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1 Introduction
Consider the problem of storing information on an error prone media. In such cases, a mechanism
to detect and correct errors caused due to noise would be very useful. Error correcting codes can
be thought of as mathematical objects used to cope with noise. We can think of error correcting
codes purely in a combinatorial fashion and focus on their existence and construction as combina-
torial problems. This will be initial emphasis of the course, thogh we will keep track of important
algorithmic challenges that arise. In order to effectively use a code, one needs efficient algorithms
for encoding and error correction using that code. Such algorithmic aspects will be covered in the
latter part of the course, once we have discussed the key combinatorial/existential aspects of the
theory. A noticeable omission in the course content is related to the extraneous applications of
codes to complexity theory, cryptography, explicit combinatorial constructions, etc.

In this lecture we shall look at some simple codes and make formal definitions which will help
us understand codes in general.

2 Some Simple Codes
Suppose, we need to store 64 bit words in such a way that they can be correctly recovered even
if a single bit per word gets flipped. One way is to store each information bit by duplicating it
three times. We can thus store 21 bits of information in the word. This would permit only about
a fraction 1

3
of information to be stored per bit of the word. However, it would allow us to correct

any single bit flip since the majority value of the three copies of the bit gives the correct value of
the bit, even if one of the copies is flipped.
Hamming in 1950 introduced a code which could also correct 1-bit errors but used less number
of redundant (or extra) bits. The code is defined in such a way that a chunk of 4 information bits
x1, x2, x3, x4 gets mapped (or “encoded”) to 7 bits as

x1, x2, x3, x4, x2 ⊕ x3 ⊕ x4, x1 ⊕ x2 ⊕ x4, x1 ⊕ x3 ⊕ x4

Here⊕ stands for the xor operation. This transformation can equivalently be represented as a map-
ping from x to Gx (the operations are done modulo 2) where x is the column vector [x1 x2 x3 x4]

t
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and G is the matrix 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1


We prove that such a code can correct all single bit flips by proving that for two distinct 4-bit
vectors x and y get mapped to code words Gx and Gy which differ in at least 3 bits. Thus for any
7-bit vector there is always a single unique code word which can be obtained by a single bit flip.
Here by code word we mean a 7-bit vector corresponding to some Gx

Proposition 2.1. If x 6= y are two 4-bit vectors, then Gx and Gy differ in at least 3 locations.

Proof: Let us define w = x− y. Therefore, |bfw 6= 0. It is easy to see that for each non-zero w,
Gw has at least 3 bits which are 1.

3 Notation
We will now define a few terms which can be used to characterize the properties of codes in general

Definition 3.1. The Hamming distance between two strings x and y over alphabet Σ is defined
as the number of positions at which the two strings differ. More formally, the Hamming distance
∆(x, y) = ‖{i|xi 6= yi}‖

Definition 3.2. The Hamming weight of a string x over alphabet Σ is defined as the number of non-
zero symbols in the string. More formally, the Hamming weight of a string wt(x) = |{i|xi 6= 0}|

Remark 3.3. It is trivial to see that wt(x− y) = ∆(x, y)

Definition 3.4. An error correcting code C of block length n over a finite alphabet Σ is any subset
of Σn

Definition 3.5. A code C ⊂ Σn is said to have minimum distance d if

d = min
c1,c2∈C,c1 6=c2

∆(c1, c2) .

In particular, for every pair of distinct codewords the Hamming distance between them is at least
d.

Example 3.6. The parity check code is an example of distance 2 code. It is defined over {0, 1}n

and generated by inserting a redundant bit which is logically equivalent to the xor of the other
n− 1 bits.
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Example 3.7. The Hamming code discussed earlier is an example of distance 3 code.

Remark 3.8. There is a cute solution for the following puzzle which exploits the properties of
Hamming codes

Hat Puzzle : Fifteen players enter a room and a red or blue hat is placed on each person’s head.
The color of each hat is determined by a coin toss, with the outcome of one coin toss having no
effect on the others. Each person can see the other players’ hats but not his own.

No communication of any sort is allowed, except for an initial strategy session before the game
begins. Once they have had a chance to look at the other hats, the players must simultaneously
guess the color of their own hats or pass. The group shares a hypothetical $3 million prize if at
least one player guesses correctly and no players guess incorrectly.

