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1.1 Text

The main text for the first part of this course would be

• T. W. Körner,Fourier Analysis

The following textbooks are also “fun”

• H. Dym and H. P. Mckean,Fourier Series and Integrals.

• A. Terras,Harmonic Analysis on Symmetric Spaces and Applications, Vols. I, II.

The following text follows a more terse exposition

• Y. Katznelson,An Introduction to Harmonic Analysis.

1.2 Introduction and Motivation

Consider a vector spaceV (which can be of finite dimension). From linear algebra we know that at least in
the finite-dimension caseV has a basis. Moreover, there are more than one basis and in general different
bases are the same. However, in some cases when the vector space has some additional structure, some
basis might be preferable over others. To give a more concrete example consider the vector spaceV =
{f : X → R or C} whereX is some universe. IfX = {1, · · · , n} then one can see thatV is indeed the
spaceRn or Cn respectively in which case we have no reason to prefer any particular basis. However, ifX
is an abelian group1 there may be a reason to prefer a basisB over others. As an example, let us consider
X = Z/nZ, V = {(y0, · · · , yn)|yi ∈ R} = Rn. We now give some scenarios (mostly inspired by the
engineering applications of Fourier Transforms) where we want some properties forB aka our “wish list”:

1An abelian group is given by〈S, +〉whereS is the set of elements which is closed under the commutative operation+. Further
there exists an identity element0 and every element inS has an inverse.
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1. Think of the elements ofZ/nZ as time units and let the vectory = (y1, · · · , yn) denote some mea-
surements taken at the different time units. Now consider another vectorz = {z1, · · · , zn} such that
for all i, zi = yi+1 mod (n). Note that the vectorsy andz are different though from the measurement
point of view they are not much different– they correspond to the same physical situation when our
clock was shifted by one unit of time. Thus, with this application in mind, we might want to look for
a basis forV such that the representation ofz is “closely related” to that ofy.

2. In a setting more general than the previous one, if forf : X → R, a given member ofV anda ∈ X,
g : X → R be such thatg(x) = f(x + a) then we would like to have representations off andg
being “close” inB for anyf anda. Note that in the previous examplex corresponds to the indexi
anda = 1.

3. In situations where derivatives (or discrete analogues thereof are well-defined), we would likef ′ to
have a representation similar to that off .

4. In real life, signals are never nice and smooth but suffer from noise. One way to reduce the noise is
to “average-out” the signal. As a concrete example let the signal samples be given byf0, · · · , fn−1

then the smoothened out signal could be given by the samplesgi = 1
4fi−1 + 1

2fi + 1
4fi+1. Define

g−1 = 1
4 , g0 = 1

2 , g1 = 1
4 . We now look at an new operator:convolutionwhich is defined as follows.

Let g bef convolved whereh = f ∗ g andh(x) =
∑

y f(y)g(x− y). So another natural property of
B is that the representation off ∗ g should be related to that off andg.

Before we go ahead, here are some frequently used instantiations ofX:

• X = Z/nZ. This is the Discrete Fourier Transform (DFT).

• X = T = {Real Numbers mod1, addition mod1} ∼= {eiθ,multiplication}. The isomorphism exists
because multiplication of elements in the second group is the same as addition mod2π of the angles
θ.

This is the most classical case of the theory, covered by the bookTrigonometric Polynomialsby
Zygmund.

• X = (R,+). This is the Real Fourier Transform. In this case, in order to get meaningful analysis,
one has to restrict the family of functionsf : X → R under consideration e.g. ones with converging
integrals or those with compact support. The more general framework is that of Locally compact
Abelian groups.

• X = {0, 1}n where the operations are done mod2. Note that{f : X → {0, 1}} are simply the
boolean functions.

1.3 A good basis

As before letX be an abelian group and define the vector spaceV = {f : X → R}.

