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1.1 Text

The main text for the first part of this course would be
e T. W. Korner,Fourier Analysis
The following textbooks are also “fun”

e H. Dym and H. P. Mckearkourier Series and Integrals

e A. Terras,Harmonic Analysis on Symmetric Spaces and Applications, Vols. I, Il
The following text follows a more terse exposition

e Y. KatznelsonAn Introduction to Harmonic Analysis

1.2 Introduction and Motivation

Consider a vector spadé (which can be of finite dimension). From linear algebra we know that at least in

the finite-dimension casgé has a basis. Moreover, there are more than one basis and in general different
bases are the same. However, in some cases when the vector space has some additional structure, some
basis might be preferable over others. To give a more concrete example consider the vectdf space

{f:X — RorC} whereX is some universe. I = {1,---,n} then one can see that is indeed the

spaceR™ or C™ respectively in which case we have no reason to prefer any particular basis. Howéver, if

is an abelian groﬂ)there may be a reason to prefer a bdsisver others. As an example, let us consider

X =7Z/nZ,V = {(y0, - ,yn)|lyi € R} = R™. We now give some scenarios (mostly inspired by the
engineering applications of Fourier Transforms) where we want some properti@éskar our “wish list”:

*An abelian group is given b{S, +) wheres is the set of elements which is closed under the commutative operatibarther
there exists an identity elememtind every element if has an inverse.



1. Think of the elements of /nZ as time units and let the vectgr= (y1,--- , y,) denote some mea-
surements taken at the different time units. Now consider another veetofz, - - - , 2, } such that
forall i, 2; = ¥;11 moa (n)- NOte that the vectorg andz are different though from the measurement
point of view they are not much different— they correspond to the same physical situation when our
clock was shifted by one unit of time. Thus, with this application in mind, we might want to look for
a basis foV such that the representationofs “closely related” to that ofj.

2. In a setting more general than the previous one, iffforX — R, a given member of anda € X,
g : X — R be such thay(x) = f(z + a) then we would like to have representationsfoénd g
being “close” in5 for any f anda. Note that in the previous examplecorresponds to the index
anda = 1.

3. In situations where derivatives (or discrete analogues thereof are well-defined), we woultittke
have a representation similar to thatfof

4. In real life, signals are never nice and smooth but suffer from noise. One way to reduce the noise is
to “average-out” the signal. As a concrete example let the signal samples be giygn by, f,.—1
then the smoothened out signal could be given by the samples: f;_1 + 3 fi + % fi11. Define
g-1=1%,90 = 3,91 = +. We now look at an new operataronvolutionwhich is defined as follows.
Letg be f convolved wheré = f « g andh(z) = 3, f(y)g(z — y). So another natural property of
B is that the representation ¢fx g should be related to that gfandg.

Before we go ahead, here are some frequently used instantiatiofis of

X =Z/nZ. This is the Discrete Fourier Transform (DFT).

X =T = {Real Numbers mod, addition mod1} = {¢* multiplication}. The isomorphism exists
because multiplication of elements in the second group is the same as additiérrobthe angles
6.

This is the most classical case of the theory, covered by the bdgknometric Polynomialdy
Zygmund.

e X = (R,+). This is the Real Fourier Transform. In this case, in order to get meaningful analysis,
one has to restrict the family of functiorfs: X — R under consideration e.g. ones with converging
integrals or those with compact support. The more general framework is that of Locally compact
Abelian groups.

e X = {0,1}" where the operations are done m2d Note that{f : X — {0,1}} are simply the
boolean functions.

1.3 A good basis

As before letX be an abelian group and define the vector spaee {f : X — R}.

Definition 1.1. Thecharactersof X is the sef{y : X — C|x is a homomorphist



By homomorphism we mean that the following relationship holdét + y) = x(z) - x(y) for any
x,y € X. As a concrete exampl&X' = Z/nZ hasn distinct characters and thigh character is given by
x;(x) = w’® for anyz € X wherew = 7/,

We now state a general theorem without proof (we will soon prove a special case):

Theorem 1.1. Distinct characters (considered as functions frém— C) are orthogond,

We now have the following fact:

Fact 1.1. If X is a finite abelian group of elements, thenX hasn distinct characters which form an
orthogonal basis foV = {f : X — R}.

Consider the special case &f = Z/nZ. We will show that the characters are orthogonal. Recall that
in this casey;(x) = w/®. By definition, (x;, xx) = Y.'_g w/?w = Y"1 wU=R_If j = k then each
term is one and the inner product evaluatesa.tdf j; # k, then summing up the geometric series, we have

(wj’k)"—l

(Xj> Xk) = (= = 0. The last equality follows from the fact that' = 1.