The same game can be played with any number of players. The general problem is to find a
strategy for the group that maximizes its chances of winning the prize.

One obvious strategy for the players, for instance, would be for one player to always guess
”red” while the other players pass. This would give the group a 50 percent chance of winning the
prize. Can the group do better?

Definition 3.9. Relative distance of a code is defined as the ratio of the minimum distance to the
block length of the code.

Definition 3.10. Information rate of a code C over alphabet Σ with block length n is defined as
log|Σ||C|

n

Lemma 3.11. Consider a code C ⊂ Σn. Then, the following statements are equivalent:

1. C has minimum distance 2t + 1

2. C can be used to correct all t symbol errors

3. C can be used to detect all 2t symbol errors

4. C can be used to correct all 2t symbol erasures (In the erasure model, some symbols are
erased and the rest are intact, and we know the locations of the erasures. The goal is to
fill in the values of the erased positions, using the values of the unerased positions and the
redundancy of the code.)

Proof: Assume statement 1. We can imagine drawing disjoint balls of radius t centered at each
codeword in C. Such balls are called Hamming balls. Thus, we can uniquely identify the initial
codeword from an erroneous string s1 in Σn as long as the number of errors is ≤ t by identifying
the Hamming ball which contains s1. Additionally, if one or more, but not more than 2t errors
occur, then the codeword gets distorted to an erroneous string s2 which must be different from
every codeword. Thus such error patterns can be detected. We can also identify up to 2t missing
symbols given their positions for any erroneous string s3 by identifying the unique codeword that
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is consistent with s3.

Assume that statement 1 is false. Thus there exists two codewords c1 and c2 whose Hamming
distance d ≤ 2t. Consider the midpoint of c1 and c2; call it x. The Hamming distance of x from
both c1 and c2 is ≤ t. If t symbol errors are allowed then either c1 or c2 could give rise to x. Thus,
on the string x it wouldn’t be possible to correct the errors. Hence C cannot correct all t symbol
errors If 2t symbol errors are allowed then c1 could give rise to c2 and thus we cannot be sure that a
codeword corresponds to no errors. Hence C cannot detect all 2t symbol errors. If 2t symbols are
erased then either c1 or c2 could give rise to the same string (take c1 and erase all positions which
are different from c2) and thus we cannot correct 2t symbol erasures.

4 Linear Codes
Definition 4.1. If Σ is a field and C ⊂ Σn is a subspace of Σn then C is said to be a linear code.

As C is a subspace, there exists a basis c1, c2, .., ck where k is the dimension of the subspace.
Any codeword can be expressed as the linear combination of these basis vectors. A linear code of
dimension k can be described in terms of a n× k matrix G as:

c = {Gx|x ∈ Σk}

A linear code over a field of q elements that has block length n, dimension k and minimum
distance d will be denoted compactly as an [n, k, d]q code. Since Σ is a field q needs to be a prime
power. The information rate for a [n, k, d]q code is simply k

n
. The Hamming code we discussed

earlier is a linear code and can be represented as [7, 4, 3]2 code.

As we have seen a linear code [n, k, d]q forms a subspace and the generator matrix G is used to
define the subspace uniquely. The dimension of G is n× k. Another way of defining the subspace
C is to define its null space, i.e. the subspace C⊥ of all vectors which are orthogonal to every
vector in C. Let H represent (n − k) × n generator matrix of C⊥ which kills every vector in C.
The matrix H is called the parity check matrix and can also be used to uniquely define the code C.

Proposition 4.2. The minimum distance of code C with parity check matrix H is the smallest
number d such that there exist d columns of H which are linearly dependent.

Proof: The minimum distance of a linear code is equal to the smallest possible weight of a non-
zero code. This is true as the all zeroes string is a codeword for any linear code. Let x be a
non-zero code of smallest weight d. We also know that Hx = 0, therefore there exists d linearly
dependent columns of H . Additionally for every set of dependent columns in H there exists a
non-zero code in C. Thus, the minimum distance of C is exactly equal to the size of the smallest
linearly dependent column set of H .
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