
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 9: Proof of PCP Theorem - The Final Piece
10/31/2005

Lecturer: Venkat Guruswami Scribe: Raghavendra Prasad

1 Overview
The proof of PCP presented so far is complete except for one last piece - The Assignment Tester
(AT). In today’s lecture, we use the techniques developed in the previous class to design an assign-
ment tester. With this, we complete the proof of the PCP theorem. We will also take a step back to
reflect upon the overall structure of the proof, and the tools it used.

As this lecture relies heavily on the techniques of previous class, we recall a few definitions
and results here.

Definition 1.1. An q-query assignment tester AT (γ > 0,Σ0) is a reduction algorithm P whose
input is a Boolean Circuit Φ over boolean variables X and output is a system of constraints Ψ
over X and a set Y of auxilary variables, such that

• Variables in Y take values in Σ0.

• Each ψ ∈ Ψ depends on at most q variables in X ∪ Y .

• For any assignment a to variables X we have

– COMPLETENESS: If Φ(a) = 1 then there exists an assignment b to variables in Y , such
that a ∪ b satisfy every constraint ψ ∈ Ψ.

– SOUNDNESS: If assignment a : X → {0, 1} is δ-far from every satisfying assignment
to Φ, then for any ∀b : Y → Σ0 at least γδ0 fraction ψ ∈ Psi are violated by a ∪ b.

Remark: The soundness condition is implied by the following statement: ∃δ0 > 0 and γ0 > 0
such that for δ ≤ δ0, if assignment a : X → {0, 1} is δ-far from every satisfying assignment to Φ,
then for any ∀b : Y → Σ0 at least γ0δ0 fraction ψ ∈ Psi are violated by a ∪ b. Indeed this implies
the above definition with γ = γ0δ0. We will use this form to establish the soundness.

1.1 Arithmetizing a Circuit
Any circuit over boolean variables can be reduced to a system of quadratic equations over F2,
such that there exists a satisfying assignment to the circuit, iff there is a solution to the system of
quadratic equations. This reduction from circuits to polynomial equations known as Arithmetiza-
tion of Circuits, is a recurring technique in complexity theory.

1

Let us assume we have a boolean circuitC with input variablesX and gates Y . Arithmetization
of C in to quadratic constraints can be done as follows

• Introduce a variable zi ∈ A for each input variable X and for each gate Y . (i.e., |A| =
|X|+ |Y |).

• For each gate yi ∈ Y introduce a quadratic constraint Pi, to model the relation between input
and output.

– An AND gate with input zi, zj and output zk : zi · zj − ak = 0.

– An OR gate with input zi, zj and output zk : zi + zj + zi · zj − zk = 0.

– A NOT gate with input zi and output zj : zj + zi − 1 = 0.

• Introduce a constraint to force the output of the circuit to 1 : zk − 1 = 0 where zk is the
variable corresponding to the output gate of the circuit.

1.2 Assignment Tester
Given a boolean circuit Φ over variables X with gates Y , we first arithmetize Φ to obtain a system
of quadratic equations P = {P1 . . . Pm} over variables A = {z1 . . . zN} where N = |X| +
|Y |. Therefore the task of an assignment tester is reduced to checking a solution for a system of
quadratic equations, using very few queries.

2 Testing a Quadratic System with Few Queries
The naive method is to check if an assignment a : A→ {0, 1} is a solution to a system of quadratic
equations P = {P1, P2 . . . Pm}, is to substitute aj = a(zj) for various j in each Pi and check if
Pi = 0. But observe that in order to do this, we need to know the entire assignment a, which
would require a large number (not constant) of queries. Therefore, the first objective is to reduce
the number of queries in this naive test.

Instead of checking that Pi(a) = 0 for each i, let us take a random linear combination of the
numbers Pi(a) and check if it is zero.

m∑
i=1

riPi(a) = 0

where ri ∈ F2 = {0, 1} are chosen at random independent of each other.
Observe that the addition in the above linear combination is over F2. So it is possible that

the linear combination sums up to zero, although each of the terms are non-zero. But we show
that if the Pi are indeed non-zero, then with probability 1/2, their linear combination is non-zero.
Therefore this test alone has a completeness of 1 and soundness 1

2
.

