Lecture 2
Introduction to Some Convergence theorems

Friday 14, 2005
Lecturer: Nati Linial
Notes: Mukund Narasimhan and Chrigé R

2.1 Recap

Recall that forf : T — C, we had defined
R _ 1 —irt
fr) = 5= [ s

and we were trying toeconstructf from f The classical theory tries to determine if/when the following is
true (for an appropriate definition of equality).

2 £ ir
F@&) =" f(r)e
reZ
In the last lecture, we proved FEgjs theoremf  k,, — f where thex denotes convolution ankl, (Fejer
kernels) are trignometric polynomials that satisfy
1.k, >0
2. [pkn=1
3. kn(s) — 0 uniformly asn — oo outside[—d, d] for anyd > 0.
If X is afinite abelian group, then the space of all functipnsX — C forms an algebra with the operations
(+, *) where+ is the usual pointwise sum ards convolution. If instead of a finite abelian group, we take

X to beT then there is no unit in this algebra (i.e., no elententith the property that « f = f for all f).
However thek,, behave agpproximate unitand play an important role in this theory. If we let

Su(f,t) =) f(r)e™

ThenS,(f,t) = f x D,, whereD,, is the Dirichlet kernel that is given by

sin (n+ %) s

Dn(z) = sin 5
2

The Dirichlet kernel does not have all the nice properties of the ther kejnel. In particular,
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1. D,, changes sign.
2. D,, does not converge uniformly to O outside arbitrarily snial, 4] intervals.

Remark.The choice of an appropriate kernel can simplify applications and proofs tremendously.

2.2 The Classical Theory

Let G be a locally compact abelian group.

Definition 2.1. A character orz is ahomomorphisny : G — T. Namely a mapping satisfyig(g: +g2) =
x(91)x(g2) forall g1, g2 € G.

If x1,x2 are any two characters 6f, then it is easily verified that; x- is also a character @, and so
the set of characters ¢f forms a commutative group under multiplication. An important role is played by
G, the group of all continuous characters. For exaniple; Z andR = R.

For any functionf : G — C, associate with it a functlonA: G — C wheref(x) = {f,x>- For
example, ifG = T theny,(t) = e for r € Z. Then we havef(y,) = f(r). Wecallf : G — C the
Fourier transform off. Now G is also a locally compact abelian group and we can play the same game

backwards to construgt. Pontryagin’s theorem asserts tifat= G and so we can ask the question: Does

f = £ ? While in theory Feir answered the question of whéminiquely determineg, this question is still
left unanswered.

For the general theory, we will also require a normalized nonnegative megasur@ that is translation
invariant: (S) = u(la+5) = pn({a+s|s € S}) foreveryS C G anda € G. There exists a unique such
measure which is called the Haar measure.

2.3 L, spaces

Definition 2.2. If (X, 2, i) is a measure space, thép(X, 2, 1) is the space of all measureable functions

f : X — Rsuch that
1
P
141l = [/ |f|p.du} < oo
X

For example, ifX = N, Q is the set of all finite subsets of, andy is the counting measure, then
[(z1, 22,y 2y, = (0 m‘p) Forp = oo, we define

2]l oo = sup ||
€N
Symmetrizatioris a technique that we will find useful. Loosely, the idea is that we are averaging over

all the group elements.
Given a functionf : G — C, we symmetrize it by defining : G — C as follows.

— / f(z + a) du(a)
G
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We will use this concept in the proof of the following result.