Definition 1.1. Thecharactersof X is the set{χ : X → C|χ is a homomorphism}.
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By homomorphism we mean that the following relationship holds:χ(x + y) = χ(x) · χ(y) for any
x, y ∈ X. As a concrete example,X = Z/nZ hasn distinct characters and thejth character is given by
χj(x) = ωjx for anyx ∈ X whereω = e2πi/n.

We now state a general theorem without proof (we will soon prove a special case):

Theorem 1.1. Distinct characters (considered as functions fromX → C) are orthogonal2.

We now have the following fact:

Fact 1.1. If X is a finite abelian group ofn elements, thenX hasn distinct characters which form an
orthogonal basis forV = {f : X → R}.

Consider the special case ofX = Z/nZ. We will show that the characters are orthogonal. Recall that
in this case,χj(x) = ωjx. By definition,〈χj , χk〉 =

∑n−1
x=0 ωjxω−kx =

∑n−1
x=0 ω(j−k)x. If j = k then each

term is one and the inner product evaluates ton. If j 6= k, then summing up the geometric series, we have

〈χj , χk〉 = (ωj−k)n−1
ωj−k = 0. The last equality follows from the fact thatωn = 1.

We will take a quick detour and mention some applications where Fourier Analysis has had some mea-
sure of success:

• Coding Theory. A codeC is a subset of{0, 1}n where we want each element to be as far as possible
from each other (where far is measured in terms of the hamming distance). We would likeC to be
as large as possible while keeping the distance as large as possible. Note that these are two opposing
goals.

• Influence of variables on boolean functions. Say you have an array of sensors and there is some
function which computes an answer. If a few of the sensors fail then answers should not change: in
other words we need to find functions that are not too influenced by their variables.

• Numerical Integration/ Discrepancy. Say you want to integrate over some domainΩ. Of course
one cannot find the exact integral if one does not have have an analytical expression of the function.
So one would sample measurements at some discrete points and try and approximate the integral.
Suppose that we further know that certain subdomains ofΩ are significant for the computation. The
main question is how to spreadn points inΩ such that every “significant” region is sampled with the
“correct” number of points.

1.4 A Rush Course in Classical Fourier Analysis

Let X = T =
({

eiθ | 0 ≤ θ < 2π
}

, multiplication
)
. Let f : T → C, which can alternatively be thought of

as a periodic functionf : R → C. What do characters ofX look like?

There are infinitely many characters and each is a periodic function fromR to C. In fact, every character
of X is a functionχ : X → T, i.e. χ : T → T. Being a homomorphism, it must also satisfyχ(x.y) =

2There is natural notion of inner-product among functionsf, g : X → R. 〈f, g〉 =
P

x∈X f(x)g(x) in the discrete case and
〈f, g〉 =

R
f(x)g(x) dx in the continuous case. If the functions maps intoC, theng(x) is replaced by its conjugateg(x) in the

expressions. Finallyf andg areorthogonalif 〈f, g〉 = 0
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χ(x).χ(y). This implies that the only continuous characters ofX areχk(x) = xk, k ∈ Z. Note that if
k 6∈ Z, thenxk can have multiple values, discontinuities, etc. It is an easy check to see that〈χk, χl〉 = δkl:

〈χk, χl〉 =
1
2π

∫
T

χk(x) χl(x) dx

=
1
2π

∫
T

xkx−l dx

=
1
2π

∫
T

xk−ldx

=
1
2π

∫ 2π

0
eiθ(k−l) dθ

=
{

1 if k = l
0 if k 6= l

= δkl

How do we express a givenf : T → C in the basis of the characters ofX? Recall that ifV is a finite
dimentional vector space over a fieldF with an inner product andu1, . . . , un is an orthonormal basis forV ,
then everyf ∈ V can be expressed as

f =
n∑

j=1

ajuj , aj ∈ F, aj = 〈f, uj〉 (1.1)

We would like to obtain a similar representation off in the basis of the charactersχk, k ∈ Z.

