
γ
). Note that this rate approaches 1 asγ approaches

0; thus we come arbitrarily close to capacity if we are willing to correct a sufficiently small fraction
of errors. We will formalize this more after we describe the code in detail.

3 A Concatenated Code over BSCp
In this section, we prove the following main theorem.

Theorem 3.1. There exist codes constructible in poly(n)2poly(1

ε
) time that are within ε of capacity

of BSCp, which can be encoded in poly(n
ε
) time, and decoded in poly(n)2poly(1

ε
) time.

For the most part, this resolves the question posed by Shannon’s Theorem. However, some
exceptions (instances of further work) will be given.

3.1 Overview of the Code

We construct another example of an concatenated code. This time, we will use both an inner and
outer code with high rate, in order to ensure that the overallcode achieves a rate that is as high as
possible.

The Shannon Theorem states that capacity for reliable communication over BSCp is a1−H(p)
fractional rate. Thus far, for0 < p < 1

4
, we have shown how to communicate on BSCp reliably

with positive rate and polynomial time encoding and decoding. We would now like to be able to
achieve maximally good rate, though it means we will be capable of correcting a much smaller
fraction of errors.

2

We will now give rate1 − H(p) − ε codes, for any arbitraryε. These codes will be explicit,
featuring polynomial-time encoding and decoding algorithmsE andD, which satisfy the follow-
ing.

Prnoise of BSCp[D(E(m) + noise) 6= n] ≤ 2−Ω(n)

We call this family of codeC∗ – we will at times abuse notation and refer to a particular
member of the family asC∗. We will show that the2−Ω(n) bounds holds, but truthfully any
negligible function on n (a function that approaches 0 faster than any inverse polynomial on n)
would be sufficient. Such a bound on the probability of error is the very definition of a good code
on channel BSCp.

The code is due to [Forney 66]. We can push1 − H(p) − ε arbitrarily close to the bound of
Shannon’s Theorem, so this code essentially resolves work on maximizing rate over BSCp.

3.2 Construction

We start by considering the ideal inner code: a binary linearcode of rate1 − O(
√

γ log 1
γ
), where

γ is some functionγ(ε). Such a code must exist, by the GV bound. We can think of the rate as
1 − Cγ, for someCγ s.t. Cγ → 0 asγ → 0. This code has very large rate, but corrects a tiny
fraction of errors.

We could achieve much of this section by concatenating a Reed-Solomon code with such a
good code found by search, but we do things somewhat differently in order to keep the alphabet
binary. Furthermore, though such a code would introduce little loss in rate, it would would correct
too few errors. Instead, we use the Justesen code at the outerlevel for its good rate. The fact that
the Justesen code is itself a concatenation code will be irrelevant here – we treat is a black box,
simply for its behavioral properties.

We now consider what properties the desired inner code should have. It must be close to
capacity itself, for concatenation can only decrease the rate. (The rate of a concatenated code
is the product of the rates of the inner and outer codes.)Cin should thus be a1 − H(δ) − √

γ
binary linear code s.t.Prnoise ofBSCp[MLD(Cin(m) + noise) 6= m] ≤ γ

4
. Here MLD is Maximum-

Likelihood Decoding, in which we pick the codeword that is most likely to have been transmuted
to the received string under the error model. By the Shannon Theorem, we know that such a code
exists. We can ensure such an error bound providedb ≥ b(p, γ) ≥ 1

γ2 log(1
γ
). We are thus given an

indication of how large the block sizeb should be, since this drives down the error probability.
Suppose we can decode the inner code very reliably on BSCp. Then with high probability each

block is correct, independently from one another. At the outer level, there may be a small number
of blocks that are incorrect, but the redundancy of the outercode will almost certainly be able to
correct for these few.

Since we can construct such a goodCin, it is natural to ask why we do not useCin to encode the
entire message as a single block. Such a code would be very effective, but we unfortunately know
of no way to perform the decoding in polynomial time (or to findsuch a code quickly, though this is
less important). Thus such a code is only feasible when used on a block of constant or logarithmic
size inn.

3

Figure 1: Encoding process ofC∗

We search for an appropriateCin in the following way. Because a constantb has been chosen
for the dimension ofCin, any function ofb will only be an (potentially large) constant. We can
thus perform exhaustive search to find an optimal generator matrix. We try each possibleb × b′

generator matrix. For each of these matrices, and each possible non-zerob-length messagem, we
consider the probability thatm decodes to the zero-vector. By summing these error probabilities,
we can compute the total probability that a codeword alteredby the channel decodes to the wrong
codeword. We can then take the generator matrix that minimizes this probability.

