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|dentity
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Lecturer: Nati Linial
Notes: Pete Couperus and Neva Cherniavsky

3.1 Where we can use this

During the past weeks, we developed the general machinery which we will apply to problems in discrete
math and computer science in the following weeks. In the general setting, we can ask how much information
can we determine about a functigngiven its Fourier coefficientg. Or, givenf what can we say about

f? There is some distinction between properties which will hold in the general setting, and those that make
sense for the specific spaces we have dealt with. So far, we have looked at

1. T (the unit circle/Fourier Series).
2. Z/nZ (Discrete Fourier Transform).
3. R (Real Fourier Transform).
4. {0,1}" = GF(2)" = (Z/2Z)" (then-cube).
For then-cube (or for any space we wish to do Harmonic Analysis on), we need to determine the characters.

We can view elements of0,1}" as subsets ofn] = {1,...,n}, and then to each subsét C [n], let
xs(T) = (1)1, Then:

1
(XS1)XSs) = o Z (= 1)SinTI+820T|
TCn)

To see that theg s form an orthonormal basis, suppose that S; — S.. Then, the function

_JA—{z} ze€A
¢(A)_{Au{x} zd A

gives a bijection betweefiA : |S1 N A| = |So N A| (mod 2)} and{A :|S;1NA|# [S2 N A| (mod 2)}.
S0,(xs,,Xs,) = 0for Sy # Sa. If S; = Sy, then|T'N S1| + |T' N Se| is always even, sys, xs) = 1.
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Hence, theys form an orthonormal basis for functions froffi, 1} — R. (This is, of course, true in
general, but it's useful to see this explicitly for this special case). Then forfany0,1}" — R, we can

write f = g £(S)xs, where

.]E( ) vaS Z f |SﬂT|

TC[n]

There is an equivalent and often useful way of viewing this. We can also viewthwbe as{—1,1}" with
coordinate-wise multiplication. In this case, any functjpn{—1,1}" — R can be uniquely expressed as

a multilinear polynomial:
f= 2 as]]a
sc{o,1}® €S

where] [, g z; corresponds tqs.

There is an advantage to the fact that we now deal with a findep. Note thaff = ZSC (S)XS
is always the case for functions over theeube, unlike working ovef. Working overT, we made some
assumptions orf to be able have a similar formula to recoyefrom its fourier coefficients.

Now we can ask, what can be said abguwhen f is boolean (when the range gfis {0,1})? More
specifically, how do the properties gfget reflected irf? In general, this is too hard a question to tackle.
But what sorts of relationships between properties are we looking for? In the c@s¢haf smoothness of
f roughly corresponds to its fourier coefficierft@ﬂ) decaying rapidly as — oc. E.g.

f:T—=C <« {f(r)|rez}
smooth « f(r) decays rapidly

An instance of this relationship can be seen from the following theorems.

Theorem 3.1.Let f : T — C be continuous, and suppose thaf” f(r)| converges. Thef,,(f) — f
uniformly.

We can derive this theorem from another.

n

Theorem 3.2. Suppose that the sequeried’__, |a,| converges (ag — cc). Theng,(t) = Y ae’rt

r=—n

converges uniformly as — oo onT to g : T — C, whereg is continuous ang(r) = a, for all r.

This (roughly) says that if we have a sequence that is decreasing rapidly enough (its series converges
absolutely), then we can choose these to be the Fourier coefficients for some continuous function.

To see that Theore@.z implies Theor 3.1f('rf) = g(r) = a, for all r, and bothf andg are

continuous, therf = g. This is based on Fejer's Theorem (or Weierstrauss).
So to prove Theorein 3.1, all that remains is to prove Theprem 3.2.
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Proof. The underlying idea for the proof of Theor3.2 is th4tl) with the co-norm is acomplete
metric space meaning that all Cauchy sequences converge. Recall, a sequgnig Cauchy if fore > 0,
there is someV so forn,m > N, we haved(a,,a,) < € (Whered is whatever metric we are using).
So, to prove the theorem, we only need to check ffat = {>-", a,e"'} is a Cauchy sequence with
the co-norm. Sinces,, := Y |a,| converges, foe > 0, there is someV so that|s,, — s,| < € for

r=—n

n,m > N (basically, the tail end is small), hence

Z are™|| < Z lar|| < e.

m>|r|>n m>|r|>n

So, the{g, } forms a Cauchy sequence.
Hence,

n
> are™ — g uniformly, so

r=—n

e 3" qe7 — ety (t) uniformly. (3.1)

r=-n
n

/e—zkt Z are_lrtdtﬂ/e_lktg(t).

T . T

O]

Recall, du Bois Raymond gives an examplefaf T — C such thatim|S,,(f,0)| = +oo. However, if
the first derivative is somewhat controlled, we can say more.

Theorem 3.3. Let f : T — C be continuous and suppose thdtis defined for all but a finite subset @f
ThenS,,(f) — f uniformly.

f smooth— f decays rapidly= “S,, f — f™.