Definition 1.2 (Fourier Coefficients). For r ∈ Z, therth Fourier coefficient off is

f̂(r) =
1
2π

∫
T

f(t) e−irt dt

The analogue of Equation 1.1 now becomes

Sn(f, t) =
n∑

r=−n

f̂(r) eirt, does lim
n→∞

Sn(f, t) = f(t)? (1.2)

Here f̂(r) replacesaj andχr(eit) replacesuj in Equation 1.1. In a dream world, we would like to ask

whether
∑∞

r=−∞ f̂(r) eirt ?= f(t) holds. We are, however, being more careful and asking the question by
making this sum go from−n to n and considering the limit asn →∞.

1.4.1 Notions of Convergence

Before attempting to answer the question of representation off in terms of its Fourier coefficients, we must
formalize what it means for two functions defined over a domainA to be “close”. Three commonly studied
notions of distance between functions (and hence of convergence of functions) are as follows.

L∞ Distance: ||f − g||∞ = supx∈A |f(x) − g(x)|. Recall that convergence in the sense ofL∞ is called
uniform convergence.
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L1 Distance: ||f − g||1 =
∫
A |f(x)− g(x)| dx

L2 Distance: ||f − g||2 =
√∫

A |f(x)− g(x)|2 dx

In Fourier Analysis, all three measures of proximity are used at different times and in different contexts.

1.4.2 Fourier Expansion and Fejer’s Theorem

The first correct proof (under appropriate assumptions) of the validity of Equation 1.2 was given by Dirichlet:

Theorem 1.2 (Dirichlet). Let f : T → C be a continuous function whose first derivative is continuous
with the possible exception of finitely many points. Then Equation 1.2 holds for everyt ∈ T at whichf is
continuous.

Even before Dirichlet proved this theorem, DuBois Reymond gave an example of a continuousf for
which lim supn→∞ Sn(f, 0) = ∞. This ruled out the possibility that continuity is sufficient for Equation
1.2 to hold. The difficulty in answering the question affirmatively came in proving convergence ofSn(f, t) as
n →∞. Fejer answered a more relaxed version of the problem, namely, when canf bereconstructedfrom
f̂(r) in possibly other ways? He showed that iff satisfies certain conditions even weaker than continuity,
then it can be reconstructed from̂f(r) by taking averages.

Definition 1.3 (Cesaro Means).Let a1, a2, . . . be a sequence of real numbers. Theirkth Cesaro meanis
bk = (1/k)

∑k
j=1 aj .

Proposition 1.3. Let a1, a2, . . . be a sequence of real numbers that converges toa. Then the sequence
b1, b2, . . . of its Cesaro means converges toa as well. Moreover, the sequence{bi} can converge even when
the sequence{ai} does not (e.g.a2j = 1, a2j+1 = 0).

Let us apply the idea of Cesaro means toSn. Define

σn(f, t) =
1

n + 1

n∑
k=0

Sk(f, t)

=
1

n + 1

n∑
k=0

k∑
r=−k

f̂(r) eirt

=
n∑

r=−n

n + 1− |r|
n + 1

f̂(r) eirt

Theorem 1.4 (Fejer). Let f : T → C be Riemann integrable. Iff is continuous att ∈ T, then
limn→∞ σn(f, t) = f(t). Further, iff is continuous then the above holds uniformly.

Proof. Note thatlimn→∞ σn(f, t) = f(t) means that∀ε > 0,∃n0 : n > n0 ⇒ |σn(f, t) − f(t)| < ε. The
convergence is uniform if the samen0 works for allt simultaneously. The proof of the Theorem uses Fejer’s
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kernelsKn that behave as continuous approximations to the Dirac delta function.

