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3.1 Where we can use this

During the past weeks, we developed the general machinery which we will apply to problems in discrete
math and computer science in the following weeks. In the general setting, we can ask how much information
can we determine about a functionf given its Fourier coefficientŝf . Or, givenf what can we say about
f̂? There is some distinction between properties which will hold in the general setting, and those that make
sense for the specific spaces we have dealt with. So far, we have looked at

1. T (the unit circle/Fourier Series).

2. Z/nZ (Discrete Fourier Transform).

3. R (Real Fourier Transform).

4. {0, 1}n = GF(2)n = (Z/2Z)n (then-cube).

For then-cube (or for any space we wish to do Harmonic Analysis on), we need to determine the characters.
We can view elements of{0, 1}n as subsets of[n] = {1, ..., n}, and then to each subsetS ⊆ [n], let
χS(T ) = (−1)|S∩T |. Then:

〈χS1 , χS2〉 =
1
2n

∑
T⊆[n]

(−1)|S1∩T |+|S2∩T |

To see that theχS form an orthonormal basis, suppose thatx ∈ S1 − S2. Then, the function

φ(A) =

{
A− {x} x ∈ A

A ∪ {x} x 6∈ A

gives a bijection between{A : |S1 ∩A| ≡ |S2 ∩A| (mod 2)} and{A : |S1 ∩A| 6≡ |S2 ∩A| (mod 2)}.
So,〈χS1 , χS2〉 = 0 for S1 6= S2. If S1 = S2, then|T ∩ S1|+ |T ∩ S2| is always even, so〈χS , χS〉 = 1.
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Hence, theχS form an orthonormal basis for functions from{0, 1}n → R. (This is, of course, true in
general, but it’s useful to see this explicitly for this special case). Then for anyf : {0, 1}n → R, we can
write f =

∑
S⊆[n] f̂(S)χS , where

f̂(S) = 〈f, χS〉 =
1
2n

∑
T⊆[n]

f(T ) · (−1)|S∩T |.

There is an equivalent and often useful way of viewing this. We can also view then-cube as{−1, 1}n with
coordinate-wise multiplication. In this case, any functionf : {−1, 1}n → R can be uniquely expressed as
a multilinear polynomial:

f =
∑

S⊂{0,1}n

aS

∏
i∈S

xi

where
∏

i∈S xi corresponds toχS .

There is an advantage to the fact that we now deal with a finitegroup. Note thatf =
∑

S⊆[n] f̂(S)χS

is always the case for functions over then-cube, unlike working overT. Working overT, we made some
assumptions onf to be able have a similar formula to recoverf from its fourier coefficients.

Now we can ask, what can be said aboutf̂ whenf is boolean (when the range off is {0, 1})? More
specifically, how do the properties off get reflected inf̂? In general, this is too hard a question to tackle.
But what sorts of relationships between properties are we looking for? In the case ofT, the smoothness of
f roughly corresponds to its fourier coefficientsf̂(r) decaying rapidly asr →∞. E.g.

f : T → C ↔ {f(r)|r ∈ Z}
smooth ↔ f̂(r) decays rapidly

An instance of this relationship can be seen from the following theorems.

Theorem 3.1. Letf : T → C be continuous, and suppose that
∑∞

r=−∞ |f̂(r)| converges. ThenSn(f) → f
uniformly.

We can derive this theorem from another.

Theorem 3.2. Suppose that the sequence
∑n

r=−n |ar| converges (asn →∞). Thengn(t) =
∑n

r=−n are
irt

converges uniformly asn →∞ onT to g : T → C, whereg is continuous and̂g(r) = ar for all r.

This (roughly) says that if we have a sequence that is decreasing rapidly enough (its series converges
absolutely), then we can choose these to be the Fourier coefficients for some continuous function.

To see that Theorem 3.2 implies Theorem 3.1, iff̂(r) = ĝ(r) = ar for all r, and bothf andg are
continuous, thenf = g. This is based on Fejer’s Theorem (or Weierstrauss).

So to prove Theorem 3.1, all that remains is to prove Theorem 3.2.
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Proof. The underlying idea for the proof of Theorem 3.2 is thatC(T) with the∞-norm is acomplete
metric space, meaning that all Cauchy sequences converge. Recall, a sequence(an) is Cauchy if forε > 0,
there is someN so for n, m ≥ N , we haved(an, am) < ε (whered is whatever metric we are using).
So, to prove the theorem, we only need to check that{fn} = {

∑n
−n are

irt} is a Cauchy sequence with
the∞-norm. Sincesn :=

∑n
r=−n |ar| converges, forε > 0, there is someN so that|sm − sn| < ε for

n, m ≥ N (basically, the tail end is small), hence∣∣∣∣∣∣
∣∣∣∣∣∣

∑
m≥|r|>n

are
irt

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∑

m≥|r|>n

|ar|

∣∣∣∣∣∣ < ε.

