
CSE 533: Error-Correcting Codes (Autumn 2006)

Lecture 10: Justesen Codes and Reed-Solomon Decoding
1 November 2006

Lecturer: Venkatesan Guruswami Scribe: Paul Pham

In the last lecture, we introduced the first binary code with asymptotically positive rate and
distance as well as an explicit polynomial-time construction. We give that construction in this
lecture. In the process, we introduce an efficient decoder for Reed-Solomon codes. But first, we
recall the Zyablov, Gilbert-Varshamov, and MRRW (record) bounds below:
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1 Justesen Code Construction
Up until now, we have seen bounds that tell us good codes should be possible but we didn’t know
how to construct such codes explicitly. The binary Reed-Solomon code gave us good rate but poor
distance. Intuitively, we should be able to concatenate it with an inner code that would “amplify”
its distance. Enumerating and searching codes takes O(2n) time, so we can’t just find one good
inner code and use it for all outer blocks. A key insight of the Justesen code is the use of different
inner codes from an easy-to-find ensemble, most of which have good distance.

The Justesen code concatenates Reed-Solomon on the outside with an ensemble of codes over
a field of 2m elements on the inside. We denote n as the number of non-zero field elements,
2m − 1, and therefore each field element can be encoded into binary with m = O(log n) bits. The
associated Reed-Solomon polynomial is mk-bits long:

f(x) = z0 + z1x + . . . + zk−1x
k−1 (5)

We then evaluate f(x), as well as a correlated polynomial xf(x) at all non-zero field elements
({αi}). This gives us 2n field elements, (f(α0), α0f(α0), . . . , f(αn−1), αn−1f(αn−1), which can
be viewed as a 2nm-bit string.
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f(x)
Cout=R−S // f(α0)

C1
in

��
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(x, α0x) . . . (x, αn−1x)

In the above figure, the inner codes functions are

Ci
in(x) = (x, αix (6)

Note that these functions are defined over F2m → F2m × F2m . However, we can easily convert
this to a binary function by embedding each field element as an m-bit vector while preserving
linearity, as before: σ : F2m → Fm

2 where σ(x + y) = σ(x) + σ(y). Now we can define our Ci
in

functions over Fm
2 → F2m

2 . And of course, we should use binary Reed-Solomon on the outside.
Now we will argue that the rate and distance for this concatenated binary code are asymptoti-

cally good.

2 Justesen Code Rate and Distance
First, the rate: R = k

2n
, or in other words, half the rate of Reed-Solomon. This makes sense

because we are transmitting the same message with twice as many symbols. Alternatively, note
that each Cin

i defined above is a rate 1
2

linear code.
If all but an ε-fraction of inner codes have distance d, then the concatenated code has distance

≥ (D − εn)d. Now we need to show that greater than a constant fraction of the inner ensemble
has good distance.

Fact 2.1 ( Most inner codes Cin,i have distance δ > H−1(1
2
) − ε. ). Proof: Let y be a non-zero

element of F2m
2 which we can write as a tuple of elements (y1, y2) where y1, y2 ∈ Fm

2 .
If y is in some particular code Ci

in then y2 = αi−1y1 by construction in the previous section.
Then this code is fixed by the ratio y2/y1. Note that neither y1 nor n2 can both be zero, otherwise
the whole codeword will be zero contrary to our assumption. If one is zero and the other is not,
then it is not in any code. Otherwise, if y is not in any code, then we can mark it as an erasure and
throw it out.

From the above argument, each non-zero element y ∈ F2m
2 is in at most one of the codes Ci

in.1

Therefore, we can bound the number of “bad” codes (εn codes with distance ≤ d) is bounded

1In fact, our proof still goes through as long as each element is in at most some constant number of codes.
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above by the number of bad codewords (which are 2m bits long).

# codes with dist < d ≤ V ol(0, d · 2m) (7)
≤ 2H(d)2m by Lemma 3.3 in Lecture 3 (8)

= 2( 1
2
−ε)2m (9)

=
2m

2ε·2m
(10)

< ε(2m − 1) (11)
= εn (12)

This decreases �

Therefore, the Justesen code has the distance below:

distance ≥ ((1−R)n− εn)d · 2m (13)

= (1−R− ε)nH−1(
1

2
− ε)2m (14)

δ ≥ (1−R− ε)H−1(
1

2
− ε) (15)

The last equation above is equivalent to the Zyablov bound given at the beginning of these notes.
In conclusion, the code can be used for any rate < 1

2
and still be on the Zyablov bound.