Proposition 2.1. If G is a locally compact abelian group, with a normalized Haar measureand if
X1, x2 € G are two distinct characters thefx i, x2) = 0. i.e.,

{0 X1 7 X2

. / 21 (@) X2 (@) da(x) = Syr s =
X 1 x1=x2

Proof. For any fixeds € G, I = [y x1(2)x2(z) du(z) = [ x1(x + a)x2(z + a) du(z). Therefore,

I /X i (@ + a)xa(@ + a) du(z)
- /X X1 (2)x1 ()2 (@) x2(a) dyu(z)
— x1(a)xa(a) /X 1 (2)x2 (&) du(z)

= x1(a)xa(a)l

This can only be true if eithef = 0 or x1(a) = x2(a). If x1 # x2, then there is at least onesuch that
x1(a) # x2(a). It follows that eithery; = x2 or I = 0. O

By letting y» be the character that is identically 1, we conclude that G with y # 1 for any
Jox(@) dp(x) = 0.

2.4 Approximation Theory

Weierstrass’s theorem states that the polynomials are dersg|in b] N Ca, b]E] Fejér's theorem is about
approximating functions using trignometric polynomials.

Proposition 2.2. cos nx can be expressed as a degrepolynomial incos x.
Proof. Use the identityos(u + v) + cos(u — v) = 2 cos u cos v and induction on n. O

The polynomialT;, () whereT},(cosz) = cos(nz) is calledn!” Chebyshev’s polynomial. It can be
seen thafly(s) = 1, Ti(s) = s, Ta(s) = 2s> — 1 and in general},(s) = 2"~ 's" plus some lower order
terms.

Theorem 2.3 (Chebyshev).The normalized degree polynomialp(z) = 2™ + ... that approximates the
functionf(z) = 0 (on[—1, 1]) as well as possible in the,,[—1, 1] norm sense is given %Tn(m). ie.,

min max |p(x)| =
p anormalized polynomial—lga:§1| ( )’ 2n—1

This theorem can be proved using linear programming.

! This notation is intended to imply that the norm on this space is the sup-norm (a&arly] C Loo[a, b])
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2.4.1 Moment Problems

Suppose thafX is a random variable. The simplest information abdutare its moments. These are
expressions of the form, = [ f(z)2" dz, wheref is the probability distribution function of X. Anoment
problemasks: Suppose | know all (or some of) the momepnts}, .. Do | know the distribution ofX'?

Theorem 2.4 (Hausdorff Moment Theorem). If f, ¢ : [a,b] — C are two continuous functions and if for

allr=0,1,2,...,we have
b b
/ flx)z" dx = / g(z)x" dz

then f = g. Equivalently, ifh : [a,b] — C is a continuous function Wit!ﬁ7 h(z)z" dx = 0 forall r € N,
thenh = 0.

Proof. By Weierstrass's theorem, we know that foratt 0, there is a polynomiaP such that|h — P||__ <
e. If f; h(z)z" dz = 0 for all » € N, then it follows thatf;’ h(z)Q(z) dz = 0 for every polynomiall(x),
and so in particularff h(x)P(x)dz. Therefore,

0= /abh(x)P(:z:) do = /abh(:c)h(x)dx+/:h(x) (P) ~ (@) da
Therefore, ,
(h, 7y = — / h(z) (P(m) —M) dz

Since h is continuous, it is bounded ofu,b] by some constant and so onla,b] we have
‘h(ac) (P(x) - h(x))‘ < ¢-€-|b—al. Therefore, for anyy > 0 we can picke > 0 so that so that

|h]|3 < 6. Henceh = 0. O
2.4.2 Alittle Ergodic Theory

Theorem 2.5. Let f : T — C be continuous ang be irrational. Then
: 1 . 2mir
dm >0 = [

Proof. We show that this result holds whgift) = ¢%t. Using Fegr’s theorem, it will follow that the result
holds for any continuous function. Now, cleagy [, e’ dt = 0. Therefore,

n
l § :627Tir3'y o i / 6ist dt
n 27 Jr

r=1

n
1 .
- § :6271'17'37
n

r=1

1— eQm'ns'y

1 .
— *627”57
n

1 — e2misy
2
- n- (1 _ 627ri3'y)

Sincey is irrational,1 — ¢2™**7 is bounded away from 0. Therefore, this quantity goes to zero, and hence
the result follows. O
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Figure 2.1: Probability of Property v. p

This result has applications in the evaluations of integrals, volume of convex bodies. Is is also used in

the proof of the following result.