So, the{gn} forms a Cauchy sequence.

Hence,

n∑
r=−n

are
−irt → g uniformly, so

e−ikt
n∑

r=−n

are
−irt → e−iktg(t) uniformly.

∫
T

e−ikt
n∑

r=−n

are
−irtdt →

∫
T

e−iktg(t).

(3.1)

Recall, du Bois Raymond gives an example off : T → C such thatlim|Sn(f, 0)| = +∞. However, if
the first derivative is somewhat controlled, we can say more.

Theorem 3.3. Let f : T → C be continuous and suppose thatf ′ is defined for all but a finite subset ofT.
ThenSn(f) → f uniformly.

f smooth↔ f̂ decays rapidly⇒ “Snf → f ”.

Recall from basic analysis, iffn are continuously differentiable and iffn → f uniformly andf ′n → g
uniformly thenf ′ = g andg is continuous. This will allow us to show that the Fourier Series off ′ is
attained by termwise derivatives of the Fourier Series off .

Theorem 3.4. Let f : T → C be continuous and suppose that
∑∞

r=−∞ r|f̂(r)| converges. Thenf is

continuously differentiable and
∑n

r=−n irf̂(r)eirt → f ′ uniformly.

Proof. We would like to show that we can apply this whenfn = Snf . But if
∑∞

r=−∞ r|f̂(r)| converges,

then
∑∞

r=−∞|f̂(r)| converges (since the each term is smaller). So we have

|f̂(r)| ≤ |rf̂(r)| ⇒
n∑
−n

|f̂(r)| converges
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So by Theorem 3.1,fn = Snf → f uniformly. By the same theorem,f ′n =
∑n

r=−n irf̂(r)eirt → g is
continuous. By the statement above due to basic analysis, we know that this implies thatf is continuously
differentiable.

A similar argument will provide a stronger connection between the idea thatf̂(r) are rapidly decreasing
implies thatf is “smoother”.

Proposition 3.5. Let f : T → C satisfyf (n−1) is continuously differentiable except possibly finitely many
pointsX, and|f (n)(x)| ≤ M for x 6∈ X. Then∀r 6= 0|f̂(r)| ≤ Mr−n.

Proof. (Integration by parts).

f̂(r) =
1
2π

∫
T

f(t)e−irtdt. Let u = f(t), dv = e−irtdt. Thendu = f ′(t)dt, v =
e−irt

−ir
.

f̂(r) =
1
2π

∫
T

f(t)e−irtdt =

1
2π

[
f(t)

e−irt

−ir
|π−π −

∫
T

f ′(t)
e−irt

−ir
dt

]
=

1
2π

[
0−

∫
T

f ′(t)
e−irt

−ir
dt

]
= · · · = (first term is 0 sincef is periodic)

1
2π(−ir)n

∫
T

f (n)(t)e−irtdt.

(3.2)

So ∣∣∣f̂(r)
∣∣∣ ≤ ∣∣∣∣(−ir)−n

2π

∣∣∣∣ ∫ π

−π
|f (n)(t)e−irt|dt = O(

1
rn

)

Corollary 3.6. If f : T → C is in C2 (twice continuously differentiable), thenSnf → f uniformly.

Proof.

f̂(r) = O

(
1
r2

)
⇒

∞∑
r=−∞

∣∣∣f̂(r)
∣∣∣ converges.

So,Snf → f uniformly.

3.2 Rate of Convergence

Until now, we haven’t really addressed the rate of convergence, meaning whenSn(f) does converge tof ,
how fast does it converge tof? Examineg(x) = π− |x| for x ∈ [−π, π], and extendg periodically toh(x).
Direction calculation gives|Sn(h, 0) − π| > 1

n+2 . By usingL2 theory, it can be further shown that every

trigonometric polynomialP of degreen has the property‖P − h‖∞ > Ω(n−3/2). Kolmogorov showed the
following.
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Theorem 3.7. (Kolmogorov) For allA > 0, there is a trigonometric polynomialf such that:

1. f ≥ 0.