We will take a quick detour and mention some applications where Fourier Analysis has had some mea-
sure of success:

e Coding Theory. A codeC is a subset 0f0, 1}" where we want each element to be as far as possible
from each other (where far is measured in terms of the hamming distance). We wouldttikee
as large as possible while keeping the distance as large as possible. Note that these are two opposing
goals.

¢ Influence of variables on boolean functions. Say you have an array of sensors and there is some
function which computes an answer. If a few of the sensors fail then answers should not change: in
other words we need to find functions that are not too influenced by their variables.

e Numerical Integration/ Discrepancy. Say you want to integrate over some dom@inOf course
one cannot find the exact integral if one does not have have an analytical expression of the function.
So one would sample measurements at some discrete points and try and approximate the integral.
Suppose that we further know that certain subdomairni@ afe significant for the computation. The
main question is how to spreadpoints in) such that every “significant” region is sampled with the
“correct” number of points.

1.4 A Rush Course in Classical Fourier Analysis

LetX =T = ({e” | 0 < 6 < 2r} ,multiplication). Let f : T — C, which can alternatively be thought of
as a periodic functiorf : R — C. What do characters of look like?

There are infinitely many characters and each is a periodic function®tnC. In fact, every character
of X is a functiony : X — T, i.e. x : T — T. Being a homomorphism, it must also satisfir.y) =

2There is natural notion of inner-product among functigng : X — R. (f,g) = > wex f(@)g(z) in the discrete case and
(f,g) = [ f(z)g(z) dz in the continuous case. If the functions maps iGiatheng(z) is replaced by its conjuga®x) in the
expressions. Finally andg areorthogonalif (f,g) =0



x(x).x(y). This implies that the only continuous charactersXofire y,(z) = z*,k € Z. Note that if
k ¢ 7, thenz* can have multiple values, discontinuities, etc. It is an easy check to segthai) = ox;:

1

xXrx) = or TXk(x)Xl(fU)de

1
= /xkx_l dx
2 T

- = i0(k—1)

5 | d6
(1 if J =
= 10 if ks £ 1
= O

How do we express a giveh: T — C in the basis of the characters &f? Recall that ifi” is a finite
dimentional vector space over a fidldvith an inner product andy, . . . , u,, is an orthonormal basis far,
then everyf € V can be expressed as

n
f = Z ajuj, a; € IF, a;j = <f, Uj> (1.1)
j=1
We would like to obtain a similar representationfoin the basis of the characteys, k € Z.

Definition 1.2 (Fourier Coefficients). Forr € Z, thert" Fourier coefficient off is
fr) = 5= [ f0 e ar
The analogue of Equatign 1.1 now becomes
S(f,t) = Zn: f(r)em, does lim S,(f,t) = f(t)? (1.2)
Heref(r) replacesa; and ;. (e') replacesu; in Equatio. In a dream world, we would like to ask

whetherS" % f(r) et z f(t) holds. We are, however, being more careful and asking the question by

r=—00

making this sum go from-n to n and considering the limit as — oc.

1.4.1 Notions of Convergence

Before attempting to answer the question of representatignmferms of its Fourier coefficients, we must
formalize what it means for two functions defined over a donhio be “close”. Three commonly studied
notions of distance between functions (and hence of convergence of functions) are as follows.

L Distance: ||f — g||c = sup,c4 |f(z) — g(z)|. Recall that convergence in the sensd.gf is called
uniform convergence



Ly Distance: [|f — gl[1 = [, |f(z) — g(x)| dz

Ly Distance: |[f = gll2 = /[ |f(x) — g(x)2 dz

In Fourier Analysis, all three measures of proximity are used at different times and in different contexts.

1.4.2 Fourier Expansion and Fejer’'s Theorem

The first correct proof (under appropriate assumptions) of the validity of Equiation 1.2 was given by Dirichlet:

Theorem 1.2 (Dirichlet). Let f : T — C be a continuous function whose first derivative is continuous
with the possible exception of finitely many points. Then Equptidn 1.2 holds fortegetyat which f is
continuous.

Even before Dirichlet proved this theorem, DuBois Reymond gave an example of a contififmus
which lim sup,,_, .. S»(f,0) = oco. This ruled out the possibility that continuity is sufficient for Equation
to hold. The difficulty in answering the question affirmatively came in proving convergesgé oft) as
n — oo. Fejer answered a more relaxed version of the problem, namely, whehhmreconstructedrom

f(r) in possibly other ways? He showed thafifatisfies certain conditions even weaker than continuity,
then it can be reconstructed frofitr) by taking averages.

Definition 1.3 (Cesaro Means).Let a1, as, ... be a sequence of real numbers. Théft Cesaro meairis
k
b, = (1/k) Zj:l a;.