3.3 Encoding and Decoding

Inner encoding is performed via the generator matrix, and thus takes polynomial time inb. Maxi-
mum Likelihood Decoding (MLD) can be implemented in2O(bb′) time, by encoding every possible
message with the generator matrix, and choosing the messagethat maps to the codeword closest
to our received bit string. Despite the exponential dependence onb, this is still constant onn. We
use the Justesen code as our outer code, initially encoding the message using it. We then split the
codeword of the Justesen code inton/b blocks of lengthb. We map each of these blocks via an
inner code to blocks of some lengthb′ = `b. Our final codewords consist of the concatenation
of these inner codewords. DecodingC∗ simply consists of reversing this process: decoding each
block with the inner code, then decoding the concatenation of those outputs with the outer code.

Decoding each block in step 1 takes2O(bb′) time, (technically a constant). The outer code, as
we know, decodes in time polynomial inn. Let n′ := n

b
, the number of blocks. Note that our

overall block length isN = n′b′ = n b′

b
. Then the total running time of the decoding algorithm is

O(n′)∗2O(bb′) +poly(n) = 2O(bb′)+poly(n) = poly(n). Ignoring the constant inner code decoding
time, it is in fact possible to achieve an overall time that islinear in n.

We also know that the concatenation code is linear because each inner code is linear – when we

4

sum two codewords of the overall code we sum each pair of innercodewords independently, and
the same applies for scalar multiplication. Thus,C∗ = Cout∆Cin is an explicit, binary, linear code
of rate(1−Cγ)(1−H(p)− γ) ≤ 1−H(p)− 2Cγ , with polynomial-time encoding and decoding.

Recall thatCin has optimal rate. Hence by increasing the block sizeb, (with a corresponding
increase in the constant factor of the running time) we improve the rate of the overall code. In fact,
for an arbitraryε, we can achieve rate1 − H(p) − ε in time poly(n)2poly(1/ε), getting arbitrarily
close to capacity. For a givenε away from maximal rate, we can correct up to aγ fraction of errors,
whenCγ < ε

2
. γ = ε3 will suffice.

It is worth noting that work continues on improving the constant factors in the inner decoding
algorithm’s running time. With some cleverness, it is possible to construct the generator matrix
in time 2O(b2). However, as this is only a constant improvement, we will notgo into detail on the
method here.

If we wish the error probability to approach 0, then we must select our block length such
that all but aγ fraction of the blocks are correct. However, to give ourselves some slack in the
computation, we will setb so that we can correct onlyγ

4
blocks.

The decoding algorithm for the overall code is stated explicitly below.

Decode(s):

1. RunCin decoder on each sequential block ofb′ bits ofs.

2. RunCout decoder on the concatenation of the outputs from step 1.

3. Output the result of step 2.

This simple procedure should be familiar from a previous concatenated code.

3.4 Reliability

We wish to prove that the probability of error for the code we have described is negligible inn –
in particular we prove the stronger probability of error of2−Ω(n).

Let us consider under what conditions the overall decoder produces an error. It is clear that
if the fraction of incorrectly decoded blocks is less thanγ, then the fraction of incorrect bits in
the input toCout is also less thanγ. Thus the overal decoding algorithm decodes its input to an
incorrect codeword only if greater thanγ fraction of the blocks are decoded incorrectly byCin. By
the independence of each block and a union bound, the probability of this event is:

Pr[error] ≤
(

n′

γn′

)

(
γ

4
)γn′ ≤ (

n′e

γn′
)γn′

(
γ

4
)γn′

= (
e

4
)γn/b = 2−Ω(n).

As intended. This probability serves as an upper bound on theoverall probability of error. We
could potentially get a tighter expression by using a Chernoff Bound, since the events are i.i.d.; the
bound above will suffice however.

Implementation Note: It is possible to push the exponentialdependency onb out of the running
time and into the space requirements. This is accomplished by precomputing a complete lookup

5

table for each possible input, mapping it to the correct codeword. This table would clearly have
size that is exponential in b, but would allow lookup inO(b).