Recall from basic analysis, jf, are continuously differentiable andff, — f uniformly andf] — ¢
uniformly then f’ = g andg is continuous. This will allow us to show that the Fourier Serieg’ois
attained by termwise derivatives of the Fourier Serieg.of

Theorem 3.4.Let f : T — C be continuous and suppose th@;fi_ooﬂf(rﬂ converges. Therf is
continuously differentiable an¥"__ z’rf(r)e”’t — f" uniformly.

Proof. We would like to show that we can apply this whén= S, f. Butif > 2 7| f(r)| converges,
then> > __|f(r)| converges (since the each term is smaller). So we have

r=—00

[f(r)l < Irf(r)l =) |f(r)| converges
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So by Theorelfn = S,f — f uniformly. By the same theorenf;, = > Wf( et — gis
continuous. By the statement above due to basic analysis, we know that this impligsshtantinuously
differentiable. O

A similar argument will provide a stronger connection between the ide:f(h;lare rapidly decreasing
implies thatf is “smoother”.

Proposition 3.5. Let f : T — C satisfy f(1 is continuously differentiable except possibly finitely many
points X, and| (™ (x)| < M for z ¢ X. Thenvr # 0|f(r)| < Mr—"

Proof. (Integration by parts).

—irt

f(r) = 2i / f(t)e tdt. Letu = f(t),dv = e~ "'dt. Thendu = f'(t)dt,v =
TJT

1 .
- t —ZTtdt:
5 | foe
1 —zrt —zrt
277[ —ir " /f —ir ]

—ir

1 e—irt (32)
— [0 — | fl(t)— dt} = ... = (first termis O since is periodic)
27 T —ir
1 :
(n) —irt
Sr(—ir) /Tf (t)e *""dt.
So (i)
A —r) | [T » 1
< (n) —irt _ L
fol < |55 [ i we = o)
O
Corollary 3.6. If f: T — Cisin C? (twice continuously differentiable), thes, f — f uniformly.
Proof.
. 1 .
f(r)=0 <r2> = Z f(r)‘ converges.
So,S,f — f uniformly. O

3.2 Rate of Convergence

Until now, we haven't really addressed the rate of convergence, meaningSyli¢hdoes converge td,
how fast does it converge i Examingy(z) = 7r — |z| for x € [—7, 7], and extend; periodically toh(z).
Direction calculation give$S,,(h,0) — w| > n+2 By using L» theory, it can be further shown that every
trigonometric polynomiaP of degreen has the property P — hl|o > Q(n—3/2). Kolmogorov showed the
following.
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Theorem 3.7. (Kolmogorov) For allA > 0, there is a trigonometric polynomigl such that:

1. f>0.

2. 5 o f(dt <1

3. Foreveryx € T, sup,, |S.(f,z)| > A.

Hence, there is a Lebesgue integrable funcii@uch that for alt: € T, lim|S,,(f, z)| = +o0.

3.2.1 Convergence Results

In 1964, Carleson proved the following.

Theorem 3.8. (Carleson) Iff is continuous (or only Riemann integrable), th€nf — f almost every-
where.

Later, Kahane and Katznelson proved that this result is tight.

Theorem 3.9. For all E C T with u(E) = 0, there is a continuoug such thatS,, f — f exactly onl — E.

Notice that these results make somewhat weak assumptioris @e will now work on seeing how
things improve in the situation wheyeis an L5 function.

3.3 L, theory for Fourier Series

Recall part of original question was “how afeand f related”? Our immediate goal will be to show that in
the L, case, their norms are identical, which is the Parseval identity. Régall, = / [ | f(¢)|?dt. Then

the Parseval identity staté§|o = ||f|.. For the Discrete Fourier Transform, this essentially means that
the transform matrix is an orthonormal matrix.

We will procede by focusing on Hilbert Spaces. A Hilbert Spates a normed C-linear) space with
an inner product., -) satisfying the following axioms.

1. (ax + by, z) = a(z, z) + b(y, 2).
2. (z,y) = (y, ).
3. {(x,

(z,x) = ||z|* > 0 with equality <= z = 0.

19



There are a number of facts that we know about familiar Hilbert spacesKIitk¢hat hold for general
Hilbert spaces as well.

Theorem 3.10.If H is a Hilbert space, then the Cauchy-Schwarz Inequality holds, namgly & H, then
111 Mgl = (f 9)-

Proof. We will show the proof for real Hilbert spaces.

0<(f = Ag, f = Ag) = IFII* = 2X{f. 9) + X*]lg]|*. (3.3)
Viewing this as a degre® polynomial in A, it is non-negative, so has at most one real root. Hence, the
discriminant(~2(f, 9))? — 4[| f|*[lg|* < 0. Hence,(f, g)* < || fI*llg]l*. 0

One may ask, if we have an elemefite H, how can we best approximagewith respect to some
basis? Specifically, let_,, ..., e, €1, ..., e, be an orthonormal system i (meaning,(e;,e;) = d; ;).
Given f € H, the question is to find; € C such that|f — >, \je;|| is minimized.