2. 1
2π

∫
T f(t)dt ≤ 1

3. For everyx ∈ T, supn |Sn(f, x)| ≥ A.

Hence, there is a Lebesgue integrable functionf such that for allx ∈ T, lim|Sn(f, x)| = +∞.

3.2.1 Convergence Results

In 1964, Carleson proved the following.

Theorem 3.8. (Carleson) Iff is continuous (or only Riemann integrable), thenSnf → f almost every-
where.

Later, Kahane and Katznelson proved that this result is tight.

Theorem 3.9. For all E ⊆ T with µ(E) = 0, there is a continuousf such thatSnf → f exactly onT−E.

Notice that these results make somewhat weak assumptions onf . We will now work on seeing how
things improve in the situation wheref is anL2 function.

3.3 L2 theory for Fourier Series

Recall part of original question was “how aref andf̂ related”? Our immediate goal will be to show that in

theL2 case, their norms are identical, which is the Parseval identity. Recall,‖f‖2 =
√∫

T |f(t)|2dt. Then

the Parseval identity states‖f‖2 = ‖f̂‖2. For the Discrete Fourier Transform, this essentially means that
the transform matrix is an orthonormal matrix.

We will procede by focusing on Hilbert Spaces. A Hilbert SpaceH is a normed (C-linear) space with
an inner product〈·, ·〉 satisfying the following axioms.

1. 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉.

2. 〈x, y〉 = 〈y, x〉.

3. 〈x, x〉 = ‖x‖2 ≥ 0 with equality ⇐⇒ x = 0.
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There are a number of facts that we know about familiar Hilbert spaces (likeRn) that hold for general
Hilbert spaces as well.

Theorem 3.10. If H is a Hilbert space, then the Cauchy-Schwarz Inequality holds, namely iff, g ∈ H, then
‖f‖ · ‖g‖ ≥ 〈f, g〉.

Proof. We will show the proof for real Hilbert spaces.

0 ≤ 〈f − λg, f − λg〉 = ‖f‖2 − 2λ〈f, g〉+ λ2‖g‖2. (3.3)

Viewing this as a degree2 polynomial inλ, it is non-negative, so has at most one real root. Hence, the
discriminant(−2〈f, g〉)2 − 4‖f‖2‖g‖2 ≤ 0. Hence,〈f, g〉2 ≤ ‖f‖2‖g‖2.

One may ask, if we have an elementf ∈ H, how can we best approximatef with respect to some
basis? Specifically, lete−n, ..., e0, e1, ..., en be an orthonormal system inH (meaning,〈ei, ej〉 = δi,j).
Givenf ∈ H, the question is to findλi ∈ C such that‖f −

∑
i λiei‖ is minimized.

Theorem 3.11.LetH, {ei}, f be as above. Setg =
∑n

j=−n λjej , andg0 =
∑n

j=−n〈f, ej〉ej . Then

‖f‖2
2 ≥

n∑
j=−n

〈f, ej〉2, ‖f − g‖2 ≥ ‖f − g0‖2 =

√√√√‖f‖2
2 −

n∑
j=−n

〈f, ej〉2 (3.4)

with equality iffλj = 〈f, ej〉 for all j.

Proof.

‖f − g‖2
2 = 〈f − g, f − g〉 = 〈f −

∑
j

λjej , f −
∑

j

λjej〉 =

‖f‖2
2 − (

∑
j

λj〈f, ej〉+ λj〈f, ej〉) +
∑

j

|λj |2 =

〈f, f〉+
∑

j

|λj − 〈f, ej〉|2 −
∑

j

|〈f, ej〉|2 ≥

〈f, f〉 −
∑

j

|〈f, ej〉|2 = ‖f − g0‖2.

(3.5)

Note that equality in the last step occurs exactly whenλj = 〈f, ej〉 for all j.

Corollary 3.12. (Approximation and Bessel’s Inequality).

1. Snf is the closest (in theL2 sense) degreen trigonometric polynomial approximation tof .

2. (Bessel’s Inequality). Iff ∈ L2(T), then

‖f‖2 =
1
2π

∫
T
|f(t)|2dt ≥

n∑
r=−n

|f̂(r)|2,

and‖f‖2 ≥
∑∞

r=−∞|f̂(r)|2.
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This shows one side of the Parseval Identity, namely‖f‖2 ≥ ‖f̂‖2.
Recall by Theorem 3.1, iff continuous andf̂ ∈ l1 (meaning

∑
r|f̂(r)| converges), thenSnf → f

uniformly. We will show thatf having continuous first derivative in fact implies thatf̂ is in l1.