2

Lemma 2.1. If not all Pi(a), i = 1 . . .m are zero, then

Pr[
m∑

i=1

riPi(a) 6= 0] =
1

2

Proof: It is known that there exists an i such that Pi(a) = 1. Without loss of generality, we assume
Pm(a) = 1. Then

m∑
i=1

riPi(a) =
m−1∑
i=1

riPi(a) + rmPm(a) (1)

Observe that irrespective of the value of
∑m−1

i=1 riPi(a), the entire sum takes values {0, 1} for the
two choices of rm. Therefore, in one of the two choices of rm the sum

∑m
i=1 riPi(a) is not zero.

Hence the result follows.
So instead of testing Pi(a) = 0 for every i, we test that P~r(a) = 0 for a random vector ~r.

However we still have a problem of computing P~r(a) without looking at the entire assignment a.
For a vector ~r = {r1, . . . , rm} let us express P~r(a) as follows:

P~r(a) =
m∑

i=1

riPi(a) = s0 +
N∑

i=1

siai +
∑

1≤i,j≤N

tijaiaj (2)

for some s0, s1, . . . , sm ∈ F2 and tij ∈ F2 for 1 ≤ i, j ≤ m. Observe that we only require to
check that P~r(a) = 0. Therefore, instead of reading the entire assignment a and computing P~r(a),
we let the prover perform most of the computation, and read only the final results. Specifically, we
will ask the prover for each of the sums

∑
i siai and

∑
ij tijaiaj . Towards this, let us define the

following notation.

Definition 2.2. Given an assignment a = [a1, . . . , aN], define

L(s) =
N∑

i=1

aisi for a vector s ∈ {0, 1}N ,

Q(t) =
N∑

i=1

aiajtij for a N ×N matrix t over {0, 1}

(3)

Note that for every assignment a, L and Q are linear functions over F2.

The table of values L is just the Hadamard codeword for the assignment a. Recall the definition
of the Hadamard code from last lecture.

Definition 2.3. For a vector x = {x1, . . . , xr} over a field F, the Hadamard encoding of x, denoted
Had(x) is given by: Had(x)(s) =

∑r
i=1 sixi for every s ∈ Fr.

3

The Hadamard code is the longest possible linear code which does not have any repeated sym-
bols, as it contains all possible linear combinations of the symbols of the message x.

The table of values Q defined above is the Quadratic Function encoding of the assignment a.
We define this encoding formally below.

Definition 2.4. For a vector x = {x1, . . . , xr} over a field F, the quadratic function encoding of
x, denoted QF(x), is given by QF(x)(t) =

∑
1≤i,j≤r tijxixj for all t ∈ Fr×r.

In other words, quadratic function code for a vector x is the Hadamard code for the vector
x⊗ x. So every Quadratic function codeword is a Hadamard codeword (or in other words a linear
function) but not vice-versa.

Using this new notation, we re-write equation 2 as

P~r(a) = s0 + L(s) +Q(t)

We can directly obtain the values L(s) and Q(t) from the prover, and check if P~r(a) = 0.
Observe that the values of s and t depend on the random choice ~r. Let us assume that the proof
contains tables L and Q, that list the values of L(s) and Q(t) for all values of s and t. Hence, we
can get the value for L(s) and Q(t) directly from the proof to check if P~r(a) = 0. By this we have
reduced the number of queries to just two (L(s), Q(t)). However, there is a catch — there is no
guarantee that the tables L and Q are correct.

By the correctness of L and Q, we mean the following

• C1: L is a linear function, say L is the Hadamard encoding of some c ∈ FN
2 .

• C2: Q is a linear function on FN2

2 , say it is the Hadamard encoding of someC = (Cij)1≤i,j≤N .

• C3: Q and L are referring the same assignment c, i.e., the coefficient Cij in Q is cicj . Note
that this condition also implies that Q is a Quadratic Function codeword and not just a
Hadamard codeword.

• C4: The assignment c that both Q and L are referring to is indeed the assignment a.

From the previous lecture, we know how to test conditions C1 and C2 using only a few queries.
Assuming that the tables have passed the linearity tests, the two tables are close to linear functions
with constant probability. Hence we can use the Self-Correction Lemma of the previous lecture, to
obtain the correct value of the linear function at s instead of reading L(s) directly. Let us denote
by SelfCorrect(L, s) output of the Self-Correction routine, i.e the value of the linear function at s.
If L and Q, pass the linearity test, then we have at our disposal the two linear functions (Hadamard
codewords) SelfCorrect(L, s) and SelfCorrect(Q, t).