Theorem 3.11.LetH, {e;}, f be as above. Sgt=>""_  Aje;, andgo = >_7__, (f,ej)e;. Then

13 = D (foe) ILf = gllz = 1f = gollz = J I3 = > (fe5)? (3.4)
j=-n j==n
with equality iffA\; = (f, e;) for all j.
Proof.
Hf 9”2—<f g, f — g f Z)\ ejaf Z)\ ej
I1£13 = ( ZA' fre) +Xj(fiej)) +ZM ?=
2> (3.5)
(f. 1) +Z\A (frenl? = I f,ej =
J
) =D [frep P = 11f = ol®
J
Note that equality in the last step occurs exactly whee= (f, e;) for all 5. O

Corollary 3.12. (Approximation and Bessel's Inequality).

1. S, f is the closest (in thé., sense) degree trigonometric polynomial approximation tf.

2. (Bessel's Inequality). If € Lo(T), then

12 = /\f Oar> 3 1)

r=——"n

and||f[2 > o0 IF ()2
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This shows one side of the Parseval Identity, nanfighf? > || f]|2.
Recall by Theoren.l iff continuous andf € I, (meaning) . |f( )| converges), therb,,f — f
uniformly. We will show thatf having continuous first derivative in fact implies thfais in /; .

Corollary 3.13. If f € C!, thenS,,f — f uniformly.

Proof.
SO = 1fO+ > Irf(r)
r=—n 1<|r|<n
(by Cauchy-Schwartz) < [f(0)| + , /2 Z PG
1<r<n 1<|r|<n
(by identit ii—f < |f(0)] + 7T2-1/Lf’(t)!2dt
y y - n2 - 3 27 Jr
which is bounded since the first derivative is bounded (continuolg) .on O

3.3.1 Parseval’s Identity

We are now ready to complete the proof of the Parseval Identity.

Theorem 3.14.If f : T — C s continuous, thefif — S,, f|| — 0.

Proof. By Weierstrass (or Fejer) approximation, for any- 0, there is some trigonometric polynomigl
such thal| f — P|loc < €. So,

If = Snfllz < If = Pllz + 12 P = Sufllz < I1f = Plloo + [1Sn (P = f)ll2
We use the fact thai,, P = f for every trigonometric polynomial of degreen. Then Bessel’s inequality
tells us||Sn(P — f)ll2 < [|P = fll2. Since||P — flla < [P — flloo < €, we seethaf f — S, fll2 < 2e. This
completes the proof. O
Hence, it is easy to segf||> = || f||2, and we have the Parseval Identity.

Corollary 3.15. (Parseval) Iff : T — C is continuous, theg [1| f(t)[2dt = || |3 = 3200 _ | f(r)[%.

Proof. Since||f—S,.f[3 = | fII3->2"_,.|f(r)|> goes ta) asn — oo, we conclude thal"__ |f(r)]> —
1f113 asn — oc. O

In other wordsf — f is an isometry inLs.
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3.4 Geometric Proof of the Isoperimetric Inequality

We will complete this next time. Here, we will present Steiner’s idea to resolve the following question.
What is the largest area of a planar region with fixed circumferdricé/e will present Steiner’s idea here.
Suppose thaf’ is a curve such that the area enclosed is optimal.
C encloses a convex region.

If not, then there are pointd, B such that the line segment joinitgyand B lies outside the region. By

Figure 3.1: Joiningd and B yields more area.

replacing the arc from! to B with the line segment fromdl to B, we increase the area, and decrease the
circumference. See Figure B.1.
C encloses a centrally symmetric region.

If not, pick pointsA, B such that the arc length from to B is the same for both directions travelled.

L

L?
Figure 3.2: Reflecting larger area yields more area.

Suppose that the region enclosedAi U L has area at least that of the region enclosedlByU L'. We
can then replace the latter by a mirror copy of the first. This can only increase the total area and yields a
region that is centrally symmetric with respect to the middle of the segfreiit]. C is a circle.

Recall the following fact from Euclidean geometry: A circle is the locus of all painssich thatx A is
perpendicular tac B where AB is some segment (which is the diameter of the circle). Therefore, if this is
not so, then there is some parallelogran, c, d, with ac passing the the center, inscribedin(sinceC is
centrally symmetric), and with the angletanot equal tof. Now, “move” sidess, b andc, d to sidesa’, b’
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Figure 3.3: Changing Parallelogram to Rectangle Yields more area.

andc’,d’ such that’, v/, ¢, d’ forms arectangle. See Figlire|3.3. We obtain a new alifgeich that the area
outside of rectangl® = [d’, V', ¢, d'] is the same as the area outside of the parallelogfam [a, b, ¢, d].
Since the side lengths @& and P are the same, the area enclosedfbgnust exceed the area enclosed by
P, so the area enclosed 6 must exceed the area encloseddiyHence,C' was not optimal. Hence, our
parallelogramP must have angles equal o

Although these ideas are pretty and useful, this is still not a proof of the isoperimetric inequality. We do
not know that an optimal’ exists, only that if it does, it must be a circle.
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