3 Digression: Reed-Solomon � Hadamard
Leaving behind Justesen codes for a moment, we will examine a construction with some interesting
properties. We concatenate Reed-Solomon as the outer code with Hadamard as the inner code,
where Had[a](x) = (a · x),∀x ∈ F2m. We call the outer rate ε and take the outer distance to be
δout = 1− ε and the inner distance to be δin = 1

2
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The concatenated distance is δ = 1
2
(1 − ε), which implies that all non-zero codewords have

relative weight within the range [1
2
− ε, 1

2
], otherwise known as an ε-biased space.

Alon, Goldreich, Håstad, and Peralta [9] showed that k independent variables (a message)
could be used to simulate a “small” distribution over n � k variables (codewords) within (k/ε)2

vectors, a polynomial in k. In error-correcting terms, the generator matrix for this code is a (k/ε)2×
k matrix but is equivalent to a code of size 22m with respect to any linearity test (dot product) for
a large fraction of the inputs.

If we characterize the outer Reed-Solomon code as [n, k, n− k]n and the inner Hadamard code
as [n, log n, n

2
]2, we get a concatenated code of [n2, k log n, n

2
(n − k)]. The concatenated relative
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distance can be expressed as δ = 1
2
− k

n
. An interesting fact is that we can choose the outer rate k/n

to get a constant total distance but poor rate, starting with an outer code that gave us constant rate at
the expense of poor distance. However, the inner code has both poor rate and distance. Intuitively,
it seems that if we concatenate an inner code with good distance and the Reed-Solomon code with
good rate, we should be able to get an asymptotically good code.2

Now back to our regularly-scheduled programming.

4 General Linear Erasure Decoding
Recall that an erasure is an error that we know with certainty, whereas in general we may not be
able to detect all errors. From the first lecture, we know that in a code with distance d, any received
message with (d − 1) erasures or fewer is consistent with at most one codeword. Therefore, we
can “fill in” indeterminate symbols up to (d− 1) erasures.

How can we do this efficiently? It’s always easy for a linear code if we are given the generator
matrix G. If the message is x ∈ Fk

q , compute and send Gx ∈ Fn
q . Suppose that some symbols

may be corrupted in transit, and the receiver gets y ∈ Fn
q . Call the subset of uncorrupted positions

S ⊆ {1, . . . , n}, which we know by assumption. Then we merely have to solve a linear system,
where subscript yS means y restricted to the positions in S and likewise for Gxs.

GxS = yS (16)

Without loss of generality, we can reorder the rows of G and y so that the positions in S are
at the top and the corrupted positions are at the bottom. Then we simply solve the linear system
restricted to the top |S| rows of G and y. GS

GS


 x

 =

 yS

yS

 (17)

If there are few enough erasures (|S| ≥ k), we will get a unique solution. If there are more erasures,
we can only output a linear space of solutions, which is a form of list-decoding.

5 Reed-Solomon Decoding
The last piece in our code is the decoding algorithm, which itself depends on being able to decode
Reed-Solomon efficiently. First, we’ll summarize the work leading up to the R-S decoder we know
and love today. Then we’ll describe R-S erasures-only decoding as a subroutine to the final R-S
errors-and-erasures decoder in the final section.

2These insightful remarks came from Madhu Sudan’s MIT course notes for 6.897 in Fall 2001.
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5.1 History
The history Reed-Solomon decoding can be traced back to the first efficient algorithm for binary
BCH codes by Peterson in 1960 [1], since R-S codes are a special case of BCH codes. This
algorithm was able to correct errors up to half the distance (e ≥ bd−1

2
c) in O(n3) time using error

locator polynomials. Interestingly, the original Reed-Solomon paper appeared earlier that year,
when digital technology was not advanced enough to implement the decoding procedure.

For Reed-Solomon codes, the first practical decoder is attributed to Berlekamp in 1968 [2]
which solved the key equation iteratively. It was reformulated in a shift register setting by Massey
in 1969 [3] which was easy to implement. This procedure, often called the Berlekamp-Massey
algorithm, is used in all commercial CD and DVD players, transmissions from the Voyager satel-
lite, and many other applications in mass storage and communication. The corresponding patent
by Berlekamp and Welch in 1986 [7] was a key asset of Berlekamp’s company Cyclotomics. A
succinct description can be found in the appendix of [8] by Gemmell and Sudan in 1992. This
algorithm runs in O(n2) time and will be presented in the next section.