We have now proved the main theorem. It is still an open problem to construct a code that
approaches capacity with only a polynomial dependency onε in the running time. However, what
we have constructed in this section is quite satisfactory. It in some sense solves Shannon’s problem
fully. Note that the key to this success is in fact concatenation on the Reed-Solomon code: the only
outer code we have seen that has the necessary properties here is the Justesen code, which itself
requires the Reed-Solomon code at its outer level.

4 Expander Codes

We now return to the Hamming domain. We will introduce codes inspired by a construction of
[Gallager 1960]. These will achieve positive rate and relative distance, with linear time decoding.

4.1 Sparse Parity Check Matrices

We take the parity check matrix view. A sparse parity-check matrix is one in which each column
has O(1) non-zero entries. In some cases, we might also add the constraint that each row has O(1)
non-zero entries. The key feature of such matrices is that they aresparse: there are only O(n)
non-zero entries in total. This is powerful, because it is ingeneral possible to decode from a parity
check matrix in time proportional to its Hamming weight.

Gallager showed that when picking such matrices randomly, increasing sparsity pushes a code
arbitrarily close to the GV bound. In contrast, we will attempt to deterministically construct codes
with such good rate, using a tool calledexpander graphs. Using such graphs in the construction of
codes is a relatively new technique, dating back to 1996 at the earliest.

A parity check matrix hasn columns, andn − k rows. We can represent it alternatively as
a factor graph. This is a bipartite graph, withn ’variable’ nodes on the left side (V), each cor-
responding to one column, andn − k ’check’ nodes on the right (C), each corresponding to one
row. We connect a vertexVi with a vertexCj iff there is a 1 in entryj, i of the matrix. We can
thus think of the matrix as a non-traditional adjacency matrix for the graph. (Each column and
row corresponds to a separate vertex, thus the matrix is not symmetrical.) Note that factor graphs
corresponding to sparse parity check matrices haveO(n) edges in total.

The vertices ofC are called check nodes for the following reason. Any codeword can be
’placed’ on the nodes ofV , assigning each vertex the number 1 or 0. The check nodes thenenforce
a parity check, because each column node has an edge to each row node that it is non-zero in.

If we can explicitly construct the graph described above, then we will be finished, because it is
equivalent to, and can be used as, a parity check matrix. In fact, we can reconstruct the generator
matrix from the parity check matrix inO(n3) time, by computing a basis kernel for the parity check
matrix. This gives us both polynomial-time encoding and decoding.

6

4.2 Expander Graph Background

Definition 4.1. An (n, m, d, γ, α)-expander is a bipartite graph G = (L, R, E) s.t. |L| = n, |R| =
m, vertices in L have degree d, and ∀S ⊆ L s.t. |S| ≤ γn, we have that |N(S)| ≥ αd|S|.

The intuitive interpretation of an expander graph is that the neighborhood of any reasonably
small subset of vertices should be somewhat large. It is impossible to achieve large expansionα
for γ greater than 1, since|N(S)| ≤ d|S|. Conversely, forγ = 1

n
, the maximal expansion of 1 is

always achievable, since|N(S)| = d. However, we are really interested in the cases in between,
in particular for constant1

n
< γ < 1. If for someγ in this range we achieveα = 1 − ε, then this

graph is called a lossless expander, the best we can hope for.
For a long time, the best known explicit deterministic constructions of expanders achieved

only α = 1
2
. Then, less than five years ago, it was shown that expanders with α = 1 − ε could be

constructed explicitly. In general, we find that∀ ε > 0, ∃ ρ > 1, d, γ > 0 s.t. there exist explicit
(n, ρn, d, γ, α)-expanders. Thus, given an arbitrarily smallε, one can pick parameters to construct
expanders with1 − ε expansion.

Next time we will state and prove the fact that forα > 1
2
, an expander graph will be a factor

graph corresponding to the parity check matrix for a good code. It will be a very simple and
explicit construction. In particular, we will discuss the 1996 “Expander Codes” due to Sipser-
Spielman, and 2002’s “Randomness Conductors and Constant-Degree Lossless Expanders” by
Capalbo-Reingold-Vadhan-Wigderson.

7

	Review of Last Lecture
	Background and Motivation
	A Concatenated Code over BSCp
	Overview of the Code
	Construction
	Reliability

	Expander Codes
	Sparse Parity Check Matrices
	Expander Graph Background