Testing Condition C3

Given any two vectors s, ś ∈ FN , if L = Had(c) and Q = QF(c), then observe that

4

L(s)L(ś) = (
∑

i

aisi)(
∑

j

aj śj)

=
∑

i

∑
j

(siśj)aiaj

= Q(s⊗ ś) (4)

Therefore, in order to test that L and Q are referring to the same assignment, we can check if
L(s)L(ś) = Q(s⊗ ś) for randomly chosen s, ś.

Assuming Q and L satisfy the test for condition C3, with constant probability it must be true
that Q and L are referring to the same assignment . Therefore, to test C4, it is enough to test if L is
the linear function corresponding to a. i.e the coefficients of si in L(s) is ai. Observe that for ei-
the ith unit vector, we get L(ei) = ai. So inorder to test if L is referring to assignment a, we just
check if L(ei) = ai for a randomly chosen i (using SelfCorrect(L, ei) to computer L(ei) reliably).

Thus we have few query tests for all the conditions Ci, i = 1 . . . 4, and also a few query test for
P~r(a) = 0. We will put this all together in the next section to get an Assignment tester.

5

3 Assignment Tester

Input: A boolean circuit Φ over variables X and gates Y such that |X|+ |Y | = N .

Initialization: Arithmetize the circuit to obtain a system of quadratic constraints P =
{P1, . . . , Pm} over variables A = {z1, . . . , zN}. Let variables z1 . . . z|X| correspond to
variables X and variables z|X|+1 . . . zN correspond to gates Y .

The Proof:

• An assignment a = (a1, a2, . . . , aN) ∈ {0, 1}N for the variables A (supposedly a
satisfying assignment for P).

• A table L : FN
2 → F2, supposedly equal to Had(a), i.e., satisfying L(s) =

∑N
i=1 aisi

• A table Q : FN2

2 → F2, supposedly equal to QF(a), i.e., satisfying Q(t) =∑N
i=1 aiajtij .

The Test:
Step 1

• Run BLR linearity test on L

• Run BLR linearity test on Q

Step 2 Pick random s, ś ∈ FN
2 and check if the following holds

SelfCorrect(L, s)SelfCorrect(L, ś) = SelfCorrect(Q, s⊗ ś)

Step 3 Pick a random vector ~r ∈ Fm
2 . Compute the coefficients si and tij such that

P~r(a) =
m∑

i=1

riPi(a) = s0 +
N∑

i=1

siai +
∑

1≤i,j≤N

tijaiaj

Check if

s0 + SelfCorrect(L, s) + SelfCorrect(Q, T) = 0

Step 4 Pick a random i ∈ {1, . . . , |X|}. Let ei denote the ith unit vector of dimension N .
Check if

SelfCorrect(L, ei) = ai

6

4 Proof of Soundness
In order to prove the soundness of the assignment tester, we prove the soundness of each of the
steps in it by a sequence of lemmas.

Lemma 4.1. If L or Q is δ1-far from a linear function then Step 1 will reject with probability
greater than or equal to δ1.

Proof: This lemma is nothing but the soundness result for BLR test, which was shown in the
previous class.

Lemma 4.2. Given a non-zero matrix M , for random choice of vectors s and ś, sTMs = 0 with
probability at most 3

4

Proof: Let (M)ij be a non-zero entry in M . Let ei and ej denote the ith and jth unit vectors.
Observe that

sTMś+ (sT + ei)Mś+ sTM(ś+ ej) + (sT + ei)M(ś+ ej) = eiMej

= (M)ij

Since, (M)ij is non-zero, it follows that at least one of the numbers sTMś, (sT + ei)Mś, sTM(ś+
ej), (s

T + ei)M(ś + ej) is non-zero. This implies that with probability at least 1
4

over random
choice of s and ś, sTMś is not zero, which implies the result.

Lemma 4.3. Completeness: If L = Had(c), and Q = QF(c) for some vector c ∈ FN
2 , then Step 2

always accepts.
Soundness: If L is δ1-close to Had(c) and Q is δ1-close to Had(C) such that Cij 6= cicj for some
i, j, then Step 2 rejects with probability at least 1

4
− 6δ1

Proof: In Step 2 we are checking for randomly chosen s, ś, that L(s)L(ś) = Q(s ⊗ ś). This
identity holds whenever L and Q are Hadamard and quadratic function encodings of the same
vector c. This proves the completeness part of the lemma.