σn(f, t) =
n∑

r=−n

n + 1− |r|
n + 1

f̂(r) eirt

=
n∑

r=−n

n + 1− |r|
n + 1

(
1
2π

∫
T

f(x) e−irx dx

)
eirt

=
1
2π

∫
T

f(x)
n∑

r=−n

n + 1− |r|
n + 1

eir(t−x) dx

=
1
2π

∫
T

f(x)Kn(t− x) dx for Kn(z) def=
n∑

r=−n

n + 1− |r|
n + 1

eirz

=
1
2π

∫
T

f(t− y)Kn(y) dy for y = t− x

which is the convolution off with kernelKn. Note that ifKn were the Dirac delta function, then
∫

T f(t−
y)Kn(y) dy would evaluate exactly tof(t). Fejer’s kernelsKn approximate this behavior.

Proposition 1.5. Kn satisfies the following:

Kn(s) =

 1
n+1

(
sin n+1

2
s

sin n
2

)2

if s 6= 0

n + 1 if s = 0

The kernelsKn have three useful properties.

1. ∀u : Kn(u) ≥ 0

2. ∀δ > 0 : Kn(s) → 0 uniformly outside the interval[−δ, δ], i.e. ∀ε > 0,∃n0 : s /∈ [−δ, δ] ⇒
|Kn(s)| < ε

3. (1/2π)
∫

T Kn(s) ds = 1

Given anyε > 0, we seek a large enoughn0 such that for alln > n0, |
∫

T f(t−y)Kn(y) dy−f(t)| < ε.
Divide this integral into two intervals:∫

T
f(t− y)Kn(y) dy =

∫ δ

−δ
f(t− y)Kn(y) dy +

∫
T\[−δ,δ]

f(t− y)Kn(y) dy

The first integral on the RHS converges to2πf(t) becausef(t−y) is almost constant and equalsf(t) in the
rangey ∈ [−δ, δ] and

∫
T\[−δ,δ] Kn(s) ds converges to2π because of property 3 ofKn. The second integral

converges to0 becausef is bounded and because of property 2 ofKn. Hence the LHS converges to2πf(t),
finishing the proof.

Corollary 1.6. If f, g : T → C are continuous functions and∀r ∈ Z : f̂(r) = ĝ(r), thenf = g.

Proof. Let h
def= f −g. h is also continuous.∀r : ĥ(r) = f̂(r)− ĝ(r) = 0. By Fejer’s Theorem,h ≡ 0.
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1.4.3 Connection with Weierstrass’ Theorem

Because of the uniform convergence part of Fejer’s Theorem, we have proved that for allf : T → C
continuous and allε > 0, there exists a trigonometric polynomialP such that for allt ∈ T, |f(t)− P (t)| <
ε. This impliesWeierstrass’ Theoremwhich states that “underl∞[a, b] norm, polynomials are dense in
C[a, b],” i.e., for all f : [a, b] → R continuous and allε > 0, there exists a polynomialP such that for all
x ∈ [a, b], |f(x)− P (x)| < ε.

Informally, Weierstrass’ Theorem says that given any continuous function over a finite inverval and an
arbitrarily small envelope around it, we can find a polynomial that fits inside that envelope in that interval.
To see why this is implied by Fejer’s Theorem, simply convert the given functionf : [a, b] → C into a
symmetric functiong over an interval of size2(b − a), identify the end points of the new interval so that it
is isomorphic toT, and use Fejer’s Theorem to conclude thatσn(g, .) is a trigonometric polynomial close
to g (and hencef ). To see why Weierstrass’ Theorem implies Fejer’s Theorem, recall thatcos rt can be
expressed as a degreer polynomial incos t. Use this to express the promised trigonometric polynomial
P (t) as a linear combination ofcos rt andsin rt with −n ≤ r ≤ n.

Remark.Weierstrass’ Theorem can alternatively be proved using Bernstein’s polynomials even though nor-
mal interpolation polynomials do not work well for this purpose. Considerf : [0, 1] → R. The nth

Bernstein polynomial isBn(f, x) def=
∑n

k=0 f( k
n)

(
n
k

)
xk(1 − x)n−k. The key idea is that this involves the

fact that the Binomial distributionP (k) =
(
n
k

)
xk(1−x)n−k is highly concentrated aroundk = xn and thus

approximates the behavior of the Dirac delta function.
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