An alternate O(n2) algorithm using Euclid’s GCD method to solve the key equation was dis-
covered by Sugiyama, Kasahara, Hirasawa, and Namekawa in 1975 [4]. This was generalized to a
single algorithm for both errors and erasures in [5] a year later, and in the same journal issue was
published Justesen’s algorithm [6] with the best known upper bound to date, O(n log2 n).

5.2 Reed-Solomon Erasure Decoding
Similar to the process for general linear codes above, erasure decoding for Reed-Solomon codes
is straightforward. Each code has an associated polynomial f(x) for x ∈ Fk

q . Suppose the sender
transmits (f(α0), . . . , f(αn−1)), and again we know the uncorrupted positions f(αi) for i ∈ S
with |S| ≥ n− (d− 1) = k.

Since deg(f(x)) ≤ k − 1, we can recover f using k or more distinct points using polynomial
interpolation according to the unisolvence theorem. This can be done using FFT in O(n log n) time
or with Lagrange interpolation in O(n2) time. The latter method computes n basis polynomials pj

for 0 ≤ j < k.

pj(x) =
k∏

i=0,i6=j

x− αi

αj − αi

(18)

The interpolated polynomial is then:

f(x) =
k∑

i=0

f(αi)pi(x) (19)

Now we must deal with the case of some of the received symbols f(αi) being in error.
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5.3 Reed-Solomon Error Decoding Problem
As above, our sender’s encoded message was (f(α0), . . . , f(αn−1)) ∈ Fn

q and the receiver gets
y = (y0, y1, . . . , yn−1) ∈ Fn

q . If a symbol in position i was received correctly (without error),
then yi = f(αi). Let’s say that a fraction e of the received symbols have been corrupted, that is
yi 6= f(αi). We assume 2e < d = n− k + 1, otherwise we have no chance for uniquely correcting
the error. If we can figure out which positions are in error, we can throw them out and just do
erasure decoding as in the previous section.

More formally, our problem can be stated as follows. Given n pairs of (αi, yi) ∈ Fq, i ∈
{0, 1, . . . , n − 1}, determine if there is a polynomial f(x) ∈ Fq[x] of degree ≤ k − 1 such that
f(αi) 6= yi for at most a fraction e of the n pairs. If there is, find it. In our case, the points αi must
be distinct for us to apply polynomial interpolation, but the problem still makes sense without this
condition.

5.4 Reed-Solomon Error Decoding Algorithm
Recall that if there is no error in position i, then yi = f(αi). We define an error locator polynomial,
which we don’t know a priori.

E(x) ,
∏

f(αi) 6=yi

x− αi (20)

It is easy to verify that for 0 ≤ i < n, E(αi)yi = E(αi)f(αi). Define the key equation:

N(x) , E(x)f(x) (21)

Then for 0 ≤ i < n, we have the linear system of equations N(αi)−E(αi)yi = 0. Note that E(x)
has degree ≤ e and f(αi) has degree ≤ k − 1. Call one particular solution of this system x and
define the two polynomials below:

E1(x) = a0 + a1x + . . . + aex
e (22)

N1(x) = b0 + b1x + . . . + be+k−1x
e+k−1 (23)

This is a homogenous linear system in the unknowns ai for 0 ≤ i ≤ e and bj 0 ≤ j < e + k. There
may be other solutions x, but the ratio between the two polynomials will be the same.

1. If E1(x) does not divide N1(x), output “too many errors.” Otherwise, define f(x) =
N1(x)/E1(x).

2. If ∆(RS(f(x)), y) > e, output “too many errors” otherwise return f(x).

We know that a non-zero solution x must exist by a root/degree counting argument. Define another
polynomial:

R(x) = N1(x)− f(x)E1(x) = 0 (24)
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The degree of R(x) is ≤ e + k − 1. Assume that ≤ e errors happen. For the positions with no
errors, yi = f(αi) and we have:

R(αi) = N1(αi)− f(αi)E1(αi) (25)
= N1(αi)− yiE1(αi) (26)

R(αi) = 0 for at least n − e values of i. If the number of roots n − e is greater than the degree,
R(x) is the zero polynomial, which implies a non-zero solution because all the αi’s are non-zero.
Rearranging the inequality, we get:

2e < n− k + 1 = D (27)

where D is the distance of Reed-Solomon. This shows that we can correct errors and erasures up
to half the distance. �
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