Theorem 2.6 (Weyl). Let be an irrational number. For: € R, we denote byz) = = — [z] the fractional
part of . For any0 < a < b < 1, we have

lim \{1§r§n:a§<r’y><b}\:

n— oo n

b —

Proof. We would like to use Theore@.S with the functign= 1, ;. However, this function is not
continuous. To get around this, we define functigrs> lia,5) = f~ as shown in the following diagram.

f* and f~ are continuous functions approximatirfg We let let them approacli and pass to the
limit. O

This is related to a more general ergodic theorem by Birkhoff.

Theorem 2.7 (Birkhoff, 1931). Let (Q2, 7, p) be a probability measure and : Q@ — ) be a measure
preserving transformation. Let € L1(Q), F, p) be a random variable. Then

1 n
=Y XoTF - E[X;T]
n

k=1

WhereZ is theo-field of T-invariant sets.

2.5 Some Convergence Theorems

We seek conditions under which, (f,t) — f(t) (preferably uniformly). Some history:

¢ DuBois Raymond gave an example of a continuous function suchithatip S,,(f,0) = oco.

e Kolmogorov [1] found a Lebesgue measureable functjopn: T — R such that for allt,
limsup Sy, (f,t) = oo.
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e Carleson([2] showed that if : T — C is a continuous function (even Riemann integrable), then
Sn(f,t) — f(t) almost everywhere.

e Kahane and Katznelson![3] showed that for evBrC T with x(E) = 0, there exists a continuous
functionf : T — C such thatS,,(f,t) /4 f(¢t)ifandonlyift € E.

Definition 2.3. ¢, = L, (N, Finite sets counting measupe = {x|(xo, ... )P < oo}.

Theorem 2.8.Let f : T — C be continuous and suppose thg}, ., |f(r)] < oo (sof € ¢1). Then
Sn(f,t) — f uniformly onT.

Proof. See lecture 3, theorem 3.1. ]

2.6 ThelL, theory

The fact thak(t) = ¢! is an orthonormal family of functions allows to develop a very satisfactory theory.
Given a functionf, the best coefficients;, A, ..., A, so that]| f — >~ ; Aje;l|, is minimized is given by

Aj = (f,e;). This answer applies just as well in any inner product normed space (Hilbert space) whenever
{e;} forms an orthonormal system.

Theorem 2.9 (Bessel’s Inequality).For everyAi, Ao, ..., Ay,

> |17 =D (e’

i=1

n 2
Hf > e
i—1

with equality when\; = (f, e;)

Proof. We offer a proof here for the real case, in the next lecture the complex case will be done as well.
n 2
Hf_z)\zez = f nyez ez vaez €i Z)\ez
=1 ) i=1
= (f_z<f>€z>€l) vaez €i Z)\ez
=1 =1

2

+ crossterms

cross terms= 2(f — i (f,e) e“i (f,eie; Z/\ ei)

i=1 =1
Observe that the terms in the cross terms are orthogonal to one anotherigihee(f, e;)e;, e;) = 0. We

write N . .
2 (fre)(f =D (frepe,e) = D Nlf =Y (frej)eie)
=1 i j=1

Observe that each innter product term is 0. Sinde=f 7, then we applyi(f — (f, ei)ei, e;) = 0. If
i # j, then they are orthogonal basis vectors.

13



We want to make this as small as possible and have only control ov&rgh8ince this term is squared
and therefore non-negative, the sum is minimized when weiskt= (f, e;). With this choice,

n 2 n n
'lf—z)\iei = (=) e f =) hie)
i=1 i=1 i=1

n

= <f7f>—2z>\i<f7€i>+z)\?

i=1

n

=IfI? =D (f.e)?

i=1

where the last inequality is obtained by settkig= (f, e;). O
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