Corollary 3.13. If f ∈ C1, thenSnf → f uniformly.

Proof.

n∑
r=−n

|f̂(r)| = |f̂(0)|+
∑

1≤|r|≤n

|rf̂(r)| · 1
|r|

(by Cauchy-Schwartz) ≤ |f̂(0)|+
√

2
∑

1≤r≤n

1
r2
·
√ ∑

1≤|r|≤n

|f̂ ′(r)|2

(by identity
∞∑
1

1
n2

=
π2

6
) ≤ |f̂(0)|+

√
π2

3
· 1
2π

∫
T
|f ′(t)|2dt

which is bounded since the first derivative is bounded (continuous onT).

3.3.1 Parseval’s Identity

We are now ready to complete the proof of the Parseval Identity.

Theorem 3.14. If f : T → C is continuous, then‖f − Snf‖ → 0.

Proof. By Weierstrass (or Fejer) approximation, for anyε > 0, there is some trigonometric polynomialP
such that‖f − P‖∞ < ε. So,

‖f − Snf‖2 ≤ ‖f − P‖2 + ‖SnP − Snf‖2 ≤ ‖f − P‖∞ + ‖Sn(P − f)‖2

We use the fact thatSnP = f for every trigonometric polynomial of degree≤ n. Then Bessel’s inequality
tells us‖Sn(P − f)‖2 ≤ ‖P − f‖2. Since‖P − f‖2 ≤ ‖P − f‖∞ < ε, we see that‖f −Snf‖2 < 2ε. This
completes the proof.

Hence, it is easy to see‖f‖2 = ‖f̂‖2, and we have the Parseval Identity.

Corollary 3.15. (Parseval) Iff : T → C is continuous, then1
2π

∫
T|f(t)|2dt = ‖f‖2

2 =
∑∞

r=−∞|f̂(r)|2.

Proof. Since‖f−Snf‖2
2 = ‖f‖2

2−
∑n

r=−n|f̂(r)|2 goes to0 asn →∞, we conclude that
∑n

r=−n|f̂(r)|2 →
‖f‖2

2 asn →∞.

In other words,f → f̂ is an isometry inL2.

21



3.4 Geometric Proof of the Isoperimetric Inequality

We will complete this next time. Here, we will present Steiner’s idea to resolve the following question.
What is the largest area of a planar region with fixed circumferenceL? We will present Steiner’s idea here.
Suppose thatC is a curve such that the area enclosed is optimal.
C encloses a convex region.
If not, then there are pointsA,B such that the line segment joiningA andB lies outside the region. By

A

B

Figure 3.1: JoiningA andB yields more area.

replacing the arc fromA to B with the line segment fromA to B, we increase the area, and decrease the
circumference. See Figure 3.1.
C encloses a centrally symmetric region.

If not, pick pointsA,B such that the arc length fromA to B is the same for both directions travelled.

A

B

O

L

L’

Figure 3.2: Reflecting larger area yields more area.

Suppose that the region enclosed byAB ∪ L has area at least that of the region enclosed byAB ∪ L′. We
can then replace the latter by a mirror copy of the first. This can only increase the total area and yields a
region that is centrally symmetric with respect to the middle of the segment[A,B]. C is a circle.
Recall the following fact from Euclidean geometry: A circle is the locus of all pointsx such thatxA is

perpendicular toxB whereAB is some segment (which is the diameter of the circle). Therefore, if this is
not so, then there is some parallelograma, b, c, d, with ac passing the the center, inscribed inC (sinceC is
centrally symmetric), and with the angle atb not equal toπ

2 . Now, “move” sidesa, b andc, d to sidesa′, b′
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a

b c

d

b’

a’

c’

d’

RP

Figure 3.3: Changing Parallelogram to Rectangle Yields more area.

andc′, d′ such thata′, b′, c′, d′ forms a rectangle. See Figure 3.3. We obtain a new curveC ′ such that the area
outside of rectangleR = [a′, b′, c′, d′] is the same as the area outside of the parallelogramP = [a, b, c, d].
Since the side lengths ofR andP are the same, the area enclosed byR must exceed the area enclosed by
P , so the area enclosed byC ′ must exceed the area enclosed byC. Hence,C was not optimal. Hence, our
parallelogramP must have angles equal toπ2 .

Although these ideas are pretty and useful, this is still not a proof of the isoperimetric inequality. We do
not know that an optimalC exists, only that if it does, it must be a circle.
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