Proposition 1.3. Let a1, as, ... be a sequence of real numbers that converges. tahen the sequence
b1, be, ... Of its Cesaro means convergesitas well. Moreover, the sequeng® } can converge even when
the sequencéa; } does not (e.gaz; = 1, azj41 = 0).

Let us apply the idea of Cesaro meansto Define

n

Un(fvt) = n_1|_1 Zsk(f’t)
k=0

n k
= > e

k=0r=—k

n
o 7’L+1—|7"|A irt
= > o7 Joe

r=—n
Theorem 1.4 (Fejer). Let f : T — C be Riemann integrable. If is continuous at € T, then
lim,, oo o (f,t) = f(t). Further, if f is continuous then the above holds uniformly.

Proof. Note thatlim,,_.., 0, (f,t) = f(t) means thate > 0,3ng : n > ng = |on(f,t) — f(t)| < e. The
convergence is uniform if the samg works for allt simultaneously. The proof of the Theorem uses Fejer’s



kernelsk,, that behave as continuous approximations to the Dirac delta function.

n

ouhit) = 3 L gy e

r=—m"n
n

_ n+1 |T —'l"'w
- Z n+1 (27r /f da:)

_ /f n+ 1- | | ezr(tfm) dr
r=— n+1

def " n+1 7|
e — .
= /f t—LE dx fOI‘K() TZ ni_'_lezrz

=—n

= /ft— y)dy fory=t—=x

which is the convolution of with kernel K,,. Note that if K, were the Dirac delta function, thqﬁf flt—
y) K, (y) dy would evaluate exactly té(t). Fejer's kernelds,, approximate this behavior.

Proposition 1.5. K, satisfies the following:

1 sin "‘2"1 2 if 0
K,(s)=( ntl | sing s #

n+1 ifs=0

The kernelsk,, have three useful properties.

1. Vu: Ky(u) >0

2. Y6 > 0 : K,(s) — 0 uniformly outside the interval—¢,d], i.e. Ve > 0,3ng : s ¢ [—0,0] =
| K, (s)] <€

3. (1/27) [p Kn(s)ds =1

Given anye > 0, we seek a large enough such that for alh > no, | [ f(t—y)Kn(y) dy— f(t)| < e.
Divide this integral into two intervals:

)
/ F(t =) Kn(y) dy = / F(t =) Kon(y) dy + / F(t — ) Kn(y) dy
T -5 T\[—4,0]

The first integral on the RHS converge=tof (t) becauseg (t — y) is almost constant and equdl§) in the
rangey € [—4, J] andfw_(s o] K, (s) ds converges t@r because of properg 3 df,. The second integral

converges t0 because’ is bounded and because of propéity Z6f. Hence the LHS converges2a f(t),
finishing the proof. O

Corollary 1.6. If f,g: T — C are continuous functions and- € Z : f(r) = j(r), thenf = g.

Proof. Leth & f—g. his also continuousvr : h(r) = f(r)—§(r) = 0. By Fejer's Theorem, = 0. [



1.4.3 Connection with Weierstrass’ Theorem

Because of the uniform convergence part of Fejer's Theorem, we have proved that for dll — C
continuous and all > 0, there exists a trigonometric polynomi&lsuch that for alt € T, |f(t) — P(t)| <

e. This impliesWeierstrass’ Theoremwhich states that “unddr.[a, b] norm, polynomials are dense in
Cla,b],” i.e., forall f : [a,b] — R continuous and akk > 0, there exists a polynomidP such that for all
x € [a,b], |f(z) — P(z)| <e.

Informally, Weierstrass’ Theorem says that given any continuous function over a finite inverval and an
arbitrarily small envelope around it, we can find a polynomial that fits inside that envelope in that interval.
To see why this is implied by Fejer's Theorem, simply convert the given fungtiorja,b] — C into a
symmetric functiory over an interval of siz€(b — a), identify the end points of the new interval so that it
is isomorphic toT, and use Fejer’s Theorem to conclude thatg, .) is a trigonometric polynomial close
to ¢ (and hencef). To see why Weierstrass’ Theorem implies Fejer’s Theorem, recalkthat can be
expressed as a degregolynomial incost. Use this to express the promised trigopnometric polynomial
P(t) as a linear combination @bs rt andsin rt with —n < r < n.

Remark.Weierstrass’ Theorem can alternatively be proved using Bernstein’s polynomials even though nor-
mal interpolation polynomials do not work well for this purpose. Consifler [0,1] — R. Thent?
Bernstein polynomial is3,,(f, z) % S F(EY()a*(1 — z)" k. The key idea is that this involves the

fact that the Binomial distributiof*(k) = (})z*(1 — z)" " is highly concentrated arourid= zn and thus
approximates the behavior of the Dirac delta function.
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