For the soundness proof, define two matrices M1 and M2 as follows

(M1)ij = cicj M1 = ccT

(M2)ij = Cij M2 = C

From the property of self correction discussed in the previous lecture, Observe that if L is
δ1-close to Had(c), then with probability greater than 1− 2δ1,

SelfCorrect(L, s) = sT c

7

That is with the value of SelfCorrect(L, s) can be different from the linear function’s value with
probability at most 2δ1. Likewise, except with probability at most 2δ1, we have SelfCorrect(L, ś) =
śT c. Similarly with probability at least 1− 2δ1, we know that

SelfCorrect(Q, s⊗ ś) = sTCś

Therefore with probability at least 1− 6δ1 the equality being tested in Step 2 is

sTM1ś = sTM2ś

sT (M1 −M2)ś = 0

sTMś = 0

where M = M1 −M2 is a non-zero matrix. From Lemma 4.2 we conclude that sTMś is nonzero
with probability 1

4
. Therefore, with probability at least (1 − 6δ1) − 3

4
, the test made is sTMś = 0

and the test fails. So Step 2 rejects with probability at least 1
4
− 6δ2.

Lemma 4.4. If L is δ1-close to Had(c) and Q is δ1-close to QF(c), and for some j, Pj(c) 6= 0 then
Step 3 rejects with probability at least 1

2
− 4δ.

Proof: By Self-Correction we know that with probability at most 2δ1, the value SelfCorrect(L, s) 6=∑N
i=1 cisi. Similarly with probability at most 2δ1, SelfCorrect(Q, T) 6=

∑N
i=1 cicjtij . So with

probability at least 1− 4δ1 the test

s0 + SelfCorrect(L, s) + SelfCorrect(Q, T) = 0

is equivalent to

P~r(a) = s0 +
N∑

i=1

sici +
∑

1≤i,j≤N

tijcicj = 0

From Lemma 2.1 we know that for random ~r, P~r(c) = 0 with probability 1/2 (since there exists j
such that Pj(c) 6= 0). Therefore, with probability at least 1− 6δ1 − 1

2
,

s0 + SelfCorrect(L, s) + SelfCorrect(Q, T) 6= 0

and Step 3 rejects.

Theorem 4.5. Perform each of the steps 1,2,3,4 with probability 1
4

each. Let aX denote the assign-
ment a restricted to variables X of the original boolean circuit Φ. Then

• If L = Had(a) and Q = QF(a) and Pj(a) = 0 for all 1 ≤ j ≤ m then the test accepts with
probability 1.

• Let δ ≤ 1/28. If the assignment aX is δ-far from every satisfying assignment to boolean
circuit Φ, then the test rejects with probability at least δ

8
irrespective of the contents of tables

L and Q.

8

Proof: The completeness part of the proof is trivial, since each of the steps in the assignment tester,
has completeness 1.

Suppose L or Q is δ-far from the nearest Hadamard codeword, then from Lemma 4.1 with
δ1 = δ, Step 1 rejects with probability at least δ. Since with probability 1

4
Step 1 is performed,

the test rejects with probability at least δ
4
. Without loss of generality we assume that L and Q are

δ-close to their nearest Hadamard codewords.
Further if L and Q do not ’refer’ to the same assignment, by applying Lemma 4.3 with δ1 = δ,

Step 2 rejects with probability at least 1
4
− 6δ. Observe that for δ < 1

28
, 1

4
− 6δ ≥ δ. As Step 2 is

chosen with probability 1
4
, the test rejects with probability at least δ

4
. So without loss of generality,

we can assume that L and Q also refer to the same assignment c.
Suppose c is not a satisfying assignment for P , then by applying Lemma 4.4 with δ1 = δ,

we know that Step 3 rejects with probability at least 1
2
− 4δ. Since δ < 1

28
, Step 3 rejects with

probability at least 1
2
− 4δ > δ. As Step 3 is chosen with probability at least 1

4
, the test rejects with

probability at least δ
4
. So without loss of generality we can assume that c is a satisfying assignment

for P .
We know that aX is δ-far from every satisfying assignment to Φ, so in particular it is δ-far from

cX (since c being a satisfying assignment for P implies that cX satisfies the circuit Φ). By the
property of Self Correction, and that L is δ-close to Had(c), we know that SelfCorrect(L, ei) = ci
with probability at least 1 − 2δ. Therefore with probability at least 1 − 2δ, Step 4 is testing if
ai = ci. Since a is at least δ-far from c, ai 6= ci with probability δ over the random choice of i in
{1, . . . , |X|}. Therefore Step 4 rejects with probability at least δ(1− 2δ) ≥ δ

2
. As Step 4 is chosen

with probability at least 1
4
, the test rejects with probability at least δ

8
.

4.1 Remarks
• Observe that by end of Step 3 in the assignment tester, the verfier is convinced that there

is some satisfying assignment to P and L and Q are referring to it. Therefore, steps 1, 2, 3
already form a PCP system albeit with exponential size proofs. Step 4 just tests if the given
assignment a is close to the assignment, that L and Q are referring to. This is the extension
to get the Assignment Tester property.

• We have presented the assignment tester in a Prover-Verifier description. This description
can be readily converted to suit the original definition of assignment tester in terms of con-
straints. The auxilary variables of the assignment tester, are

– The variables ai corresponding to the gates in the original boolean circuit Φ.

– The entries in tables L and Q.

Thus there are m + 2N + 2N2 auxilary variables in total, all over the alphabet F2. All the
constraints have at most six variables each, and are linear or quadratic equations over F2.

9

5 PCP Proof - Another look
With the construction of a Assignment Tester, we have completed the proof of the PCP theorem.
Considering the importance of the theorem, and the variety of tools used in its proof, it is worth
taking another look at the proof.

PCP theorem as it is stated normally, implies that for every language inNP there is a polynomial-
size proof, that can be checked by random verifier using very few queries. However, as we showed
in the first class, the PCP theorem can also be stated as a NP-hardness result. Towards this, we ob-
served that PCP theorem is equivalent to the fact that GAP −CG1,s is NP -hard for some constant
s < 1.

In order to show that GAP − CG1,s is NP -hard, we need a polynomial time reduction from
a known NP -complete problem to it. But we also know that Constraint Graph satisfaction is
NP -hard. Therefore, a possible proof of the PCP theorem would be to reduce a Constraint graph
satisfaction problem to GAP − CG1,s. Observe that Constraint Graph satisfaction problem is a
special case ofGAP−CG1,s for s = 1− 1

|E| where |E| is the number of constraints in the constraint
graph. Let us define the “gap” to be the unsatisfiability value of a constraint graph (i.e., 1 minus
the fraction of constraints satisfied by the best assignment). So the PCP theorem guarantees a
reduction from instances with gap 1

|E| to instances with gap 1− s = Ω(1). Therefore PCP theorem
can be viewed as a Gap Producing or Amplifying Reduction.

The proof that we presented, creates the gap slowly and persistently, a little increase each time,
keeping the other parameters under control. In the original proof of the PCP theorem, a large gap
was created in one-single step and the other parameters had to be remedied later.

The Gap producing reduction consisted of several iterations. In each iteration, there were
four steps that modified the parameters of the constraint graph appropriately. At the end of each
iteration, the gap of the graph doubled, with a accompanying constant factor increase in its size.
Therefore, by the end of O(log n) iterations, the gap increases to a constant, while the size is still
polynomial in the original size of the graph.

The following table , sums up the central ideas and tools used in each of the four steps.

10

Step Main Ideas Effects Proof Techniques
Degree Re-
duce

Split every vertex in to many
vertices,and introduce an Ex-
pander cloud with equality
constraints among the split
vertices.

Size ↑ a O(d) factor, Gap de-
creases by a constant factor,
Alphabet remains same

Basic expansion prop-
erty of expanders

Expanderize Superimpose a constant de-
gree expander with trivial
constraints, on to the con-
straint graph G

Size ↑ a factor of 2 to 3, Gap
decreases by a constant fac-
tor, Alphabet remains same

Existence of constant
degree expanders and
Property that Expander
+ Graph gives an ex-
pander.

Gap-
Amplification

Each vertex’s value is its
opinion,on the values of ver-
tices at a distance < t,Add
edges corresponding to con-
sistency on random walks

Size ↑ by a large con-
stant factor ,Gap increases by
O(t), Alphabet size becomes
|Σ|O(dt)

Properties of random
walks on the graph

Alphabet-
Reduce

Encode the assignment with
error correcting codes, Build
a circuit that checks if assign-
ment satisfies and is a valid
codeword, Use an assignment
tester for the circuit

Size ↑ a constant factor, Gap
decreases by a constant fac-
tor,Alphabet size reduced to
26

Hadamard codes, Lin-
earity Testing, Fourier
Analysis

Table 1: Proof of PCP

11

	Overview
	Arithmetizing a Circuit
	Assignment Tester

	Testing a Quadratic System with Few Queries
	Assignment Tester
	Proof of Soundness
	Remarks

	PCP Proof - Another look

